References
- M. M. Ali, Multiplication modules and homogeneous idealization, Beitrage Algebra Geom. 47 (2006), no. 1, 249-270.
- M. M. Ali, Idealization and theorems of D. D. Anderson, Comm. Algebra 34 (2006), no. 12, 4479-4501. https://doi.org/10.1080/00927870600938837
- D. D. Anderson, Multiplication ideals, multiplication rings, and the ring R(X), Canadian J. Math. 28 (1976), no. 4, 760-768. https://doi.org/10.4153/CJM-1976-072-1
- D. D. Anderson, T. Arabaci, U. Tekir, and S. Ko,c, On S-multiplication modules, Comm. Algebra 48 (2020), no. 8, 3398-3407. https://doi.org/10.1080/00927872.2020.1737873
- D. D. Anderson and T. Dumitrescu, S-Noetherian rings, Comm. Algebra 30 (2002), no. 9, 4407-4416. https://doi.org/10.1081/AGB-120013328
- D. D. Anderson and M. Winders, Idealization of a module, J. Commut. Algebra 1 (2009), no. 1, 3-56. https://doi.org/10.1216/JCA-2009-1-1-3
- D. Bennis and M. El Hajoui, On S-coherence, J. Korean Math. Soc. 55 (2018), no. 6, 1499-1512. https://doi.org/10.4134/JKMS.j170797
- M. Chhiti and S. Moindze, Some commutative rings defined by multiplication likeconditions, Bull. Korean Math. Soc. 59 (2022), no. 2, 397-405. https://doi.org/10.4134/BKMS.b210293
- M. D'Anna, C. A. Finocchiaro, and M. Fontana, Amalgamated algebras along an ideal, in Commutative algebra and its applications, 155-172, Walter de Gruyter, Berlin, 2009.
- M. D'Anna, C. A. Finocchiaro, and M. Fontana, New algebraic properties of an amalgamated algebra along an ideal, Comm. Algebra 44 (2016), no. 5, 1836-1851. https://doi.org/10.1080/00927872.2015.1033628
- M. D'Anna and M. Fontana, An amalgamated duplication of a ring along an ideal: the basic properties, J. Algebra Appl. 6 (2007), no. 3, 443-459. https://doi.org/10.1142/ S0219498807002326
- L. Fuchs, Uber die Ideale arithmetischer Ringe, Comment. Math. Helv. 23 (1949), 334-341. https://doi.org/10.1007/BF02565607
- C. U. Jensen, Arithmetical rings, Acta Math. Acad. Sci. Hungar. 17 (1966), 115-123. https://doi.org/10.1007/BF02020446
- M. Kabbour and N. Mahdou, Arithmetical property in amalgamated algebras along an ideal, Palest. J. Math. 3 (2014), Special issue, 395-399.
- K. Louartiti and N. Mahdou, Transfer of multiplication-like conditions in amalgamated algebra along an ideal, Afr. Diaspora J. Math. 14 (2012), no. 1, 119-125.
- A. Mimouni, M. Kabbour, and N. Mahdou, Trivial ring extensions defined by arithmetical-like properties, Comm. Algebra 41 (2013), no. 12, 4534-4548. https://doi.org/10.1080/00927872.2012.705932
- M. Nagata, Local rings, Interscience Tracts in Pure and Applied Mathematics, No. 13, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York, 1962.