• Title/Summary/Keyword: S-ring

Search Result 2,059, Processing Time 0.027 seconds

THE S-FINITENESS ON QUOTIENT RINGS OF A POLYNOMIAL RING

  • LIM, JUNG WOOK;KANG, JUNG YOOG
    • Journal of applied mathematics & informatics
    • /
    • v.39 no.5_6
    • /
    • pp.617-622
    • /
    • 2021
  • Let R be a commutative ring with identity, R[X] the polynomial ring over R and S a multiplicative subset of R. Let U = {f ∈ R[X] | f is monic} and let N = {f ∈ R[X] | c(f) = R}. In this paper, we show that if S is an anti-Archimedean subset of R, then R is an S-Noetherian ring if and only if R[X]U is an S-Noetherian ring, if and only if R[X]N is an S-Noetherian ring. We also prove that if R is an integral domain and R[X]U is an S-principal ideal domain, then R is an S-principal ideal domain.

NONNIL-S-COHERENT RINGS

  • Najib Mahdou;El Houssaine Oubouhou
    • Communications of the Korean Mathematical Society
    • /
    • v.39 no.1
    • /
    • pp.45-58
    • /
    • 2024
  • Let R be a commutative ring with identity. If the nilpotent radical N il(R) of R is a divided prime ideal, then R is called a ϕ-ring. Let R be a ϕ-ring and S be a multiplicative subset of R. In this paper, we introduce and study the class of nonnil-S-coherent rings, i.e., the rings in which all finitely generated nonnil ideals are S-finitely presented. Also, we define the concept of ϕ-S-coherent rings. Among other results, we investigate the S-version of Chase's result and Chase Theorem characterization of nonnil-coherent rings. We next study the possible transfer of the nonnil-S-coherent ring property in the amalgamated algebra along an ideal and the trivial ring extension.

Normal Pairs of Going-down Rings

  • Dobbs, David Earl;Shapiro, Jay Allen
    • Kyungpook Mathematical Journal
    • /
    • v.51 no.1
    • /
    • pp.1-10
    • /
    • 2011
  • Let (R, T) be a normal pair of commutative rings (i.e., R ${\subseteq}$ T is a unita extension of commutative rings, not necessarily integral domains, such that S is integrally closed in T for each ring S such that R ${\subseteq}$ S ${\subseteq}$ T) such that the total quotient ring of R is a von Neumann regular ring. Let P be one of the following ring-theoretic properties: going-down ring, extensionally going-down (EGD) ring, locally divided ring. Then R has P if and only if T has P. An example shows that the "if" part of the assertion fails if P is taken to be the "divided domain" property.

ON S-MULTIPLICATION RINGS

  • Mohamed Chhiti;Soibri Moindze
    • Journal of the Korean Mathematical Society
    • /
    • v.60 no.2
    • /
    • pp.327-339
    • /
    • 2023
  • Let R be a commutative ring with identity and S be a multiplicatively closed subset of R. In this article we introduce a new class of ring, called S-multiplication rings which are S-versions of multiplication rings. An R-module M is said to be S-multiplication if for each submodule N of M, sN ⊆ JM ⊆ N for some s ∈ S and ideal J of R (see for instance [4, Definition 1]). An ideal I of R is called S-multiplication if I is an S-multiplication R-module. A commutative ring R is called an S-multiplication ring if each ideal of R is S-multiplication. We characterize some special rings such as multiplication rings, almost multiplication rings, arithmetical ring, and S-P IR. Moreover, we generalize some properties of multiplication rings to S-multiplication rings and we study the transfer of this notion to various context of commutative ring extensions such as trivial ring extensions and amalgamated algebras along an ideal.

Some Extensions of Rings with Noetherian Spectrum

  • Park, Min Ji;Lim, Jung Wook
    • Kyungpook Mathematical Journal
    • /
    • v.61 no.3
    • /
    • pp.487-494
    • /
    • 2021
  • In this paper, we study rings with Noetherian spectrum, rings with locally Noetherian spectrum and rings with t-locally Noetherian spectrum in terms of the polynomial ring, the Serre's conjecture ring, the Nagata ring and the t-Nagata ring. In fact, we show that a commutative ring R with identity has Noetherian spectrum if and only if the Serre's conjecture ring R[X]U has Noetherian spectrum, if and only if the Nagata ring R[X]N has Noetherian spectrum. We also prove that an integral domain D has locally Noetherian spectrum if and only if the Nagata ring D[X]N has locally Noetherian spectrum. Finally, we show that an integral domain D has t-locally Noetherian spectrum if and only if the polynomial ring D[X] has t-locally Noetherian spectrum, if and only if the t-Nagata ring $D[X]_{N_v}$ has (t-)locally Noetherian spectrum.

PF-rings of Generalized Power Series

  • Kim, Hwankoo;Kwon, Tae In
    • Kyungpook Mathematical Journal
    • /
    • v.47 no.1
    • /
    • pp.127-132
    • /
    • 2007
  • In this paper, we show that if R is a commutative ring with identity and (S, ${\leq}$) is a strictly totally ordered monoid, then the ring [[$R^{S,{\leq}}$]] of generalized power series is a PF-ring if and only if for any two S-indexed subsets A and B of R such that $B{\subseteq}ann_R(|A)$, there exists $c{\in}ann_R(A)$ such that $bc=b$ for all $b{\in}B$, and that for a Noetherian ring R, $[[R^{S,{\leq}}$]] is a PP ring if and only if R is a PP ring.

  • PDF

A Note on S-Noetherian Domains

  • LIM, JUNG WOOK
    • Kyungpook Mathematical Journal
    • /
    • v.55 no.3
    • /
    • pp.507-514
    • /
    • 2015
  • Let D be an integral domain, t be the so-called t-operation on D, and S be a (not necessarily saturated) multiplicative subset of D. In this paper, we study the Nagata ring of S-Noetherian domains and locally S-Noetherian domains. We also investigate the t-Nagata ring of t-locally S-Noetherian domains. In fact, we show that if S is an anti-archimedean subset of D, then D is an S-Noetherian domain (respectively, locally S-Noetherian domain) if and only if the Nagata ring $D[X]_N$ is an S-Noetherian domain (respectively, locally S-Noetherian domain). We also prove that if S is an anti-archimedean subset of D, then D is a t-locally S-Noetherian domain if and only if the polynomial ring D[X] is a t-locally S-Noetherian domain, if and only if the t-Nagata ring $D[X]_{N_v}$ is a t-locally S-Noetherian domain.

CLEANNESS OF SKEW GENERALIZED POWER SERIES RINGS

  • Paykan, Kamal
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.6
    • /
    • pp.1511-1528
    • /
    • 2020
  • A skew generalized power series ring R[[S, 𝜔]] consists of all functions from a strictly ordered monoid S to a ring R whose support contains neither infinite descending chains nor infinite antichains, with pointwise addition, and with multiplication given by convolution twisted by an action 𝜔 of the monoid S on the ring R. Special cases of the skew generalized power series ring construction are skew polynomial rings, skew Laurent polynomial rings, skew power series rings, skew Laurent series rings, skew monoid rings, skew group rings, skew Mal'cev-Neumann series rings, the "untwisted" versions of all of these, and generalized power series rings. In this paper we obtain some necessary conditions on R, S and 𝜔 such that the skew generalized power series ring R[[S, 𝜔]] is (uniquely) clean. As particular cases of our general results we obtain new theorems on skew Mal'cev-Neumann series rings, skew Laurent series rings, and generalized power series rings.

THE SOURCE OF SEMIPRIMENESS OF RINGS

  • Aydin, Neset;Demir, Cagri;Camci, Didem Karalarlioglu
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.4
    • /
    • pp.1083-1096
    • /
    • 2018
  • Let R be an associative ring. We define a subset $S_R$ of R as $S_R=\{a{\in}R{\mid}aRa=(0)\}$ and call it the source of semiprimeness of R. We first examine some basic properties of the subset $S_R$ in any ring R, and then define the notions such as R being a ${\mid}S_R{\mid}$-reduced ring, a ${\mid}S_R{\mid}$-domain and a ${\mid}S_R{\mid}$-division ring which are slight generalizations of their classical versions. Beside others, we for instance prove that a finite ${\mid}S_R{\mid}$-domain is necessarily unitary, and is in fact a ${\mid}S_R{\mid}$-division ring. However, we provide an example showing that a finite ${\mid}S_R{\mid}$-division ring does not need to be commutative. All possible values for characteristics of unitary ${\mid}S_R{\mid}$-reduced rings and ${\mid}S_R{\mid}$-domains are also determined.

Ring-Rolling Design of a Large-Scale Ti-6Al-4V alloy (대형 Ti-6Al-4V 합금의 Ring-Rolling 공정설계)

  • Yeom, J.T.;Jung, E.J.;Kim, J.H.;Lee, D.G.;Park, N.K.;Choi, S.S.;Lee, C.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.373-376
    • /
    • 2006
  • The ring rolling design for a large-scale Ti-6Al-4V alloy ring was performed with a calculation method and FEM simulation. The ring rolling design includes geometry design and optimization of process variables. The calculation method was to determine geometry design such as initial billet and blank size, and final rolled ring shape. A commercial FEM code, SHAPE was used to simulate the effect of process variables in ring rolling on the distribution of the internal state variables such as strain, strain rate and temperature. In order to predict the forming defects during ring rolling, the process-map approach based on Ziegler's instability criterion was used with FEM simulation. Finally, an optimum process design to obtain sound Ti-6Al-4V rings without forming defects was suggested through combined approach of Ziegler's instability map and FEM simulation results.

  • PDF