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THE SOURCE OF SEMIPRIMENESS OF RINGS

Neşet Aydin, Çağrı Demir, and Didem Karalarlıoğlu Camcı

Abstract. Let R be an associative ring. We define a subset SR of R as

SR = {a ∈ R | aRa = (0)} and call it the source of semiprimeness of

R. We first examine some basic properties of the subset SR in any ring
R, and then define the notions such as R being a |SR|-reduced ring, a

|SR|-domain and a |SR|-division ring which are slight generalizations of
their classical versions. Beside others, we for instance prove that a finite

|SR|-domain is necessarily unitary, and is in fact a |SR|-division ring.

However, we provide an example showing that a finite |SR|-division ring
does not need to be commutative. All possible values for characteristics

of unitary |SR|-reduced rings and |SR|-domains are also determined.

1. Introduction

Our primary purpose in this work is to define three types of rings, which to
the best of our knowledge, have not appeared in literature before. They are
originally motivated by their existing concepts in ring theory, and can be viewed
as slight generalizations of their corresponding notions such as reduced rings,
domains and division rings, respectively (see Definition 3). To define these new
notions of rings, we will first introduce a particular subset of a ring which we
call the source of semiprimeness of the ring in question. Before getting down
into the subject matter, let us first outline the terminology that we will use
throughout the paper.

We will mean by a ring an associative nontrivial ring (not necessarily com-
mutative or with identity), and rings possessing a multiplicative identity will be
called unitary. Even this would be the case, subrings are not presumed to con-
tain the same identity of the base ring. The term ideal will refer to a two-sided
ideal unless it is adorned with the adjective left or right, and a homomorphism
from a ring R into a ring T will not be imposed to preserve units even though
R and T happen to be unitary.
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An element in a unitary ring with a right (resp. left) multiplicative inverse
will be called a right (resp. left) unit, and accordingly it will be meant by a
unit a two-sided unit. An element a of a ring R is called a right (resp. left)
zero-divisor if there exists a nonzero element b ∈ R such that ba = 0 (resp.
ab = 0). An element which is neither a left nor a right zero-divisor is called a
nonzero-divisor. A ring which has no nonzero right or left zero-divisors is called
a domain, and a ring whose nonzero elements are all units is called a division
ring. An element a of a ring R is called a nilpotent element of index n if n is
the least positive integer such that an = 0. A ring with no nonzero nilpotent
elements is called a reduced ring. An idempotent element e = e2 ∈ R is called
central if it commutes with every element of R, that is to say e is contained in
the center of R.

Following [3], we define a ring R to be a prime (resp. semiprime) ring if the
zero ideal is a prime (resp. semiprime) ideal of R. Equivalently, R is called a
prime ring if aRb = (0) with a, b ∈ R implies a = 0 or b = 0; and R is called
a semiprime ring if aRa = (0) with a ∈ R implies a = 0. As it is well-known,
the class of semiprime rings constitutes a huge class of rings containing, for
instance, prime rings (and thus all domains, simple rings and primitive rings),
reduced rings and Jacobson semisimple rings (and thus von Neumann regular
rings, and in particular, semisimple rings). But this class still excludes many
of the important types of other rings (e.g. most of the local rings and rings of
triangular matrices even over fields). We refer the reader to [1] and [2] for the
terminology mentioned so far.

It is now convenient to introduce our main instrument what we focus our
attention on throughout the paper. For a ring R, we call the subset

(1) SR = {a ∈ R | aRa = (0)}

of R as the source of semiprimeness of R. It is always a nonempty set as it
contains 0, and every element in SR is nilpotent of index at most 3. At one
extreme, SR may consist only of 0 in which case we say SR is trivial, and at
another extreme, SR may contain whole of R. Clearly triviality of SR is only
possible when R is a semiprime ring. In the case of 2-torsionfree rings (i.e.,
rings in which 2x = 0 implies x = 0), it is also possible to describe those rings
with SR = R. They are the rings with the property that the so-called Jordan
triple product vanishes identically on R, that is to say

abc+ cba = 0

for all a, b, c ∈ R (see Remark 2.1). Putting these both aside, our general
concern will be substantially the cases between these two extremes. A rigorous
reader should have already noticed that SR is always contained in the prime
radical of R (see Proposition 2.5). So we can say SR is not that large a subset
to miss out the chance of examining the structure of R by taking a closer look
at the elements in R − SR. Let us also say a few words about the name we
proposed for SR. We prefer the name “the source of semiprimeness of R” for
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SR because the elements in R − SR behave exactly the same way that any
nonzero element does in any semiprime ring: aRa 6= (0) for every a ∈ R− SR,
explaining where the “semiprimeness” part comes from.

In Section 2, we investigate basic algebraic properties of SR for any ring R,
and most of the results in this section will be of elementary type. For instance,
we shall show that SR is a semigroup ideal of R (see Proposition 2.4). We will
then compare the source of semiprimeness of R with that of n× n full matrix
ring over R and of the corner subrings in R (Proposition 2.6). Another result
worth mentioning here is that the source of semiprimeness is preserved under
ring isomorphisms (Proposition 2.7).

In Section 3, we will define three new types of rings which we call |SR|-
reduced rings, |SR|-domains and |SR|-division rings. They are slight general-
izations of their originating notions of a reduced ring, a domain and of a division
ring, respectively (see Definition 3). Our main prospect in defining these no-
tions is to restrict defining algebraic conditions for reduced rings, domains and
division rings to relatively fewer elements of the ring. As we have previously
mentioned, the elements of the subset SR in any ring R and the zero element
of a semiprime ring play analogous roles in some sense. Our presumption is
that SR already contains an adequate amount of “bad” elements of the ring R
so that there is enough place out of SR (i.e., in R−SR) to acquire a reasonable
information about the global structure of R.

Section 3 is entirely devoted to the study of basic ring theoretic properties
of these rings. A prominent result of this section is that every finite |SR|-
domain R is necessarily unitary, and is in fact, a |SR|-division ring (Theorem
3.12). But, in contrast to the classical case, Wedderburn’s Little Theorem
stating that every finite division ring is commutative, is not valid for finite
|SR|-division rings (see Example 3.14). Beside others, we will also determine all
possible values that unitary |SR|-domains and |SR|-reduced rings may possess
as characteristics (Theorems 3.15 and 3.17). At the end of the paper, we will
give two classification theorems (Corollaries 3.18 and 3.16) for the ring Zn of
integers modulo n to be a |SZn

|-reduced ring and a |SZn
|-integral domain (or,

equivalently, a |SZn |-field).

2. Basic properties of the source of semiprimeness

We start by noting that a more comprehensive version of (1) can also be
defined for any nonempty subset A of a ring R as the source of semiprimeness
of A in R. We thereby define this more general version of “source”, and imme-
diately afterwards, continue examining its basic properties within the present
section.

Definition. Let R be a ring and A be a nonempty subset of R. The set
SR(A) = {a ∈ R | aAa = (0)} is called the source of semiprimeness of the
subset A in R.
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If the context is clear, we will write SR in place of SR(R) for a ring R. It
should also be clear now that SA = SR(A) ∩A for any subring A of R.

Remark 2.1. As we mentioned earlier, there are two extreme cases for SR: One
is SR = (0) and the other SR = R. Obviously first one defines semiprime rings.
But the case SR = R should be treated carefully. In this case since aba = 0 for
all a, b ∈ R, by linearizing this last identity at a, it follows that

(2) abc+ cba = 0

for all a, b, c ∈ R. The product {a, b, c} := abc + cba for a, b, c ∈ R is called
Jordan triple product in literature. What we have shown is that if SR = R,
then Jordan triple product vanishes identically in R. Conversely, we assume
that (2) holds in R and that R is a 2-torsionfree ring. Then, in particular, one
has 2aba = 0 for all a, b ∈ R from which SR = R follows.

We should remark that the torsionfreeness assumption in the above argu-
ment is essential for the converse implication work. For instance, consider
the subring R = 3Z18 of the ring Z18 of integers modulo 18. R has a nonzero
2-torsion element, namely 9. Moreover, (2) holds in R but SR = {0, 6, 12} 6= R.

Since we are not interested in classifying such rings in the present work, we
leave this discussion at this level and continue with our principle objective.

Proposition 2.2. Let A and B be nonempty subsets of R.

(i) If A ⊆ B, then SR(B) ⊆ SR(A).
(ii) SR×R(A×B) = SR(A)× SR(B).

Proof. (i) If b ∈ SR(B), then bAb ⊆ bBb = (0). Thus b ∈ SR(A).
(ii) Now (a, b) ∈ SR×R(A×B) if and only if

(0, 0) = (a, b)(x, y)(a, b) = (axa, byb)

for all x ∈ A and y ∈ B. Equivalently, (a, b) ∈ SR(A)× SR(B). �

The following is an immediate consequence of (ii) of Proposition 2.2.

Corollary 2.3. If R1 and R2 are rings and A1 ⊆ R1 and A2 ⊆ R2 are
nonempty subsets, then SR1×R2

(A1 ×A2) = SR1
(A1)× SR2

(A2). �

Recall that a subset A of the semigroup (R, ·) is called a semigroup ideal if
ax, xa ∈ A for all a ∈ A and x ∈ R. The following proposition proves that SR
is a semigroup ideal in R. Nonetheless, we have no obvious reason to expect
SR to be an additively closed subset, yet alone an ideal of R. However, in
some certain circumstances, such as the case when SR is a nilpotent subset of
nilpotency index 2, SR turns out to be an ideal in R.

Proposition 2.4. For an ideal I of a ring R, the following holds true:

(i) SR(I) is a semigroup ideal of R. In particular, SR(I) is a multiplica-
tively closed subset of R.

(ii) If (SR(I))2 = (0), then SR(I) is an ideal of R.
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Proof. (i) Let a ∈ SR(I) and x ∈ R be arbitrary elements. Then ax, xa ∈
SR(I), that is SR(I) is a semigroup ideal of R. The rest is now obvious.

(ii) By (i), SR(I) is a semigroup ideal of R. Now for any a, b ∈ SR(I), we
have

(a+ b)x(a+ b) = axb+ bxa = 0

for all x ∈ I, since ax, xa ∈ SR(I) and (SR(I))2 = (0) by hypothesis. Hence
a + b ∈ SR(I). By combining with (i), we conclude that SR(I) is an ideal of
R. �

Prime radical P(R) of a ring R is defined to be the intersection of all prime
ideals of R. It is well-known that every semiprime ideal Q of R is the intersec-
tion of prime ideals containing Q.

Proposition 2.5. If Q is a semiprime ideal of R, then SR ⊆ Q. Consequently,
if {Qλ}λ∈Λ is a family of semiprime ideals of R, then SR ⊆ ∩λ∈ΛQλ. In
particular, SR is contained in the prime radical P(R) of R.

Proof. For all a ∈ SR, we have aRa = (0) ⊆ Q, and thus a ∈ Q by the
semiprimeness of Q. Therefore SR ⊆ Q. The rest is obvious. �

For a subset S of R we denote by Sn×n the set of all n × n matrices with
entries in S. By Mn(R), we will denote the ring of all n× n matrices over R.

Proposition 2.6. For a ring R, the following holds true:

(i) If e = e2 ∈ R is an idempotent, then eSR(eRe)e = SeRe = eSRe.
(ii) SMn(R) ⊆ (SR)n×n.

(iii) If SR is a principal ideal of R, then SMn(R) = (SR)n×n.

Proof. (i) If a ∈ SR(eRe), then aeRea = (0) and hence eaeReae = (0) implying
eae ∈ SeRe. Therefore eSR(eRe)e ⊆ SeRe. Conversely, if a ∈ SeRe, then one
has eae = a and aeRea = (0). This means that a ∈ SR(eRe), and since
a = eae, we get a ∈ eSR(eRe)e.

If eae ∈ SeRe, then eaeReae = (0). Therefore eae ∈ SR which in turn
implies eae = e2ae2 ∈ eSRe. Thus SeRe ⊆ eSRe. Conversely, let a ∈ SR be
any element. Then aRa = (0), and so eaeReae ⊆ eaRae = (0). This means
eae ∈ SeRe and thus we get eSRe ⊆ SeRe.

(ii) Let a ∈ SMn(R). For any 1 ≤ i, j ≤ n, we denote by eij ’s (formally) the
usual matric units, that is eij is the matrix 1 in the (i, j) position and zero
elsewhere. Now for any x ∈ R,

a(xeji)a = 0.

Left and right multiplying this with eji yields

(aijxaij)eji = 0.

Hence aij ∈ SR for any 1 ≤ i, j ≤ n. So we get SMn(R) ⊆ (SR)n×n.
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(iii) Assume that SR = (α) is a principal ideal generated by α ∈ R. Let
a ∈ (SR)n×n be any element. For any b ∈Mn(R) and 1 ≤ i, j ≤ n, we have

(aba)ij =

n∑
k=1

n∑
t=1

(aitbtkakj).

Since ait, akj ∈ SR = (α) for all 1 ≤ t, k ≤ n, it follows that (aba)ij = 0 for
all 1 ≤ i, j ≤ n. Hence aba = 0, that is a ∈ SMn(R). Thus in view of (ii), the

equality SMn(R) = (SR)n×n holds. �

Proposition 2.7. Let R and T be rings and f : R→ T a ring homomorphism.
Then f(SR) ⊆ Sf(R). Moreover, if f is injective, then the equality holds.

Proof. Let a ∈ SR be any element. Then f(a)f(R)f(a) = f(aRa) = f(0) =
(0), and thus f(a) ∈ Sf(R). Therefore f(SR) ⊆ Sf(R), proving the first
part. We assume next that f is injective and f(a) ∈ Sf(R). Then (0) =
f(a)f(R)f(a) = f(aRa), and since f is injective we get aRa = (0). Hence
a ∈ SR, and so we see that f(a) ∈ f(SR) proving the inverse inclusion
Sf(R) ⊆ f(SR). �

Lemma 2.8. Let R be a ring and a ∈ SR. If Ra 6= (0) 6= aR, then a is a zero-
divisor. Consequently, an element of R which is a nonzero-divisor is contained
in R− SR.

Proof. Let a ∈ SR be any element and assume that Ra 6= (0) 6= aR. Then
there exist x, y ∈ R such that xa 6= 0 6= ay. Since a(xa) = 0, we conclude that
a is a left zero-divisor. On the other hand, since (ay)a = 0 we see that a is a
right zero-divisor. Hence a is a zero-divisor as desired.

Now let b ∈ R be a nonzero-divisor. Then Rb 6= (0) 6= bR. By the previous
argument b cannot be in SR. So it is in R− SR. �

3. |SR|-reduced rings, |SR|-domains, and |SR|-division rings

We will define in this section three new notions; namely the |SR|-reduced
rings, |SR|-domains, and |SR|-division rings. Our main objective will be to give
some basic ring theoretic properties of these classes of rings. In the sequel we
will show, for instance, that every finite |SR|-domain is necessarily unitary, and
is in fact, a |SR|-division ring. So we first give the following.

Definition. Let R be a ring such that R 6= SR.

(i) R is called a |SR|-reduced ring if R− SR has no nilpotent elements.
(ii) R is called a |SR|-domain if R− SR has neither a left nor a right zero-

divisor. Accordingly, we call a commutative and unitary |SR|-domain
a |SR|-integral domain.

(iii) R is called a |SR|-division ring if 1 ∈ R and every element in R−SR is
a unit in R. In accordance with the classical ring theory, we shall call
a commutative |SR|-division ring a |SR|-field.
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We shall start with some simple observations about these rings we just de-
fined above, and then we will give an adequate number of examples in due
course to get a reasonable insight into what they are and are not.

Observations. We will point out below some easy but worthwhile facts about
those classes of rings we want to treat. We might leave the proofs of some of
them to the reader for brevity.
1. First, as expected, we note that any reduced ring (resp. a domain, a divi-
sion ring) R is a |SR|-reduced ring (resp. a |SR|-domain, a |SR|-division ring).
Notice further that a |SR|-division ring R is a |SR|-domain, and that a |SR|-
domain R is a |SR|-reduced ring. �
2. If Ri is a |SRi

|-domain for i = 1, 2, then the direct product R1 × R2

is a |SR1
× SR2

|-reduced ring by Proposition 2.2. Moreover, direct product
of |SRi |-reduced rings Ri’s with 1 ≤ i ≤ n for some positive integer n is a
|SR1 × · · · × SRn |-reduced ring. �
3. Prime radical P(R) of a |SR|-reduced ring R contains every nilpotent el-
ement a ∈ R since a ∈ SR by definition and SR ⊆ P(R) by Proposition 2.5.
Although we are not going to bother in this work to interrelate our rings with
the ones in the atlas of ring theory, we may at least emphasize that such rings,
i.e., the rings in which every nilpotent element is contained in the prime radical,
are called 2-primal in literature. �

Before we proceed we briefly outline some illustrative examples and nonex-
amples of notions given in Definition 3, some of which we believe will be moni-
tory to avoid misconception or will be useful to perceive the differences between
these three notions.

Example 3.1. In the above definition it is substantially necessary to assume
that R 6= SR. For instance, we consider the subring R = {0, 3, 6} of the
ring Z9 of integers modulo 9. Since x2 = 0 for all x ∈ R, it follows at once
that SR = R. Therefore the definitions would be meaningless without the
assumption R 6= SR.

Example 3.2. Let R = T2(Z) be the ring of all 2×2 upper triangular matrices
over the ring Z of integers. It is easy to see that

SR =

(
0 Z
0 0

)
.

Then the set

R− SR =

{(
a b
0 c

)
| a 6= 0 or c 6= 0

}

contains zero divisors but no nilpotent elements. So it is a |SR|-reduced ring
but not a |SR|-domain.
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Example 3.3. Consider the commutative and unitary ring

R =

{(
a b
0 a

)
| a, b ∈ Q

}
.

Now it turns out that

SR =

(
0 Q
0 0

)
,

and thus

R− SR =

{(
a b
0 a

)
| a 6= 0

}
.

Since every element in R− SR is a unit in R, R is a |SR|-field.
We note also that if we take the entries of matrices in R from an arbitrary

division ring instead of Q, R becomes a |SR|-division ring, and if the entries
are taken from a domain, R becomes a |SR|-domain. Moreover, the entries are
taken from a reduced ring, then R turns out to be a |SR|-reduced ring.

Example 3.4. Consider the commutative and unitary ring

R =

{(
a b
b a

)
| a, b ∈ F

}
,

where F is a field of characteristic 2. By direct computation we can easily see
that

SR =

{(
a a
a a

)
| a ∈ F

}
.

Consequently

R− SR =

{(
a b
b a

)
| a 6= b

}
.

Since the determinants of matrices in R − SR are all nonzero, R is another
example of a |SR|-field.

In the following proposition we will prove two equivalent characterizations
of |SR|-reduced rings.

Proposition 3.5. For a ring R with R 6= SR, the following are equivalent:

(1) R is a |SR|-reduced ring.
(2) a2 ∈ SR in R implies a ∈ SR.
(3) an ∈ SR in R implies a ∈ SR for any integer n ≥ 1.

Proof. (1)⇒ (2). Let R be a |SR|-reduced ring and a ∈ R be any element such
that a2 ∈ SR. It then follows that a5 = a2aa2 = 0, and so a must be contained
in SR by the very definition of a |SR|-reduced ring.

(2) ⇒ (3). Assume (2) and let a ∈ R be such that an ∈ SR where n is the
least such positive integer. Since now there exists an integer k ≥ 1 such that
n ≤ 2k ≤ n + 1, we once see that (ak)2 ∈ SR either by our assumption or by
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Proposition 2.4. Therefore we must have ak ∈ SR by (2). We are of course done
if k = 1. So we may further assume that k > 1. Since now k ≤ n− k + 1 < n,
ak being in SR contradicts to the choice of n. Therefore n cannot exceed 2,
and thus the required result directly follows from our assumptions.

(3) ⇒ (1). Let a ∈ R be any nilpotent element. Then there is an integer
n ≥ 1 such that an = 0 ∈ SR, and hence a ∈ SR by our assumption (3). �

Corollary 3.6. Let R be a |SR|-reduced ring. Then SR = {a ∈ R | a3 = 0}.
Proof. The inclusion SR ⊆ {a ∈ R | a3 = 0} is always true for any ring R.
So we assume that R is a |SR|-reduced ring and proceed to show that the
reverse inclusion also holds. Hence suppose a ∈ R is such that a3 = 0. Then of
course a3 ∈ SR, and thus we conclude a ∈ SR from the equivalent conditions
in Proposition 3.5. �

In the following proposition we will prove that the source of semiprime-
ness of any nonzero subring of a |SR|-domain R coincides with the source of
semiprimeness of R.

Proposition 3.7. If R is a |SR|-domain, then SR(A) = SR for any nonzero
subring A of R. Consequently, a nonzero subring A is a |SR|-subdomain of R.
Furthermore, A itself is a |SA|-domain.

Proof. Let A be a nonzero subring of R. Then the inclusion SR ⊆ SR(A)
follows from Proposition 2.2. To prove the converse inclusion, we suppose on
the contrary that there is an element a ∈ SR(A) such that a /∈ SR. Then
a ∈ R − SR, and so a is a nonzero-divisor in R. In the present case, we get
aA = (0) = Aa since aAa = (0) which, in turn, leads us to the contradiction
A = (0). Hence the equality SR(A) = SR follows. This observation essentially
proves also that A is a |SR|-subdomain of R.

It remains to prove the last part. So we assume that a ∈ A is a zero-divisor.
Then a must be in SR = SR(A) by what we have shown above. But then having
aAa = (0) in hand implies a ∈ SA. Therefore A is also a |SA|-domain. �

However, for a |SR|-reduced ring R and a nonzero subring A of R, SR and
SR(A) does not need to coincide (see Example 3.8 below). Nevertheless, as we
shall prove in the sequel, a nonzero subring A of a |SR|-reduced ring R is still
a |SA|-reduced ring.

Example 3.8. Let T be a unitary reduced ring and 0, 1 6= e ∈ T be a nontrivial
idempotent. We consider the ring

R =

{(
a b
0 a

)
| a, b ∈ T

}
.

It is not hard to see that SR = {( 0 b
0 0 ) | b ∈ T}, and thus

R− SR =

{(
a b
0 a

)
| a, b ∈ T and a 6= 0

}
.
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Notice that ( a b0 a ) ∈ R is nilpotent if and only if a = 0. Therefore R − SR has
no nilpotent elements, in other words R is a |SR|-reduced ring.

Now we compute SR(A) for the subring A = {( ea eb0 ea ) | a, b ∈ T} of R. Let
( x y0 x ) ∈ SR(A) be an arbitrary element. Then for any ( ea eb0 ea ) ∈ A, one has(

x y
0 x

)(
ea eb
0 ea

)(
x y
0 x

)
= 0.

Since every idempotent in a reduced ring is central, by direct computation,
we see that ex ∈ ST = {0}. This means that x ∈ Ann(e) = (1 − e)T , the
annihilator of e in T . So we get

SR(A) =

{(
x y
0 x

)
| x ∈ (1− e)T, y ∈ T

}
.

Since e 6= 1, (1− e)T 6= (0) and thus SR 6= SR(A).
Ann(e) = (1 − e)T : Clearly (1 − e)T ⊆ Ann(e). Conversely, notice that

x = ex + (1 − e)x for all x ∈ T . If, in particular, x ∈ Ann(e), then x =
ex+ (1− e)x = (1− e)x ∈ (1− e)T .

Proposition 3.9. If R is a |SR|-reduced ring and A is a nonzero subring of
R, then A itself is a |SA|-reduced ring.

Proof. This is almost clear. For if a ∈ A is a nilpotent element, then a must be
in SR ⊆ SR(A) since R is a |SR|-reduced ring. Hence we get a ∈ A ∩ SR(A) =
SA which implies that A is a |SA|-reduced ring. �

At this point we should also remark that SA and SR(A) may not be equal
even though R is a |SR|-domain. The following is such an example illustrating
this situation.

Example 3.10. Let R = Z4[t] /P , where P = (t2 + t + 1) is the principle
ideal generated by the polynomial t2 + t + 1. We note that Z4 can be viewed
as a subring of R via the monomorphism i : Z4 3 a 7→ a + P ∈ R. Since
SZ4 = {0, 2}, Z4 itself is a 2-field. On the other hand, as it can be easily seen
that

SR(Z4) = {0 + P, 2 + P, 2x+ P, 2 + 2x+ P} = SR.

It is also not hard to verify that every element in R−SR is a unit in R implying
that R is a 4-field.

We continue with the following lemma which will be used in the sequel.

Lemma 3.11. If R is a |SR|-domain, then R− SR is a multiplicative set.

Proof. Assume that a, b ∈ R − SR. Since by definition a and b are nonzero-
divisors, so is their product ab. From Lemma 2.8, we get ab ∈ R − SR and
hence R− SR is a multiplicatively closed set. �

Now we are in a position to prove:
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Theorem 3.12. If R is a finite |SR|-domain, then it is a |SR|-division ring.

Proof. Assume that R is a finite |SR|-domain. We first show that R has an
identity element. Now T = R − SR is a finite set, say with n elements, and
thus let T = {a1, . . . , an}. Pick any a ∈ T . Since T is multiplicatively closed
by Lemma 3.11 and a is neither a left nor a right zero-divisor, both of the maps
x 7→ ax and x 7→ xa from T into T are injective. Now because of the finite
cardinality, these maps must also be surjective, and thus bijective. Therefore
there exist 1 ≤ i, j ≤ n (depending on the choice of a) such that aai = a = aja.
Then

aaia = a2 = aaja,

and so

ai = aj

since a is a nonzero-divisor. Now we have in hand the following equalities:

aai = a = aia.

Take any other b ∈ T . As above, there is an element a
′

i ∈ T such that

ba
′

i = b = a
′

ib.

Accordingly, one has

(ab)a
′

i = a(ba
′

i) = ab,

ai(ab) = (aia)b = ab.

By comparison we get

(ab)a
′

i = ab = ai(ab),

and by the same argument we used in the very beginning, since ab ∈ T , it
follows that a

′

i = ai. Set e = ai and notice that e acts as the multiplicative
identity in the sub-semigroup T . Notice also that we particularly have e2 = e.

Now let x ∈ R be arbitrary. Then we either have x ∈ T or x ∈ SR. If x ∈ T ,
then xe = x = ex as we have already proved. So we may assume that x ∈ SR.
We claim first that e − ex ∈ T . Suppose on the contrary that e − ex ∈ SR.
Then

0 = (e− ex)e(e− ex) = e− ex− exe+ exex = e− ex− exe.

Right multiplying e − ex − exe = 0 with x results in ex = ex2. Now since
x3 = 0 (because xRx = (0)), right multiplying the identity ex = ex2 with
x yields ex = ex2 = ex3 = 0. But this implies e = e − ex − exe = 0, a
contradiction because e ∈ T . Similarly one can prove that e− xe ∈ T . Since e
acts as the identity element in the semigroup T , we must have

(e− ex)e = e− ex

and

e(e− xe) = e− xe.
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By comparing these last two equations we once see that ex = exe = xe. Finally,
since (xe− x)e = 0 and e is not a right zero-divisor, we conclude that xe = x.
Therefore e is in fact the multiplicative identity of R. We rename e as 1.

We have shown up to now that R is unitary. Turning back to the bijections
x 7→ ax and x 7→ xa again from T onto T , we conclude that there exist x, y ∈ T
such that ax = 1 = ya, that is a is a unit in R. Hence R is in fact a |SR|-division
ring. �

We immediately have the following corollary of the above theorem.

Corollary 3.13. Every finite |SR|-integral domain is a |SR|-field.

Now, one may of course wonder whether Wedderburn’s Little Theorem is
valid for a finite |SD|-division ring D. More precisely, is every finite |SD|-
division ring D is commutative? The answer to this question is negative as the
following example shows.

Example 3.14. Let F be a field and φ be a nonidentity monomorphism of F .
Then the ring

R =

{ a b
0 φ(a)

 | a, b ∈ F}
is a noncommutative unital ring. It is not hard to see that SR = ( 0 F

0 0 ), and
thus every element in

R− SR =

{(
a b
0 φ(a)

)
| a 6= 0

}
is invertible. Hence R is a |SR|-division ring. When we take F to be a finite
field, R turns out to be a finite |SR|-division ring which is noncommutative.

This example also shows that the multiplicative group R − SR need not be
cyclic even if the field F is finite. Indeed, if it was true that the group R− SR
is cyclic, then it would be abelian which is obviously not the case. We can
actually bring a more tangible example into being as follows: Take F = GF (4)
to be the Galois field of 4 elements and φ to be the Frobenius automorphism
sending each element of F to its square. Then by direct computation it can be
verified that any nonidentity element in the group R − SR is either of order 2
or of order 3 while the order of R− SR is 12.

The following theorem puts forward all possibilities for values of character-
istics that a unitary |SR|-domain R may possess.

Theorem 3.15. If R is a unitary |SR|-domain, then the characteristic of R is
either 0, or a prime p, or square of a prime p.

Proof. We assume that char(R) = n > 1 and that p is a prime dividing n, say
n = pk for some integer 1 ≤ k < n. We then see that

0 = n · 1 = (p · 1)(k · 1),
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that is, p · 1 is a zero-divisor, and so it must be in SR. Therefore we get

0 = (p · 1)x(p · 1) = p2 · x
for all x ∈ R implying that n divides p2. But p divides n, and hence n ∈ {p, p2},
proving the claim. �

We note that easy-to-verify examples for each case are Z, Zp and Zp2 for a
prime p. In fact, in view of the above theorem it is possible to classify |SZn |-
integral domains (as well as |SZn

|-fields by Corollary 3.13) among the rings Zn
of integers modulo n.

Corollary 3.16. Let n > 1 be an integer. Then Zn is a |SZn
|-integral domain

(and hence a |SZn |-field) if and only if n is either a prime p or p2.

Proof. If Zn is a |SZn
|-integral domain, then n, the characteristic of Zn, is

either p or p2 for some prime p by Theorem 3.15. The converse is clear as we
have already mentioned above. �

Theorem 3.17. If R is a unitary |SR|-reduced ring, then the characteristic of
R is a cube-free integer n, i.e., there is no prime p such that p3 divides n.

Proof. Assume that char(R) = n > 1 and that p is prime dividing n, say
n = pαt0 for some α ≥ 1 and 1 ≤ t0 < n with p coprime to t0. Then

(pt0 · 1)α = tα−1
0 · (n · 1) = 0,

and thus pt0 · 1 ∈ SR. Therefore, p2t20 · x = (pt0 · 1)x(pt0 · 1) = 0 for all x ∈ R.
Hence n divides p2t20, that is, there is an integer t1 ≥ 1 such that pαt0t1 = p2t20.
Suppose for the moment that α ≥ 3. We thence get t0 = pα−2t1 leading us to
the contradiction p divides t0. Hence n must be a cube-free integer. �

As for the classification of |SZn
|-integral domains, we have the following.

Corollary 3.18. Let n > 1 be an integer. Then Zn is a |SZn |-reduced ring if
and only if n is a cube-free integer.

Proof. Assume that Zn is a |SZn
|-reduced ring. Since now the characteristic of

Zn is n, n is a cube-free integer by Theorem 3.17.
Conversely, assume that n is a cube-free integer. Then there exist distinct

primes p1, . . . , pr and integers α1, . . . , αr with 1 ≤ αi ≤ 2 for each i ∈ {1, . . . , r}
such that n = pα1

1 · · · pαr
r . It is quite easy to observe that

SZn
= {ā ∈ Zn | ā2 = 0̄} = (p1 · · · pr).

Let now ā ∈ Zn be any element such that ā2 ∈ SZn . Then one gets

a2 = p1 · · · prk + nt

for some integers k and t. Therefore each pi divides a since they all divide a2.
This means that a = p1 · · · prq for some q ∈ Z. Accordingly ā = p1 · · · prq ∈
SZn

. Now we can apply Proposition 3.5 to be able to conclude that Zn is a
|SZn
|-reduced ring. �
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Conclusion 3.19. In the light of Proposition 2.5 it can be seen that SR coin-
cides with the prime radical under some conditions. This issue will be discussed
in our next study.
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his valuable suggestions and comments.

References

[1] T. Y. Lam, A First Course in Noncommutative Rings, Graduate Texts in Mathematics,

131, Springer-Verlag, New York, 1991.

[2] , Lectures on Modules and Rings, Graduate Texts in Mathematics, 189, Springer-
Verlag, New York, 1999.

[3] N. H. McCoy, The Theory of Rings, The Macmillan Co., New York, 1964.
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