Browse > Article
http://dx.doi.org/10.4134/BKMS.b200028

CLEANNESS OF SKEW GENERALIZED POWER SERIES RINGS  

Paykan, Kamal (Department of Basic Sciences Garmsar Branch Islamic Azad University)
Publication Information
Bulletin of the Korean Mathematical Society / v.57, no.6, 2020 , pp. 1511-1528 More about this Journal
Abstract
A skew generalized power series ring R[[S, 𝜔]] consists of all functions from a strictly ordered monoid S to a ring R whose support contains neither infinite descending chains nor infinite antichains, with pointwise addition, and with multiplication given by convolution twisted by an action 𝜔 of the monoid S on the ring R. Special cases of the skew generalized power series ring construction are skew polynomial rings, skew Laurent polynomial rings, skew power series rings, skew Laurent series rings, skew monoid rings, skew group rings, skew Mal'cev-Neumann series rings, the "untwisted" versions of all of these, and generalized power series rings. In this paper we obtain some necessary conditions on R, S and 𝜔 such that the skew generalized power series ring R[[S, 𝜔]] is (uniquely) clean. As particular cases of our general results we obtain new theorems on skew Mal'cev-Neumann series rings, skew Laurent series rings, and generalized power series rings.
Keywords
Skew generalized power series ring; (uniquely) clean ring; nil Jacobson radical; 2-primal ring;
Citations & Related Records
연도 인용수 순위
  • Reference
1 G. Marks, On 2-primal Ore extensions, Comm. Algebra 29 (2001), no. 5, 2113-2123. https://doi.org/10.1081/AGB-100002173   DOI
2 G. Marks, R. Mazurek, and M. Ziembowski, A new class of unique product monoids with applications to ring theory, Semigroup Forum 78 (2009), no. 2, 210-225. https://doi.org/10.1007/s00233-008-9063-7   DOI
3 G. Marks, R. Mazurek, and M. Ziembowski, A unified approach to various generalizations of Armendariz rings, Bull. Aust. Math. Soc. 81 (2010), no. 3, 361-397. https://doi.org/10.1017/S0004972709001178   DOI
4 R. Mazurek, Left principally quasi-Baer and left APP-rings of skew generalized power series, J. Algebra Appl. 14 (2015), no. 3, 1550038, 36 pp. https://doi.org/10.1142/S0219498815500383   DOI
5 R. Mazurek and K. Paykan, Simplicity of skew generalized power series rings, New York J. Math. 23 (2017), 1273-1293. http://nyjm.albany.edu:8000/j/2017/23_1273.html
6 R. Mazurek and K. Paykan, The Jacobson radical of skew generalized power series rings, in preparation.
7 R. Mazurek and M. Ziembowski, Uniserial rings of skew generalized power series, J. Algebra 318 (2007), no. 2, 737-764. https://doi.org/10.1016/j.jalgebra.2007.08.024   DOI
8 P. M. Cohn, Free Rings and Their Relations, second edition, London Mathematical Society Monographs, 19, Academic Press, Inc., London, 1985.
9 G. A. Elliott and P. Ribenboim, Fields of generalized power series, Arch. Math. (Basel) 54 (1990), no. 4, 365-371. https://doi.org/10.1007/BF01189583   DOI
10 J. Han and W. K. Nicholson, Extensions of clean rings, Comm. Algebra 29 (2001), no. 6, 2589-2595. https://doi.org/10.1081/AGB-100002409   DOI
11 E. Hashemi and A. Moussavi, Polynomial extensions of quasi-Baer rings, Acta Math. Hungar. 107 (2005), no. 3, 207-224. https://doi.org/10.1007/s10474-005-0191-1   DOI
12 R. Mazurek and M. Ziembowski, On von Neumann regular rings of skew generalized power series, Comm. Algebra 36 (2008), no. 5, 1855-1868. https://doi.org/10.1080/00927870801941150   DOI
13 R. Mazurek and M. Ziembowski, Duo, Bezout and distributive rings of skew power series, Publ. Mat. 53 (2009), no. 2, 257-271. https://doi.org/10.5565/PUBLMAT_53209_01   DOI
14 R. Mazurek and M. Ziembowski, The ascending chain condition for principal left or right ideals of skew generalized power series rings, J. Algebra 322 (2009), no. 4, 983-994. https://doi.org/10.1016/j.jalgebra.2009.03.040   DOI
15 T. Y. Lam, A First Course in Noncommutative Rings, Graduate Texts in Mathematics, 131, Springer-Verlag, New York, 1991. https://doi.org/10.1007/978-1-4684-0406-7   DOI
16 I. N. Herstein and L. Small, Nil rings satisfying certain chain conditions, Canadian J. Math. 16 (1964), 771-776. https://doi.org/10.4153/CJM-1964-074-0   DOI
17 J. Krempa, Some examples of reduced rings, Algebra Colloq. 3 (1996), no. 4, 289-300.
18 D. Khurana, T. Y. Lam, P. P. Nielsen, and Y. Zhou, Uniquely clean elements in rings, Comm. Algebra 43 (2015), no. 5, 1742-1751. https://doi.org/10.1080/00927872.2013.879158   DOI
19 T. Y. Lam, Exercises in Classical Ring Theory, Problem Books in Mathematics , Springer, Berlin-Heidelberg-New York, 1995.
20 C. Lanski, Nil subrings of Goldie rings are nilpotent, Canadian J. Math. 21 (1969), 904-907. https://doi.org/10.4153/CJM-1969-098-x   DOI
21 Z. K. Liu, Triangular matrix representations of rings of generalized power series, Acta Math. Sin. (Engl. Ser.) 22 (2006), no. 4, 989-998. https://doi.org/10.1007/s10114-005-0555-z   DOI
22 T. H. Lenagan, Nil ideals in rings with finite Krull dimension, J. Algebra 29 (1974), 77-87. https://doi.org/10.1016/0021-8693(74)90112-4   DOI
23 V. P. Camillo and H.-P. Yu, Exchange rings, units and idempotents, Comm. Algebra 22 (1994), no. 12, 4737-4749. https://doi.org/10.1080/00927879408825098   DOI
24 A. W. Chatters and C. R. Hajarnavis, Rings with chain conditions, Research Notes in Mathematics, 44, Pitman (Advanced Publishing Program), Boston, MA, 1980.
25 G. Marks, Skew polynomial rings over 2-primal rings, Comm. Algebra 27 (1999), no. 9, 4411-4423. https://doi.org/10.1080/00927879908826705   DOI
26 W. K. Nicholson and Y. Zhou, Rings in which elements are uniquely the sum of an idempotent and a unit, Glasg. Math. J. 46 (2004), no. 2, 227-236. https://doi.org/10.1017/S0017089504001727   DOI
27 R. Mazurek and M. Ziembowski, On semilocal, Bezout and distributive generalized power series rings, Internat. J. Algebra Comput. 25 (2015), no. 5, 725-744. https://doi.org/10.1142/S0218196715500174   DOI
28 W. K. Nicholson, Lifting idempotents and exchange rings, Trans. Amer. Math. Soc. 229 (1977), 269-278. https://doi.org/10.2307/1998510   DOI
29 W. K. Nicholson, K. Varadarajan, and Y. Zhou, Clean endomorphism rings, Arch. Math. (Basel) 83 (2004), no. 4, 340-343. https://doi.org/10.1007/s00013-003-4787-9   DOI
30 D. S. Passman, The Algebraic Structure of Group Rings, Pure and Applied Mathematics, Wiley-Interscience, New York, 1977.
31 K. Paykan, Goldie ranks of skew generalized power series rings, to appear in Comm. Algebra, https://doi.org/10.1080/00927872.2020.1731821   DOI
32 K. Paykan and A. Moussavi, Baer and quasi-Baer properties of skew generalized power series rings, Comm. Algebra 44 (2016), no. 4, 1615-1635. https://doi.org/10.1080/00927872.2015.1027370   DOI
33 K. Paykan and A. Moussavi, Quasi-Armendariz generalized power series rings, J. Algebra Appl. 15(5) (2016), 1650086, 38 pp.
34 K. Paykan and A. Moussavi, Semiprimeness, quasi-Baerness and prime radical of skew generalized power series rings, Comm. Algebra 45 (2017), no. 6, 2306-2324. https://doi.org/10.1080/00927872.2016.1233198   DOI
35 K. Paykan and A. Moussavi, Some results on skew generalized power series rings, Taiwanese J. Math. 21 (2017), no. 1, 11-26. https://doi.org/10.11650/tjm.21.2017.7327   DOI
36 K. Paykan and A. Moussavi, McCoy property and nilpotent elements of skew generalized power series rings, J. Algebra Appl. 16(10) (2017), 1750183, 33 pp.
37 K. Paykan and A. Moussavi, Some characterizations of 2-primal skew generalized power series ring, Comm. Algebra 48 (2020), no. 6, 2346-2357. https://doi.org/10.1080/00927872.2020.1713326   DOI
38 K. Paykan, A. Moussavi, and M. Zahiri, Special properties of rings of skew generalized power series, Comm. Algebra 42 (2014), no. 12, 5224-5248. https://doi.org/10.1080/00927872.2013.836532   DOI
39 P. Ribenboim, Noetherian rings of generalized power series, J. Pure Appl. Algebra 79 (1992), no. 3, 293-312. https://doi.org/10.1016/0022-4049(92)90056-L   DOI
40 P. Ribenboim, Special properties of generalized power series, J. Algebra 173 (1995), 566-586.   DOI
41 P. Ribenboim, Some examples of valued fields, J. Algebra 173 (1995), 668-678.   DOI
42 P. Ribenboim, Semisimple rings and von Neumann regular rings of generalized power series, J. Algebra 198 (1997), no. 2, 327-338. https://doi.org/10.1006/jabr.1997.7063   DOI
43 L. H. Rowen, Ring Theory, student edition, Academic Press, Inc., Boston, MA, 1991.
44 G. Shin, Prime ideals and sheaf representation of a pseudo symmetric ring, Trans. Amer. Math. Soc. 184 (1973), 43-60 (1974). https://doi.org/10.2307/1996398   DOI
45 R. B. Warfield, Jr., Exchange rings and decompositions of modules, Math. Ann. 199 (1972), 31-36. https://doi.org/10.1007/BF01419573   DOI
46 Y. Zhou and M. Ziembowski, On clean Laurent series rings, J. Aust. Math. Soc. 95 (2013), no. 3, 421-427. https://doi.org/10.1017/S1446788713000293   DOI