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ABSTRACT. Let (R,T) be a normal pair of commutative rings (i.e., R C T is a unital
extension of commutative rings, not necessarily integral domains, such that S is integrally
closed in T for each ring S such that R C S C T') such that the total quotient ring of R
is a von Neumann regular ring. Let P be one of the following ring-theoretic properties:
going-down ring, extensionally going-down (EGD) ring, locally divided ring. Then R has
P if and only if 7" has P. An example shows that the “if” part of the assertion fails if P is
taken to be the “divided domain” property.

1. Introduction

All rings and algebras considered in this note are commutative with 1 # 0;
all subrings, ring homomorphisms and algebra homomorphisms are unital. Our
main concern here is to generalize the following result of the first-named author
[10, Theorem 2.1 (a)]: if R C T is a minimal extension of integral domains such
that R is integrally closed in 7', then R is a going-down domain if and only if T
is a going-down domain. In fact, we generalize this result in three distinct ways,
namely, by replacing the “minimal (ring) extension” hypothesis with the condition
that (R,T) is a normal pair; by replacing the “integral domains” hypothesis with
the condition that R and T are rings such that the total quotient ring of R is a
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von Neumann regular ring; and by replacing the “going-down domain” condition(s)
with the condition that the ring(s) in question is a going-down ring (resp., an
extensionally going-down (EGD) ring; resp., a locally divided ring).

Before proceeding further, some notation, definitions and background are in
order. Let R be a ring. Then Spec(R) and Min(R) denote the set of prime ideals
of R and the set of minimal prime ideals of R, respectively; Z(R) denotes the set
of zero-divisors of R; and tq(R) := Rpg\z(r), the total quotient ring of R. For
any subset X of R, it is convenient to define the set of regular elements of X as
reg(X) :=(R\ Z(R))NX. As in [15], R is said to be a complemented ring if tq(R)
is a von Neumann regular ring; see [15] for an explanation of this terminology and
for other terminology that some authors have used to describe this important type
of ring. By an owerring of R, we mean an R-subalgebra of tq(R), i.e., a ring T
such that R C T C tq(R). Recall that a (proper) ring extension R C T is called
a minimal (ring) extension if there is no ring S such that R C S C T, i.e., if the
inclusion map R < T is a “minimal (homo)morphism” in the sense of [16]. It is
known that if R C T is a minimal extension of (integral) domains and R is not
a field, then T is (R-algebra isomorphic to) an overring of R [24, page 1738, lines
8-13]. If R C T are rings, then (R, T) is said to be a normal pair if S is integrally
closed in T for each ring S such that R C S C T. The most natural example of a
normal pair arises when R is an arbitrary Priifer domain and 7 is its quotient field
(cf. [18, Theorems 26.1 (1) and 23.4]). Notice that if R C T is a minimal extension,
then (R,T) is a normal pair if and only if R is integrally closed in T. The concept
of a normal pair (R,T) (arising from a ring extension R C T') was introduced in
case T is a domain (resp., in case R is a complemented ring) by Davis [4] (resp.,
the authors [15]) who proved that if (R, T) is a normal pair in this context, then T
is an overring of R [4, Proposition 4.1 (1)] (resp., [15, Proposition 3.4]).

Before stating the next result, two definitions are needed. First, as in [13],
a ring R is said to be almost quasilocal if Spec(R)\ Min(R) either is empty or
has a unique maximal element. Each quasilocal ring is almost quasilocal, but the
converse is false. Second, as in [19], if R is a ring and P € Spec(R), we define
the rings Rip) := {r € tq(R) | #s € R for some s € R\ P} and R(p) := Rg,
where the multiplicatively closed set S :=reg(R\ P). In case T' is a domain (resp.,
in case R is a complemented ring), a normal pair (R,T) with R quasilocal (resp.,
almost quasilocal) was characterized as a a ring extension R C T with R quasilocal
(resp., almost quasilocal) for which there exists M €Spec(R) such that MT = M,
T = Ry (vesp., T = Ryp)) and R/M is a valuation domain [4, Theorem 1] (resp.,
[15, Theorem 3.8]).

We next state the two motivating results for this note. The first of these ([3,
Proposition 2.1], [10, Corollary 2.5]) states that if R C T is a minimal extension
of domains such that R is integrally closed and T is a Priifer domain, then R is a
Priifer domain. The second motivating result [10, Theorem 2.1 (a)] was mentioned
above. It states that if R C T is a minimal extension of domains such that R is
integrally closed in T', then R is a going-down domain (in the sense of [5], [11]) if
and only if T is a going-down domain. Note that the context of the second of these
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results arises naturally from that of the first result because Priifer domains give
the most natural examples of going-down domains [5, page 448] (and of the locally
divided domains discussed below). Our main purpose here is to generalize the two
motivating results from the context of minimal extensions R C T of domains in
which R is integrally closed in T to the context of normal pairs (R,T) in which R
is a complemented ring. This purpose is accomplished for domains in Proposition
2.5 and Theorem 2.1; and, more generally, for complemented R in Proposition 2.12
(to handle Priifer rings, in the sense of [19]) and Theorems 2.8 and 2.10. The last
two of these results handle going-down rings and extensionally going-down (EGD)
rings, in the sense of [8].

It is important to note that a domain is a Priifer ring if and only if it is a Priifer
domain; and that a domain R is a going-down domain < R is a going-down ring
< Ris an EGD ring (cf. [6, Remark 2.11]). However, as shown by examples in [8],
neither “going-down ring” nor “EGD ring” implies the other in general.

Along the way, we also obtain analogues of the above results for some other
classes of domains that are situated between the class of Priifer domains and the
class of going-down domains, as well as some natural analogues for the “comple-
mented” context. This note is organized so as to give the results on domains first,
then give a result (Proposition 2.6) that eases the transition to the “complemented”
case, and then give the results for complemented base rings. In this way, the “com-
plemented” results are often shown to follow naturally from their “domain” coun-
terparts via proofs that minimize the need to explicitly recall the definitions of the
various types of rings that are involved.

However, the following definitions and facts will be needed. The going-down
property of ring extensions is denoted GD, as in [21, page 28]. A domain R is
called a going-down domain if R C T satisfies GD for each overring T of R. As
in [6] (resp., [1]), a domain (resp., ring) R is said to be a divided domain (resp.,
divided ring) if P and Ra are comparable under inclusion for all P € Spec(R) and
all @ € R. As in [6] (resp., [2]), a domain (resp., ring) R is said to be a locally
divided domain (resp., locally divided ring) if Rp is a divided domain (resp., divided
ring) for all P € Spec(R). A domain (resp., ring) is a quasilocal locally divided
domain (resp., quasilocal locally divided ring) if and only if it is a divided domain
(resp., divided ring). It is also known (cf. [6]) that valuation domain = divided
domain = quasilocal going-down domain; and, similarly, that Priifer domain =
locally divided domain = going-down domain. Moreover (cf. [1], [2]), divided ring
= quasilocal going-down ring; and locally divided ring = going-down ring. Known
examples show that none of the above implications is reversible.

Besides the above material, note that C denotes proper inclusion. Any unex-
plained material is standard, as in [18] and [21].

2. Results

We begin by generalizing [10, Theorem 2.1 (a)].
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Theorem 2.1. Let (R,T) be a normal pair of domains. Then R is a going-down
domain if and only if T is a going-down domain.

Proof. Suppose first that R is a going-down domain. It suffices to show that Ty is a
going-down domain for each @ € Spec(T). Put P := QN R. By [4, Proposition 4.1],
To = Rp. Then the assertion follows because Rp inherits the “going-down domain”
property from R, as the class of going-down domains is stable under formation of
rings of fractions.

Conversely, suppose that T is a going-down domain. As (Rp,Tp) inherits the
“normal pair” property from (R,T) (where, as usual, Tp := Tx\ p), we may assume,
without loss of generality, that (R, P) is quasilocal. By Davis’ characterization of
normal pairs with quasilocal base, there exists M € Spec(R) such that MT = M,
T = Ry and V := R/M is a valuation domain. Note that T' = R, inherits the
“going-down domain” property from R; and V, being a valuation domain, is also a
going-down domain. Then, by applying [9, Corollary 2.5] to the pullback description
T xy R/M = R, we conclude that R is a going-down domain. O

Given the close relation between going-down domains and locally divided do-
mains (cf. [6, Theorem 2.5], [2, Corollary 3.6]), it is natural to ask if Theorem 2.1
admits analogues for locally divided domains and divided domains. The next two
results show that the answers are “Yes” and “No”, respectively.

Theorem 2.2. Let (R,T) be a normal pair of domains. Then:
(a) If R is a divided domain, then T is a divided domain.
() R is a locally divided domain if and only if T is a locally divided domain.

Proof. (a) Since R is divided, it is quasilocal, and so Davis’ characterization of
normal pairs with quasilocal base shows that T'= Rp for some P € Spec(R). But
any localization of a divided domain is a divided domain [6, Lemma 2.2 (a)].

(b) We adapt the proof of Theorem 2.1. Suppose first that R is locally divided.
To prove that T' is locally divided, we will show that Ty is a divided domain for
each @ € Spec(T'). Put P := QN R. Then by [4, Proposition 4 (1)], Tg = Rp, and
so the assertion follows as above.

Conversely, suppose that T is locally divided. To prove that R is locally di-
vided, we will show that Rp is a divided domain for each P € Spec(R). As above,
(Rp,Tr\p) is a normal pair such that T\ p is quasilocal. But the class of locally
divided domains is stable under formation of rings of fractions [6, Remark 2.7 (b)]
(cf. also [2, Proposition 2.1 (a)]). Hence T\ p is a quasilocal locally divided do-
main, i.e., a divided domain. Thus, replacing R and T" with Rp and Tg\ p, we may
assume, without loss of generality, that R is quasilocal and T is divided. Using
Davis’ characterizations of normal pairs with quasilocal base, we have a prime ideal
M = MT of R such that T = Rp; and V := R/M is a valuation domain. As T and
V are each divided domains, it follows by applying [9, Corollary 2.6] to the pullback
description T' xy R/M = R that R is also divided. O

We next show that Theorem 2.2 (a) is best possible, in the sense that its converse
fails, even in the archetypical context of minimal ring extensions from the motivating
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result in [10]. The stipulation “but not a field” in Example 2.3 is included in order
to rule out the trivial case of a non-quasilocal Priifer domain R and its quotient
field T

Example 2.3. There exists a normal pair (R,T) of domains such that T is a
divided domain but not a field and R is not a divided domain (although R is a
locally divided domain).

For a proof, let V; and V2 be incomparable valuation domains of (Krull) di-
mension 1 having the same quotient field. (For instance, take V4 and V5 to be Zoyg
and Zsz, respectively.) We will show that R := V4 NV, and T := V; exhibit the
asserted behavior. To see this, note first that R is a one-dimensional Bézout domain
with exactly two maximal ideals, say N1 and Ns, labeled so that Ry, = Vi and
Ry, =V, (cf. [21, Theorem 107]). As T'= Ry, is a minimal overring of the Priifer
domain R (by [18, Theorem 26.1 (2)]), (R,T') is the archetypical kind of normal
pair that was noted in the Introduction. Moreover, T' is a divided domain since it
is a valuation domain. But R is not a divided domain, since it is not quasilocal.
Finally, the parenthetical assertion follows from Theorem 2.2 (b).

Recall that a quasilocal integrally closed domain R is a going-down domain if
and only if it is a divided domain [22, Corollary 11] (cf. also [6, Theorem 2.5]).
Thus, in comparing Theorems 2.1 and 2.2, one is led to ask if there is an example
of a normal pair (R, T) of distinct domains such that R and T are each quasilocal
going-down domains that are not divided domains (and hence are not integrally
closed). The next example answers this question affirmatively.

Example 2.4. There exists a normal pair (R, T) of domains such that R and T are
distinct quasilocal going-down domains that are not divided domains (and hence
neither R nor T is integrally closed).

For a proof, let (T, M) be the quasilocal going-down domain that is not a divided
domain which was constructed in [6, Example 2.9] (where it was called “D”). In
that construction, use a field F' such that there exist a valuation domain V' of F that
is distinct from F'. (For instance, take F':= Q.) It is clear from the construction in
[6] that F' C T//M. Hence, by extension of valuations (cf. [21, Theorem 56]), there
is a valuation domain W of T'/M that is distinct from T'/M. Let R be the pullback
R :=T xp;p; W. By the folklore of pullbacks (cf. [9, Lemma 2.2]), M € Spec(R),
R/M =W and Ry = T. The order-theoretic impact of the gluing description of
Spec(R) in [17, Theorem 1.4] that results from the above pullback description of R
ensures that R is quasilocal. We now have enough information to be able to apply
Davis’ characterization of normal pairs with quasilocal base [4, Theorem 1], thus
concluding that (R, T) is a normal pair. Of course, R # T since W # T/M. Note
that R inherits the “going-down domain” property from 7" by Theorem 2.1; and R
is not a divided domain, by Theorem 2.2 (b). Finally, the parenthetical assertion
follows from the above remarks.

Recall that Priifer domains are the best-known examples of going-down do-
mains. Thus, it is natural to ask if there is a “Prifer” variant of Theorem 2.1. We
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give such a result next, thus generalizing the case for minimal ring extensions in [3,
Proposition 2.1] (cf. also [10, Corollary 2.5]).

Proposition 2.5. Let (R,T) be a normal pair of domains. Then R is a Priifer
domain if and only if T is a Prifer domain. Moreover, if R is a valuation domain,
then T is a valuation domain.

Proof. To prove the first assertion, one can adapt the proof of Theorem 2.2 (b),
changing “locally divided domain” (resp., “divided domain”) to “Priifer domain”
(resp., “valuation domain”) throughout. In doing so, note that the class of Priifer
domains is stable under formation of rings of fractions [18, Proposition 22.5]; and
replace the earlier appeal to [9, Corollary 2.6] with the fundamental result on Na-
gata composition [23, item (11.4)]. One way to prove the “Moreover” assertion is
to adapt the proof of Theorem 2.2 (a), noting that any localization of a valuation
domain is a valuation domain. O

In view of Example 2.3, the converse of the “Moreover” assertion in Proposition
2.5 is false.

We turn next to generalizations of the above material to a context that involves
rings with nontrivial zero-divisors. It will be necessary to consider the rings R|p
and R(p), which were defined in the Introduction. We will often use the fact that
these rings are equal in case R is complemented. This fact is a special case of a
result on Marot rings [20, Theorem 7.6].

The next result collects some useful technical facts.

Proposition 2.6. Let R be a ring and P € Spec(R).

(a) The canonical R-algebra homomorphism R — Rp is an injection if and only
if R(py = Rp canonically (in the sense that the canonical R-algebra homomorphism
R(py = Rp is an isomorphism).

(b) Suppose that R(py has unique mazimal ideal PR(py. Then Rpy = Rp
canonically (in the sense that the canonical R-algebra homomorphism Rpy — Rp
is an isomorphism).

(c) If R is a complemented ring and P € Spec(R), then PR(py is a mazimal

ideal of Rpy.
Proof. (a) Recall that R(p) := Rg, where S := reg(R \ P). Therefore, it is easy to
check that R(py = Rp canonically if and only if reg(R \ P) = R\ P. On the other
hand, it is also clear that the canonical map R — Rp is an injection if and only if
reg(R\ P) =R\ P.

(b) This follows from [18, Corollary 5.2].

(¢) This follows by combining [15, Lemma 2.7] and [21, Exercise 1, page 41]. O

In [15, Theorem 3.8], we extended Davis’ characterization of normal pairs of
quasilocal domains to complemented rings where the base ring is almost quasilocal
and the former role of Ry is played by R[j;). We next show that if the base ring
is complemented and quasilocal, then the role of Ry can indeed be played by Ry
itself.



Normal Pairs of Going-down Rings 7

Corollary 2.7. Let R C T be rings such that R is a quasilocal complemented ring.
Then (R,T) is a normal pair if and only if there exists M € Spec(R) such that
T = Ry canonically, R/M is a valuation domain and MT = M.

Proof. For the “if” assertion, note that R is almost quasilocal since R is quasilocal;
and that R(;) = Ry canonically by Lemma 2.6 (a), while Ry = Ry since R is
complemented, so that Ry, = Ry = T canonically. Therefore, by the characteri-
zation in [15, Theorem 3.8], (R, T) is a normal pair.

For the converse, suppose that (R, T) is a normal pair. As R is almost quasilocal,
[15, Theorem 3.8] reduces our task to proving that Ry = Ras. Since R is comple-
mented, it suffices to show that R,y = Ra. By Proposition 2.6(c), MR, is a
maximal ideal of R(ys). Since [15, Proposition 3.7 (e)] ensures that 7" is quasilocal,
it follows that M R is the unique maximal ideal of R(ys). Hence by Proposition

We next generalize Theorem 2.1 to a context with nontrivial zero-divisors. For
the next-to-last step in the next proof, one needs to recall from [8] that a ring A is
called a going-down ring if A/P is a going-down domain for each P € Spec(A).

Theorem 2.8. Let (R,T) be a normal pair such that R is a complemented ring.
Then R is a going-down ring if and only if T is a going-down ring.

Proof. Assume first that R is a going-down ring. Since “going-down ring” is a local
property [8, Proposition 2.1 (b)], it suffices to prove that T is a going-down ring
for each @ € Spec(T). Put P := Q N R. By [15, Proposition 3.11 (a)], Rp = Ty
canonically. But Rp inherits the “going-down ring” property from R.

Conversely, assume that 7' is a going-down ring. By [8, Proposition 2.1 (a)], it
is enough to show that R/P is a going-down domain for each P € Min(R). But
minimal prime ideals are lain over in any ring extension [21, Exercise 1, page 41],
and so there exists @ € Spec(T) such that @ N R = P. Hence, by [15, Proposition
3.11 (a)], (R/P,T/Q) is a normal pair. However, T/Q is a going-down domain by
the hypothesis on T', and so an application of Theorem 2.1 completes the proof. O

At this point it is convenient to recall the notion of a weak Baer ring. This
generalization of the notion of a domain is particularly relevant because, in spite
of the examples in [8] that were mentioned in the Introduction, it was shown in
[12, Proposition 2.1 (b)] that a weak Baer ring is a going-down ring if and only if
it is an EGD ring. For our purposes, the most useful characterization of a weak
Baer ring is as a complemented ring R such that Rp is a domain for each P €
Spec(R). For additional background concerning weak Baer rings, see the seventh
paragraph of the Introduction of [12]. It follows from [12, Theorem 2.5] that if R
is a complemented ring which is also an EGD ring, then R is a going-down ring
which is a weak Baer ring. One is thus led to ask for a “complemented EGD ring”
analogue of Theorem 2.8. We give such a result in Theorem 2.10. First, we give a
lemma, of some independent interest.

Lemma 2.9. Let (R,T) be a normal pair such that R is a complemented ring.
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Then each localization of R at a prime ideal of R is a domain if and only if each
localization of T at a prime ideal of T is a domain.

Proof. For the “only if” assertion, let @ € Spec(T') and notice by [15, Proposition
3.11 (a)] that P := @ N R satisfies Tgp = Rp.

Conversely, suppose that each localization of T at a prime ideal of T is a do-
main. Let P € Spec(R). As Rp C Tg\p is a normal pair, [15, Proposition 3.7 (e)]
gives that T\ p is a quasilocal ring. It then follows from [18, Corollary 5.2] that
Tr\p must be the localization of T at a prime ideal of 7' (and hence a domain).
Therefore, its subring Rp is also a domain, as desired. O

Theorem 2.10. Let (R,T) be a normal pair such that R is a complemented ring.
Then R is an EGD ring if and only if T is an EGD ring.

Proof. The “normal pair” hypothesis gives that T is an overring of R [15, Propo-
sition 3.4], and so T inherits the “complemented” property from R. Therefore, by
[12, Theorem 2.5], it suffices to prove that R is a weak Baer going-down ring if and
only if T is a weak Baer going-down ring. Hence, by Theorem 2.8, it suffices to
show that R is a weak Baer ring if and only if T" is a weak Baer ring. As R and T
are each complemented, it therefore suffices to prove that each localization of R at
a prime ideal of R is a domain if and only if each localization of T" at a prime ideal
of T is a domain. Accordingly, an application of Lemma 2.9 completes the proof.
O

Next, we give zero-divisor analogues of the earlier results for locally divided
domains and divided domains. First, we recall that a ring R is said to be reduced if
it has no nonzero nilpotent elements.

Proposition 2.11. Let (R,T) be a normal pair such that R is a complemented
ring. Then:

(a) If R is a divided ring, then T is a divided ring.

(b) R is a locally divided ring if and only if T is a locally divided ring.

Proof. (a) Adapt the proof of Theorem 2.2 (a), replacing the earlier appeal to [4,
Theorem 1] with an appeal to Corollary 2.7, bearing in mind that any localization
of a divided ring is a divided ring [8, Remark (c), page 4] (cf. also [1, Proposition
4]).

(b) To prove the “only if” assertion, adapt the proof of the first part of Theorem
2.2 (b), replacing the earlier appeal to [4, Proposition 4 (1)] with an appeal to [15,
Proposition 3.11 (a)].

Conversely, suppose that T is a locally divided ring. We must show that Rp
is a divided ring for each P € Spec(R). Since the class of locally divided rings is
stable under formation of rings of fractions [2, Proposition 2.1 (a)], we may argue
as in the proof of the second part of Theorem 2.2 (b) to reduce to the case where
R is quasilocal and T is a divided ring. By Corollary 2.7, we have a prime ideal
M = MT of R such that T = Ry and V := R/M is a valuation domain. Moreover,
T is actually a domain, because T is a reduced ring (since R is reduced) whose set
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of prime ideals is linearly ordered by inclusion [1, Proposition 1 (a)]. Hence R is a
domain. As V and T are each divided domains, it follows from [7, Proposition 2.12]
that R = R+ MR is a divided domain and, hence, a locally divided ring. O

Note that Example 2.3 also shows that the converse of Proposition 2.11 (a) is
false.

In closing, we give zero-divisor analogues of the earlier results for Priifer domains
and valuation domains. Note that some technical care will be necessary since a
Priifer ring need not be a locally divided ring [2, Example 2.18 (a)].

Proposition 2.12. Let (R,T) be a normal pair such that R is a complemented
ring. Then R is a Priifer ring if and only if T is a Priifer ring.

Proof. A ring A is a Priifer ring if and only if (A, tq(A)) is a normal pair [19,
Theorem 13]. Hence, any overring of a Priifer ring must also be a Priifer ring. As
T is an overring of R by [15, Proposition 3.4], the “only if” assertion follows.

For the converse, assume that T is a Priifer ring. Recall that K := tq(R) is also
tq(T'). Hence, (T, K) is a normal pair. Note that it suffices to prove that (R, K)
is a normal pair. This, in turn, follows from [15, Proposition 3.9 (a)], since both
(R,T) and (T, K) are normal pairs. O

Note that if R and T satisfy the conditions in Proposition 2.12, then both these
rings have the property considered in Lemma 2.9, namely, of being locally a domain,
in view of the fact that any localization (at a prime ideal) of a complemented Priifer
ring must be a valuation domain [14, Lemma 2.1].
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