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CLEANNESS OF SKEW GENERALIZED
POWER SERIES RINGS

KAMAL PAYKAN

ABSTRACT. A skew generalized power series ring R[[S,w]] consists of all
functions from a strictly ordered monoid S to a ring R whose support
contains neither infinite descending chains nor infinite antichains, with
pointwise addition, and with multiplication given by convolution twisted
by an action w of the monoid S on the ring R. Special cases of the skew
generalized power series ring construction are skew polynomial rings, skew
Laurent polynomial rings, skew power series rings, skew Laurent series
rings, skew monoid rings, skew group rings, skew Mal’cev-Neumann series
rings, the “untwisted” versions of all of these, and generalized power series
rings. In this paper we obtain some necessary conditions on R, S and
w such that the skew generalized power series ring R[[S,w]] is (uniquely)
clean. As particular cases of our general results we obtain new theorems
on skew Mal’cev-Neumann series rings, skew Laurent series rings, and
generalized power series rings.

1. Introduction

Given a ring R, a strictly ordered monoid (S, <) and a monoid homomor-
phism w : S — End(R), one can construct the skew generalized power series
ring R[[S,w]] (see Section 2 for details). Skew generalized power series rings
are a common generalization of skew polynomial rings, skew power series rings,
skew Laurent polynomial rings, skew Laurent series rings, skew monoid rings,
skew group rings, skew Mal’cev-Neumann series rings, and of course the “un-
twisted” versions of all of these. Hence any result on skew generalized power
series rings has its counterpart for each of these particular ring extensions,
and these counterparts follow immediately from a single proof. This property
makes skew generalized power series rings a useful tool for unifying results on
the ring extensions listed above; such an approach was applied, e.g., in [18],
[19], [20], [22], [25], [31], [32], [33], [34], [36], [39] and [42].

An element a of a ring R is called (uniquely) clean if it can be expressed
(uniquely) as the sum of an idempotent and a unit in R. The ring R is called a
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(uniquely) clean ring if every element of R is (uniquely) clean. It follows that
every local ring is clean. More generally, Camillo and Yu [1, Theorem 9] showed
that a ring is semiperfect if and only if it is clean and contains no infinite family
of orthogonal idempotents. In addition, they showed that every unit-regular
ring is clean [1, Theorem 5]. Clean rings were first studied by Nicholson [27] in
connection with exchange rings and lifting of idempotents.

A ring R is Boolean in case every element in R is idempotent. Clearly,
the class of uniquely clean rings is a natural generalization of that of Boolean
rings. In fact, a ring R is uniquely clean if and only if R/J(R) is Boolean and
idempotents lift uniquely modulo J(R) (cf. [29, Theorem 20]), where J(R) is
the Jacobson radical of R. Studies of (uniquely) clean of some ring extensions
was considered in many papers (see [1], [5], [9], [27], [28], [29], [38], and [46]).

Because of the importance of (uniquely) clean rings in general theory of rings,
it is natural to ask under what conditions on a ring R, a strictly ordered monoid
(S, <) and a monoid homomorphism w : S — End(R), the skew generalized
power series ring R[[S,w]] is (uniquely) clean. In this paper we obtain some
necessary conditions on R, S and w such that the skew generalized power series
ring R[[S,w]] is (uniquely) clean.

The paper is organized as follows. In Section 2, we recall the skew generalized
power series ring construction and show that (skew) polynomial rings, (skew)
Laurent polynomial rings, (skew) power series rings, (skew) Laurent series rings,
(skew) monoid rings and the Mal’cev-Neumann construction are special cases
of the construction. In Section 3, we study when the skew generalized power
series ring R][[S,w]] is (uniquely) clean. In particular, it is proved that, under
suitable conditions, for a 2-primal ring R, the skew generalized power series
ring R[[S,w]] is clean if and only if R is semiregular with J(R) nil, where
(S,<) is a totally ordered group or (S, <) is an abelian torsion-free group
such that < is subtotal and w : S — Aut(R) a group homomorphism (see
Theorem 3.7). As a consequence of the main result of this paper (Corollary
3.9), we obtain some characterizations a skew Laurent series ring R[[x,z71; o]
to be clean. In particular, we will show that, R[[z,2~!;a]] is clean if and only
if R is semiregular with J(R) nil, where R is an (o, d)-compatible 2- primal
ring and it is either right Goldie, or has right Krull dimension, or is a ring
with ACC on both right and left annihilators. The results were motivated by
[46, Theorem 2.5] of Zhou and Ziembowski. Finally, we prove that R[[S,w]]
is uniquely clean if and only if R is uniquely clean and w, is idempotent-
stabilizing for all s € S, where (5, <) is a positively strictly ordered monoid, and
w: S — End(R) a monoid homomorphism (Theorem 3.12). As an application,
we provide (apparently) new examples of (uniquely) clean rings.

Throughout this paper all monoids and rings are with identity element that
is inherited by submonoids and subrings and preserved under homomorphisms,
but neither monoids nor rings are assumed to be commutative. We will denote
by End(R) the monoid of ring endomorphisms of R, and by Aut(R) the group
of ring automorphisms of R. If S is a monoid or a ring, then the group of
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invertible elements of S is denoted by U(S). When we consider an ordering
relation < on a set S, then the word “order” means a partial ordering unless
otherwise stated. The order < is total (respectively trivial) if any two different
elements of S are comparable (respectively incomparable) with respect to <.
We will use the symbol 1 to denote the identity elements of the monoid S, the
ring R, and the ring R[[S,w]], as well as the trivial monoid homomorphism
1:S — End(R) that sends every element of S to the identity endomorphism.
Also we use Z, N, Q and R for the integers, positive integers, rational numbers
and the field of real numbers, respectively. For a ring R, we denote by J(R)
the Jacobson radical of R. The prime radical of a ring R and the set of all
nilpotent elements in R are denoted by P(R) and nil(R), respectively.

2. Preliminaries

A partially ordered set (S, <) is called artinian if every strictly decreasing
sequence of elements of S is finite, and (.5, <) is called narrow if every subset
of pairwise order-incomparable elements of S is finite. Thus, (5, <) is artinian
and narrow if and only if every nonempty subset of S has at least one but
only a finite number of minimal elements. An ordered monoid is a pair (S, <)
consisting of a monoid S and an order < on S such that for all a,b,c € S, a <b
implies ca < ¢b and ac < be. An ordered monoid (5, <) is said to be strictly
ordered if for all a,b,c € S, a < b implies ca < ¢b and ac < bc.

For a strictly ordered monoid S and a ring R, Ribenboim [42] defined the
ring of generalized power series R[[S]] consisting of all maps from S to R whose
support is artinian and narrow with the pointwise addition and the convolution
multiplication. This construction provided interesting examples of rings (e.g.,
Elliott and Ribenboim, [4]; Ribenboim, [40], [41]) and it was extensively studied
by many authors.

In [23], Mazurek and Ziembowski, introduced a “twisted” version of the
Ribenboim construction and studied when it produces a von Neumann regular
ring. Now we recall the construction of the skew generalized power series ring
introduced in [23]. Let R be a ring, (S5, <) a strictly ordered monoid, and
w: S — End(R) a monoid homomorphism. For s € S, let w, denote the image
of s under w, that is ws = w(s). Let A be the set of all functions f : S — R
such that the support supp(f) = {s € S : f(s) # 0} is artinian and narrow.
Then for any s € S and f,g € A the set

Xs(f.9) = {(z,y) € supp(f) x supp(g) : s = y}
is finite. Thus one can define the product fg: S — R of f,g € A as follows:
fals) = Y flwwa(g(v)),
(uw)€X(f,9)

(by convention, a sum over the empty set is 0). With pointwise addition and
multiplication as defined above, A becomes a ring, called the ring of skew
generalized power series with coefficients in R and exponents in S (one can
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think of a map f : S — R as a formal series ) ¢ 7ss, where r; = f(s) € R)
and denoted either by R[[S<,w]] or by R[[S,w]] (see [18] and [23]).
To each r € R and s € S, we associate elements c,, e; € R[[S,w]|] defined by

r r=1 1 z=s
C’“(“”):{o ze S\ {1}, es(“”):{o ze S\ {s}.

It is clear that r — c, is a ring embedding of R into R[[S,w]] and s — e, is
a monoid embedding of S into the multiplicative monoid of the ring R[[S,w]],
and e;c, = ¢, (r)€s-

Below we quote from [19], how the classical constructions mentioned in Sec-
tion 1 can be viewed as special cases of the skew generalized power series ring
construction.

Let R be a ring and ¢ an endomorphism of R. Then for the additive monoid
S = NU {0} of nonnegative integers, the map w : S — End(R) given by

(2.1) w(n) =o" for any n € S,

is a monoid homomorphism. If furthermore ¢ is an automorphism of R, then
(2.1) defines also a monoid homomorphism w : S — Aut(R) for S = Z, the
additive monoid of integers. We can consider two different orders on each of
the monoids NU {0} and Z: the trivial order and the natural linear order. In
both cases these monoids are strictly ordered, and thus in each of the cases we
can construct the skew generalized power series ring R[[S,w]]. As a result, we
obtain the following extensions of the ring R:

(1) If S = NU {0} and < is the trivial order, then the ring R[[S,w]] is
isomorphic to the skew polynomial ring R[z,c].

(2) If S = NU{0} and < is the natural linear order, then R[[S,w]] is
isomorphic to the skew power series ring R[[z; o]].

(3) If S = Z and < is the trivial order, and ¢ is an automorphism of
R, then R[[S,w]] is isomorphic to the skew Laurent polynomial ring
R[z,z71;0].

(4) If S = Z and < is the natural linear order, and ¢ is an automor-
phism of R, then R[[S,w]] is isomorphic to the skew Laurent series ring
R[[z, 21 o).

By applying the above points (1)-(4) to the case where o is the identity map
of R, we can see that also the following ring extensions are special cases of the
skew generalized power series ring construction: the ring of polynomials R[x],
the ring of power series R|[[z]], the ring of Laurent polynomials R[z,z~!], and
the ring of Laurent series R[[x,z1]].

Furthermore, any monoid S is a strictly ordered monoid with respect to the
trivial order on S. Hence if R is a ring, S is a monoid and w : S — End(R)
is a monoid homomorphism, then we can impose the trivial order on S and
construct the skew generalized power series ring R[[S,w]], which in this case
will be denoted by R[S,w]. It is clear that the ring R[S,w] is isomorphic to
the classical skew monoid ring built from R and S using the action w of S on
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R. If w is trivial, we write R[S] instead of R[S,w]. Obviously the ring R[S] is
isomorphic to the ordinary monoid ring of S over R.

Also, the construction of skew generalized power series rings generalizes an-
other classical ring constructions such as the Mal’cev-Neumann Laurent series
rings ((S, <) a totally ordered group and trivial w; see [3, p. 528]), the Mal’cev-
Neumann construction of twisted Laurent series rings ((.9, <) a totally ordered
group; see [10, p. 242]), and generalized power series rings R[[S]] (trivial w; see
[42, Section 4]), twisted generalized power series rings (see [14, Section 2|, [23]).

Recall that a monoid S is said to be torsion-free if for any n € Nand s,t € .5,
s™ =t™ implies s = t. By use the terminology of [23], an order < on a monoid
S is said to be subtotal (see [42]) if for any s,t € S there exists n € N such
that s™ <™ or t" < s™. Clearly, every total order < is subtotal. Furthermore,
Example 3.8 in [25] show that in general a subtotal order need not be total. If
(S, -, <) is an abelian ordered group, then the order < is subtotal if and only if
for every s € S there exists n € N such that s > 1 or s™ < 1.

It is easy to see that if (S, -, <) is an ordered torsion-free commutative monoid
such that < is subtotal, then the binary relation < on S defined by

s =t if and only if s™ <t" for some n € N

is a total order on S and (S, -, <) is an ordered monoid. The order < will be
called the total order associated with <. Clearly, s < t implies s < t for any
s,t € S, and thus by [23, Proposition 1.1], if a subset T of S is artinian and
narrow with respect to <, then T is well-ordered with respect to <. Hence
for any f € R[[S,w]] \ {0} there exists a smallest element sy of supp(f) with
respect to <, which will be denoted by = (f).

To study when the skew generalized power series ring R[[S,w]] is a clean
ring, we will need the following results on units which plays a key role in this
paper.

Proposition 2.1 ([23, Proposition 2.2]). Let R be a ring, (S,<) a strictly
ordered monoid, w : S — End(R) a monoid homomorphism and A = R[[S, w]].
Let f € A and assume that there exists a smallest element sq in supp(f). If

so € U(S) and f(so) € U(R), then f € U(A).

Proposition 2.2 ([23, Lemma 2.5]). Let R be a ring, (S,-,<) an ordered
abelian torsion-free group such that < is subtotal, w : S — End(R) a monoid
homomorphism, A = R[[S,w]] and < the total order associated with <. If
f € A\ {0} and for the smallest element sy of supp(f) with respect to < we
have f(so) € U(R), then f € U(A).

According to Krempa [8], an endomorphism « of a ring R is said to be rigid
if ac(a) = 0 implies a = 0, for a € R. A ring R is said to be a-rigid if there
exists a rigid endomorphism « of R.

In [6], the authors introduced a-compatible rings and studied their proper-
ties. An endomorphism « of a ring R is said to be compatible (and the ring
R is called an a-compatible ring) if for each a,b € R, ab = 0 if and only if
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aa(b) = 0. Basic properties of rigid and compatible endomorphisms, proved
by Hashemi and Moussavi in [6, Lemmas 2.2 and 2.1] are summarized in the
following lemma:

Lemma 2.3. Let a be an endomorphism of a ring R. Then:
(i) if a is compatible, then « is injective;
(ii) « is compatible if and only if for all a,b € R, a(a)b =0 < ab = 0;
(iil) the following conditions are equivalent:
(1) « is rigid,
(2) « is compatible and R is reduced;
(3) for every a € R, a(a)a =0 implies that a = 0.

Marks, Mazurek and Ziembowski in [18] extended these notions as follows:

Definition 2.4 ([18]). Let R be a ring, (S, <) a strictly ordered monoid and
w : S — End(R) a monoid homomorphism. The ring R is said to be S-
compatible (resp. S-rigid) if ws is compatible (resp. rigid) for every s € S.

A ring R is called 2-primal if P(R) = nil(R). It is obvious that commutative
rings and reduced rings are 2-primal. Shin in [44, Proposition 1.11] showed that
aring R is 2-primal if and only if every minimal prime ideal P of R is completely
prime (i.e., R/P is a domain). Also he proved that the minimal-prime spectrum
of a 2-primal ring is a Hausdorff space with a basis of closed-and-open sets
[44, Proposition 4.7] (for further information on 2-primal rings, see [15], [16],
[37] and the references therein).

In the proof of the next results we will need the following theorem. Some
characterizations of the Jacobson radical of skew generalized power series rings
prove in [21].

Theorem 2.5 ([21]). Let R be a 2-primal ring, (S,<) a nontrivial ordered
group and w : S — Aut(R) a group homomorphism. Assume that < is total
or (S,<) is an abelian torsion-free group such that < is subtotal, and A =
R[[S,w]]. Suppose that R is S-compatible and P(R) is a nilpotent ideal of R.
Then J(A) is a nilpotent ideal of A and coincides with P(R)[[S,w]].

3. Clean rings of skew generalized power series

In this section we will characterize the cleanness of a skew generalized power
series ring R[[S,w]] under various assumptions on R, S and w. We also study
when R[[S,w]] is (uniquely) clean. We start with the following lemma, which
plays a key role in the sequel.

Lemma 3.1. Let R be a ring, (S, <) a strictly ordered monoid, and w : S —
End(R) a monoid homomorphism. If R is S-compatible and e is an idempotent
of R, then we have the following statements:

(1) ws(e) =e forall s € S;

(2) c.R[[S,w]]ce = (eRe)[[S,w]].
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Proof. (1) Since e(1 —e) = (1 —e)e = 0 and R is S-compatible, it concludes
that e = ews(e) and ws(e) = ews(e) for all s € S. Hence ws(e) = e forall s € S.
(2) By an easy computation and using part (1) the result proves. O

Recall from [17] that an ordered monoid (5, <) is called quasitotally ordered
(and that < is a quasitotal order on S) if < can be refined to an order < with
respect to which S is a strictly totally ordered monoid. The class of quasito-
tally ordered monoids is quite large and important. For example, this class
includes the totally ordered monoids, submonoids of a free group, and torsion-
free nilpotent groups (see [30, Lemma 13.1.6 and Corollary 13.2.8]). Also, every
commutative, torsion-free, and cancellative ordered monoid is quasitotally or-
dered monoid (e.g. see [39, 3.3]).

Proposition 3.2. Let R be a ring, (S, <) a quasitotally ordered monoid, and
w: S = End(R) a monoid homomorphism. Assume that R is S-rigid. If f is
an idempotent of R[[S,w]], then f(1) is an idempotent of R and f = cyq).

Proof. Suppose that f is a nonzero idempotent of R[[S,w]]. By hypothesis, the
order (5, <) can be refined to a strict total order < on S. It implies that there
exists ug € supp(f) such that up is a minimal element of supp(f) under the
total order <. For any (u,v) € Xug(f, ), wo = u, up 3 v. If ug < u, since <
is a strict order, u? < uug < uv = u3, a contradiction. Thus u = ug. Similarly,
v = ug. Hence:

(3.1) Pag)= Y f@wuf(©) = fuo)wu (f(uo))-

(u,v)EXug (f7f)

Assume that ug < 1. Since < is a strict order, it follows that u3 < ug. Hence
the minimality of supp(f) implies that f(u2) = 0. From f? = f and Equation
3.1, we infer that f(ug)wy,(f(uo)) = 0. Since R is S-rigid, we obtain f(ug) =0
which contradicts to the fact that uy is a minimal element of supp(f). Hence
1 j uQ-

Suppose that there exists 1 < sg such that f(sp) # 0. We can assume that sg
is the smallest with the condition under the total order <. Therefore f(s) =0
for all 1 < s < s9. From f2? = f, it implies that

F(1)? = f(1) and f(so) = F(1)f(s0) + f(s0)ws, (f(1)).

Since f(1) is an idempotent element of the ring R, from Lemma 3.1(1) we infer
f(so) = fF(1)f(s0)+f(s0)f(1). Multiplying the last equation on the left by f(1)
we have £(1)f(s0) = F(1)f(s0) + F(1)f(s0)f(1) and thus f(1)f(s0)f(1) = 0.
Since R is S-rigid, f(1)f(s0) = f(so)ws,(f(1)) = 0 and f(so) = 0 follows,
which is a contradiction. Consequently we have f(s) = 0 for all s € S\ {1}.
Thus f = cg(1), as desired. ([

If (S, <) is a totally ordered monoid, then the positive cone of S is denoted
by ST, ie., ST ={se€S:s5>1}. Since ST is a submonoid of S, for any ring
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R and w : S — End(R) a monoid homomorphism the skew generalized power
series ring R[[ST,w]] is a subring of the ring R[S, w]].

Lemma 3.3. Let R be a ring, (S, <) a quasitotally ordered monoid such that
for any s € S with s < 1 we have s € U(S), and let w : S — End(R) be a
monoid homomorphism. Then for any f € R[[S,w]] there exist u € U(S) and
g € R[[ST,w]| such that f = ge,.

Proof. Our proof follows the method employed in [26, Lemma 2.3]. By hypoth-
esis, the order (9, <) can be refined to a strict total order < on S. If f = 0,
then we can put u = 1 and g = 0. Thus we assume that f # 0. Since supp(f)
is a non-empty artinian and narrow subset of S, the set of minimal elements
of supp(f) is finite and non-empty. Thus there exists a minimal element of
supp(f) under the total order =<, which will be denoted by s. If s = 1, then
supp(f) € ST, so f € R[[ST,w]] and we can set u =1 and g = f. We are left
with the case where s < 1. Then s € U(S). Furthermore, if ¢ is any element of
supp(f), then s < t,s0 1 =< ts~! and thus ts~! € ST. Hence, for the function
g : S — R defined by

g(z) = f(zs) forany z €S
we have supp(g) C supp(f) - s=1 C ST, which implies that g € R[[ST,w]].
Moreover, for any x € S we have
fl@) = glzs™") = g(as™ wye-1(es(s)) = ges(2),

which shows that f = ges. Hence we can put u = s, and the result follows. [

A ring R is (von Neumann) regular (resp. unit-reqular) if a € aRa (resp.
a € aU(R)a) for all a € R. A ring R is semiregular if R/J(R) is regular and
idempotents lift modulo J(R). Recall that a monoid S is cyclic if for some
s € S we have S = {s" : n € NU{0}}.

Proposition 3.4. Let R be a ring, (S,-, <) a quasitotally ordered cyclic group
generated by s, and let w : S — End(R) be a group homomorphism. Assume
that R is S-rigid.
(1) If co + cves is a unit of R[[S,w]], then there exists ¢ € R such that
a = aca.
(2) If R[[S,w]] is a clean ring, then R is (von Neumann) regular.

Proof. (1) By hypothesis, the order (S, <) can be refined to a strict total order
<on S. Since S is a cyclic group, Lemma 3.3 implies that there exist n € NU{0}
and f € R[[ST,w]] such that

(3.2) (ca + cres)f = €gn,

where ST is the positive cone of 5. Without loss of generality, we can assume
that 1 < s. Then computing both sides of Equation (3.2) at 1 we obtain:

(3.3) af(1) +bws(f(s™h) = e (1).
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Since s7! < 1 and f € R[[ST,w]], f(s7!) = 0. Then Equation (3.3) becomes:

(3.4) af(l) = esn(]_).
If n = 0, then Equation (3.4) implies that af(1) =1 and so a = af(1)a. Thus,
we will assume that 1 < n. Then Equation (3.4) becomes:

(3.5) af(l) =0.
Indeed, after computing both sides of Equation (3.2) at s we obtain:
(3.6) af(s) +bws(f(1)) = 0.

Multiplying Equation (3.6) by a from the left yields a? f(s)+abws(f(1)) = 0.
Since R is S-rigid, from Equation (3.5), we concludes abws(f(1)) = 0. This
implies a?f(s) = 0. Since R is reduced, we have

(3.7) af(s)=0.

We see easily by induction and an argument similar above that af(1) = af(s) =
- =af(s"71) = 0. Since R is S-rigid, we have ws(f(s""!))a = 0. On the

other hand, computing both sides of Equation (3.2) at s™ we obtain:

(3.8) af(s") + bws(F(s"7)) = 1.
Now multiplying Equation (3.8) by a from the right gives a = af(s")a.

(2) Let a € R. Then —c,e,-1 = e + u where ¢? = e € R[[S,w]] and u is
a unit of R[[S,w]]. By Proposition 3.2, there exists b € R such that e = c.
So cqe,-1 + ¢p is a unit of R[[S,w]], and hence ¢, + cpe, is a unit of R[[S,w]].
From part (1) it follows that there exists ¢ € R such that a = aca. This proves
that R is (von Neumann) regular, and the proof is complete. O

In the proof of the next result we will need the following criterion for clean-
ness of a ring which is due to Zhou and Ziembowski [46].

Lemma 3.5 ([46, Lemma 2.3]). Let a € R and ¢ = e € R such that both
ea(l —e) and (1 — e)ae are contained in J(R). If eae is clean in eRe and
(1 —e)a(l —e) is clean in (1 —e)R(1 — e), then a is clean in R.

The following proposition provides us with a method of constructing clean
rings.

Theorem 3.6. Let R be a 2-primal ring, (S, <) a nontrivial ordered group
and w : S — Aut(R) a group homomorphism. Assume that < is total or (S, <)
is an abelian torsion-free group such that < is subtotal. Suppose that R is S-
compatible and J(R) is a nilpotent ideal of R. If R is semiregular, then the
skew generalized power series ring R[[S,w]] is clean.

Proof. We set A := R[[S,w]] and R := R/J(R). We only consider the case
(S,<) is an abelian torsion-free group such that < is subtotal because the
proof of the other case is similar. Suppose that < is the total order associated
with <. Suppose that f is a nonzero element of A. We will show that f is
clean in A. Since supp(f) is a non-empty artinian and narrow subset of S, the
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set of minimal elements of supp(f) is finite and non-empty. Thus there exists a
minimal element of supp(f) under the total order <. Then by Lemma 3.3, there
exist s € S and g € R[[ST,w]] such that f = ges, where ST is the positive cone
of S. Without loss of generality, we can assume that 1 < s. Since supp(g) is a
non-empty artinian and narrow subset of S, the set {t € supp(g) : 1 <t < s}
is finite, say equal to {t; = 1,ta,t3,...,tx = s}. Since J(R) is nilpotent and
R is 2-primal, from Theorem 2.5 it implies that J(A) = J(R)[[S,w]]. As R
is 2- prlmal the assumption implies that Ris strongly regular. It follows that
g(tl) = éyug, where € is a central idempotent of R and g ug is a unit of R.
Since J(R) is nil, [10, Theorem 21.28] concludes that idempotents of R can
be lifted to idempotents of R, so we can assume that e3 = eg. Therefore,
g(t1) = egupep + jo and so egg(t1)eg = egupen + €ojoco, where egugeq is a unit
of egReg and jo € J(R). Applying Lemma 3.1, we obtain

Ceg fceo = C¢;gCey€s,

(eoReo)[[S,w]] = €y Ace, -

As ¢ gce, (t1) = eoupeo+enjoeo is a unit of the ring eg Reg, from Proposition
2.2 it follows that c.,fce, is a unit (and hence a clean element of the ring
(egReo)[[S,w]] = ceyAce,). Also, since €y is a central element in R and R is
an S-compatible ring, Lemma 3.1(2) implies that c.,f — fce, € J(R)[[S,w]] =
J(A). Therefore, we have

Ceofc(l—eg)v c(l—eg)fceo € J(A)

By Lemma 3.5, to prove that f is clean in A it suffices to show that

C(1—c0)fC(1-e0)
is clean in ((1 —eg)R(1 — €g))[[S,w]] = €¢(1—¢y)AC(1—¢,). Note that
J1:= C1—eq) fC(1=ep) = C(1—€0)IC(1—eo)®s>
and also we have ¢(1_¢,)9C(1—eo)(t1) = (1 — €0)jo(1 — €o).

Since Ry := (1 — eg)R(1 — ep) is again 2-primal and S-compatible, strongly
regular modulo J(R;) with J(R;) nil and P(R;) is a nilpotent ideal of R,
as argued above we have (1 — eg)g(t2)(1 — eg) = equier + j1, where e; is an
idempotent of R; which is central modulo J(R1), ejuie; is a unit of ey Ryeq
and j; € J(R;1). Applying Lemma 3.1, we obtain ¢, fiCe; = Ce, gCc,€5. We
set:

_ [ 9@ ti=Zt<ts _ [ 9@) t2 =2t
g1(t) := { 0 otherwise, 2(t) = 0 otherwise.

It is easy to see that g1,92 € A and also we have
(3.9) Ce, f1Ce; = Ce, §1Ce, €5 + €, g2Ce, 5.
Since ¢, g1€Ce, (t1) = e1joer € exrJ(Ry)er, we have

Ce, J1Ce, €5 € J(Cey, R1[[S, w]]ce, ).
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Furthermore, since c., g2Ce, (t2) = equie; + e1jie1 is a unit of the ring e; Ryeq,
Proposition 2.2 implies that c., g2c., €5 is a unit of the ring (e;Ryieq)[[S, w]]. It
follows from Equation (3.9) that c, fice, is a unit (and hence a clean element
of ¢, R1[[S,w]]ce,). Since e;a —ae; € J(Ry) for all a € Ry, we have

Ce, flc(lfeofel)a C(lfeofel)flcel S J(Rl [[Sa W]])

Therefore to show that fi is clean in R;[[S,w]], by Lemma 3.5 it suffices to prove
that fo 1= €(1—cy—e,) [1C(1—ep—ey) 18 clean in (1 _¢y—e, ) R[[S, w]]C(1—cy—e,)-

Consider that (1 —eg—-+-—e;—1)g(t;)(1—eg— - —e;—1) = e;u;e; + j; such
that e; is an idempotent of R; := (1 —eg — -+ —e;—1)R(1 —eg — - -+ — €;_1)
which is central modulo J(R;), e;u;e; is a unit of e;R;e; and j; € J(R;) for
i =1,2...; k=1 Weset fi := C1_cy—e1—e;1)fC1-co—e1—-—e;_y) TOT
i=1,2,.. . k—1.

A similar argument as above yields to show that f; is clean in R;[[S,w]], by
Lemma 3.5 it suffices to prove that f;11 is a clean element in R;11[[S,w]] for
i=1,2,...,k— 1. Now we set:

_Jgt) 2t =2t gty s=t
g1(t) = { 0 otherwise, 92(t) = 0 otherwise.

It is easy to see that g1, g2 € A and also we have fi = hy + hs, where

(310) hl = C(l*@()*el*"'*ek_l)glc(lfegfel7"'761‘7_1)687

(311) hy = Cll—eg—e1——ex—1)92C(1—eg—e1—+-—ep_1)Cs-

Since fori =1,2,...,k—1, C(l,EO,el,.,.,ek71)91C(1,eo,el,...,ekfl)(t,’) € J(Ry)
it follows that hy € J(Ry)[[S, w]] = J(Rg[[S,w]]). Furthermore, since supp(hz)
C ST, we have hy € [[ST,w]]. As Ry, is clean, [35, Theorem 3.2(8)] implies that
Ri[[ST,w]] is clean. But hs is an element of the ring Ry[[S™,w]]. Hence hy is
a clean element of Ry[[ST,w]]. Therefore hs is a clean element of Rg[[S,w]].
Thus hy = w + e, where w is a unit of Ry[[S,w]] and e is an idempotent of
Ri[[S,w]]. On the other hand, hy € J(R[[S,w]]). Therefore, hy + w is a unit
of Rg[[S,w]], and so fi = (k1 +w) + € is a clean element of Ry[[S,w]]. Hence
by Lemma 3.5, we infer that f is clean in A, and the proof is complete. O

Recall that a module g M has the (full) exchange property if for every module
rA and any two decompositions A = M @ N = @D, Ai with M’ = M, there
exist submodules A; C A; such that A = M’ D(D,c; A). A module g M has
the finite exchange property if the above condition is satisfied whenever the
index set I is finite. Exchange rings were introduced by Warfield [45] via the
exchange property of modules. By [27], every clean ring is an exchange ring and
it is shown in [27, Proposition 1.8] that a ring with central idempotents is clean
if and only if it is an exchange ring [45]. A ring R is said to be strongly reqular
if for any a € R there exists b € R such that a = a?b. Strongly regular rings
are exactly von Neumann regular rings in which all idempotents are central.
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The following theorem provides a characterization of the cleanness of a skew
generalized power series ring R[[S,w]] in the case where (S, <) an ordered cyclic
group and < is total or (S, <) is an abelian torsion-free group such that < is
subtotal.

Theorem 3.7. Let R be a 2-primal ring, (S, <) an ordered cyclic group and
w: S = Aut(R) a group homomorphism. Assume that < is total or (S, <)
is an abelian torsion-free group such that < is subtotal. Suppose that R is S-
compatible and P(R) is a nilpotent ideal of R. Then the following statements
are equivalent:

(1) RJ[[S,w]] is a clean ring;
(2) R[[S,w]]/J(R[[S,w]]) is a clean ring;
( [S,w]] is an exchange ring;
( [[S wl]/J(R[[S,w]]) is an exchange ring;
( is semzregular with J(R) nil;
( /J(R) is strongly reqular with J(R) nil.

Proof. We set A := R[[S,w]], R := R/P(R) and R := R/J(R).
(1) = (2). The result follows from [1, Proposition 7], since R is a clean ring

) R
3) R
4)R
5 R

6) R

if and only if R is a clean ring and all idempotents of the ring R can be lifted
to idempotents of the ring R.

(2) = (4) and (1) = (3). Trivial.

(3) = (4). The result follows from [27, Corollary 2.4], since R is an exchange
ring if and only if Ris an exchange ring and all idempotents of the ring R can
be lifted to idempotents of R.

(4) = (5). By Theorem 2.5, J(A) = P(R)[[S,w]]. So there exists a natural
ring isomorphism

R[[S,w]] = A/(P(R)[[S,w]]) = A/J(A)

is an exchange ring, where @ : S — Aut(R/P(R)) is the induced group homo-
morphism (i.e., w;(r + P(R)) = ws(r) + P(R) for any s € S and r € R). The
hypothesis implies that P(R) = nil(R), and so R is a reduced ring. We prove
that R is (S,w)-rigid. To prove this, consider any @ € R and all s € S with
a-ws(@) = 0. So aws(a) € P(R). Therefore a? € nil(R), by Lemma 2.3(ii)
and hence @ = 0. Thus R is an (S,w)-rigid ring. Hence all idempotents of
R][[S,w]] are central by Proposition 3.2. Therefore R[[S,d]] is a clean ring by
[27, Proposition 1.8]. Hence R is regular by Proposition 3.4. It follows that
J(R) CP(R). So J(R) = nil(R), which is nil.

(5) = (6). The hypothesis implies that J(R) = nil(R), and so R is a strongly
regular ring.

(6) = (1). This follows from Theorem 3.6. d

The following corollaries are immediate consequences of Theorem 3.7.

Corollary 3.8. Let R be a domain, (S,<) an ordered cyclic group and w :
S — Aut(R) a group homomorphism. Assume that < is total or (S, <) is an
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abelian torsion-free group such that < is subtotal. Then R[[S,w]] is a clean ring
if and only if R is a division ring.

Proof. Tt is easy to show that R is S-compatible. Now, the result follows from
Theorem 3.7. U

Let R be a ring, @ an automorphism of R, and (5, <) an infinite cyclic group
generated by x with the ordering ™ < z™ if and only if m < n. By setting
wyn = a™ for any n € Z we obtain a monoid homomorphism w : S — End(R).
The ring R[[S,w, <]] is called the skew Laurent series ring and denoted by
R[[z,271;a]]. The following result generalizes [46, Theorem 2.5].

Corollary 3.9. Let R be a 2-primal ring and « an automorphism of R. Sup-
pose that R is either a ring with ACC on both right and left annihilators, or
is left or right Goldie, or has the ACC on ideals, or has right Krull dimension
and R is S- compatible. Then the following statements are equivalent:

Rz, ;a]] is a clean m'ng;

[[z,271;a]]/J(R[[z, 2~ ;a]]) is a clean ring;

[z, 1; al] is an ea:change ring;
[[z,271;a]]/J(R][z,x~;a]]) is an exchange ring;
is semzregular wzth J(R) nil;

(
(
(
5
( /J(R) is strongly regular with J(R) nil.

1)
2) R
3) R
4) R
5 R

6) R

Proof. If R has the ACC on ideals or R is right Goldie or satisfies the ascending
chain condition on both right and left annihilators, then by [43, Lemma 2.6.22],
[12, Theorem 1] and [7, Theorem 1], P(R) is nilpotent, respectively. If R has
right Krull dimension, then by [13], P(R) is nilpotent. Also, if R is a ring with
ACC on both right and left annihilators, then by [2, Theorem 1.34], P(R) is
nilpotent. Now, the result follows by Theorem 3.7. O

A ring R is called strongly w-reqular if for each a € R there exists n > 1
such that a” € a"t!'R. A commutative ring R is strongly m-regular if and only
if R/J(R) is (strongly) regular with J(R) nil (see [11, Exercise 4.15]).

Corollary 3.10. Let R be a commutative ring, (S, <) a totally ordered cyclic
group and w : S — Aut(R) a group homomorphism. Assume that R is S-
compatible and R is either a ring with ACC on both right and left annihilators,
or is left or right Goldie, or has the ACC on ideals, or has right Krull dimen-
sion. Then the skew Mal’cev-Neumann series ring R((S,w)) is a clean ring if
and only if R is strongly w-regqular.

Corollary 3.11. Let R be a reduced ring and (S,<) a totally ordered cyclic
group. Then the Mal’cev-Neumann series ring R((S)) is a clean ring if and
only if R is strongly reqular.

We close this paper by investigating the uniquely clean property of a skew
generalized power series ring R[S, w]].
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Theorem 3.12. Let R be a ring, (S, <) an ordered group and w : S — Aut(R)
a group homomorphism. Assume that < is total or (S, <) is an abelian torsion-
free group such that < is subtotal. Then R[[S,w]] is not uniquely clean for any
nontrivial ring R.

Proof. Our proof follows the method employed in [46, Proposition 2.11]. We
set A := R[[S,w]]. Suppose on the contrary that A is uniquely clean. Then
A= A/J(A) is Boolean by [29, Theorem 20]. So 1 is the only unit of A. Let s
be any element of S such that 1 < s. Therefore, €; = 1, that is, 1 — e, € J(A).
From Propositions 2.1 and 2.2 it implies that 1 — e, is a unit of A. This is a
contradiction. (]

Corollary 3.13. The following Tings is not uniquely clean for any nontrivial
ring R:

~1:.0]], where o is an automor-

(a) The skew Laurent series ring R[[z,x
phism of R.
(b) The skew Mal’cev-Neumann series ring R((S,w)), where (S,<) is a

totally ordered group and w: S — Aut(R) a group homomorphism.

To characterize skew generalized power series rings that are uniquely clean,
we will need the following lemma.

Lemma 3.14. Let R be a ring, (S, <) a positively strictly ordered monoid, and
w: S = End(R) a monoid homomorphism. If e is an idempotent of R[[S,w]]

and f(1) is a central element of R such that ws(f(1)) = f(1) for all s € S,
then e = cy(1).

Proof. The proof is similar to Proposition 3.2. O

Below we provide a characterization of uniquely clean skew generalized power
series rings R[[S,w]] in the case where (S, <) is a positively strictly ordered
monoid. Recall from [24] that an endomorphism o of a ring R is idempotent-
stabilizing if o(e) = e for every idempotent e of R. Tt is easy to show that every
o-compatible ring is idempotent-stabilizing. The following theorem generalizes
[29, Example 9].

Theorem 3.15. Let R be a ring, (S, <) a positively strictly ordered monoid,
and w : S — End(R) a monoid homomorphism. Then R[[S,w]] is uniquely
clean if and only if R is uniquely clean and ws is idempotent-stabilizing for all
seSs.

Proof. Suppose that R is a uniquely clean ring and w; is idempotent-stabilizing
for all s € S. Let f € R[[S,w]]. By [35, Theorem 3.2(8)], R[[S,w]] is a
clean ring. Let f = g1 + hy = g2 + ho where g1, go are units in R[[S,w]]
and hq, he are idempotents in R[[S,w]]. Since h;(0) and ho(0) are idempotent
elements in R, by [29, Lemma 4] it follows that h1(0) and h2(0) are central.
From Lemma 3.15 we deduce that h; = cp, (o) and h2 = cp,). Now from
g1 — 92 = Chpy(0) — Chy(0), it follows that gi(s) = ga(s) for all s € S\ {1}.
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Moreover, we have g1(0)+h1(0) = g1(0) + ho(0). Since g1(0) and g2(0) are unit
elements in R and also R is a uniquely clean ring, it implies that g1 (0) = g2(0).
Hence g1 = g2 and so hy = hg. This proves that R[[S,w]] is a uniquely clean
ring. Conversely, suppose that R[[S,w]] is a uniquely clean ring and a is an
idempotent in R. From [29, Lemma 4] we infer that the idempotent element
¢, is central in R[[S,w]]. Thus c,es = esc, for all s € S and so ws(a) = a for
all s € S. Therefore w; is idempotent-stabilizing for all s € S. Furthermore, it
is easy to show that the ring R is isomorphic to a factor ring of R[[S,w]]. By
[29, Theorem 22] every factor ring of a uniquely clean ring is again uniquely
clean, therefore R is uniquely clean, which completes the proof. O

The following corollary provides a rich source of examples of uniquely clean
rings.

Corollary 3.16. Let S be a submonoid of (NU{0})" (n > 2), endowed with the
order < induced by the product order, or lexicographic order or reverse lexico-
graphic order. Let R be a ring and w : S — End(R) a monoid homomorphism.
Then R[[S,w]] is uniquely clean if and only if R is uniquely clean and ws is
idempotent-stabilizing for all s € S.

Corollary 3.17. Let (S1,<1), ... ,(Sn, <n) be positively strictly ordered mono-
ids. Denote by (lex <) and (relex <) the lexicographic order, the reverse
lexicographic order, respectively, on the ordered monoid S1 X ---x S,. Then R
is a uniquely clean ring if and only if R[[S1 X - -+ X Sy, lex <]] is uniquely clean
if and only if R[[S1 X -+ X Sy, relex <]] is uniquely clean.

Let a and 8 be endomorphisms of R such that ao § = o «. Assume that
S = (NU{0}) x (NU{0}) is endowed with the lexicographic order, or the reverse
lexicographic order, or the product order of the usual order of N U {0}, and
define w : S — End(R) a monoid homomorphism via w(m,n) = a™ o g™ for
any m,n € NU{0}. Then R[S, w]] & R|[[x, y; o, B]], in which (az™y™)(bxPy?) =
aa™ o B™(b)x™ Py +4 for any m,n,p,q € NU {0}.

Corollary 3.18. Let a and 8 be endomorphisms of a ring R such that co 8 =
Boa. Then the ring R[[x,y; a, B]] is uniquely clean if and only if R is uniquely
clean and o and B are idempotent-stabilizing.

Corollary 3.19. Let R be a ring and let S be any of the additive monoids
Qt ={a€Q|a>0} or R" = {a € R|a > 0}, where < is the usual order.
Then the ring R[[S]] is uniquely clean if and only if R is uniquely clean.

Let R be a ring, and consider the multiplicative monoid N2!, endowed with
the usual order <. Then A = R[[NZ!]] is the ring of arithmetical functions
with values in R, endowed with the Dirichlet convolution:

fg(n) = Zf(d)g(n/d) for each n > 1.

d|n
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Corollary 3.20. Let R be a ring. Then the ring of arithmetical functions
R[[NZY]] is uniquely clean if and only if R is uniquely clean.

Remark 3.21. The author does not know the answer to the following question:
is it true that the assumption that (S, <) is an ordered cyclic group is essential
in Proposition 3.4 and Theorem 3.77

Acknowledgements. The author would like to thank the referee for her/his
fruitful comments.
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