DOI QR코드

DOI QR Code

CLEANNESS OF SKEW GENERALIZED POWER SERIES RINGS

  • Paykan, Kamal (Department of Basic Sciences Garmsar Branch Islamic Azad University)
  • Received : 2020.01.09
  • Accepted : 2020.05.18
  • Published : 2020.11.30

Abstract

A skew generalized power series ring R[[S, 𝜔]] consists of all functions from a strictly ordered monoid S to a ring R whose support contains neither infinite descending chains nor infinite antichains, with pointwise addition, and with multiplication given by convolution twisted by an action 𝜔 of the monoid S on the ring R. Special cases of the skew generalized power series ring construction are skew polynomial rings, skew Laurent polynomial rings, skew power series rings, skew Laurent series rings, skew monoid rings, skew group rings, skew Mal'cev-Neumann series rings, the "untwisted" versions of all of these, and generalized power series rings. In this paper we obtain some necessary conditions on R, S and 𝜔 such that the skew generalized power series ring R[[S, 𝜔]] is (uniquely) clean. As particular cases of our general results we obtain new theorems on skew Mal'cev-Neumann series rings, skew Laurent series rings, and generalized power series rings.

Keywords

References

  1. V. P. Camillo and H.-P. Yu, Exchange rings, units and idempotents, Comm. Algebra 22 (1994), no. 12, 4737-4749. https://doi.org/10.1080/00927879408825098
  2. A. W. Chatters and C. R. Hajarnavis, Rings with chain conditions, Research Notes in Mathematics, 44, Pitman (Advanced Publishing Program), Boston, MA, 1980.
  3. P. M. Cohn, Free Rings and Their Relations, second edition, London Mathematical Society Monographs, 19, Academic Press, Inc., London, 1985.
  4. G. A. Elliott and P. Ribenboim, Fields of generalized power series, Arch. Math. (Basel) 54 (1990), no. 4, 365-371. https://doi.org/10.1007/BF01189583
  5. J. Han and W. K. Nicholson, Extensions of clean rings, Comm. Algebra 29 (2001), no. 6, 2589-2595. https://doi.org/10.1081/AGB-100002409
  6. E. Hashemi and A. Moussavi, Polynomial extensions of quasi-Baer rings, Acta Math. Hungar. 107 (2005), no. 3, 207-224. https://doi.org/10.1007/s10474-005-0191-1
  7. I. N. Herstein and L. Small, Nil rings satisfying certain chain conditions, Canadian J. Math. 16 (1964), 771-776. https://doi.org/10.4153/CJM-1964-074-0
  8. J. Krempa, Some examples of reduced rings, Algebra Colloq. 3 (1996), no. 4, 289-300.
  9. D. Khurana, T. Y. Lam, P. P. Nielsen, and Y. Zhou, Uniquely clean elements in rings, Comm. Algebra 43 (2015), no. 5, 1742-1751. https://doi.org/10.1080/00927872.2013.879158
  10. T. Y. Lam, A First Course in Noncommutative Rings, Graduate Texts in Mathematics, 131, Springer-Verlag, New York, 1991. https://doi.org/10.1007/978-1-4684-0406-7
  11. T. Y. Lam, Exercises in Classical Ring Theory, Problem Books in Mathematics , Springer, Berlin-Heidelberg-New York, 1995.
  12. C. Lanski, Nil subrings of Goldie rings are nilpotent, Canadian J. Math. 21 (1969), 904-907. https://doi.org/10.4153/CJM-1969-098-x
  13. T. H. Lenagan, Nil ideals in rings with finite Krull dimension, J. Algebra 29 (1974), 77-87. https://doi.org/10.1016/0021-8693(74)90112-4
  14. Z. K. Liu, Triangular matrix representations of rings of generalized power series, Acta Math. Sin. (Engl. Ser.) 22 (2006), no. 4, 989-998. https://doi.org/10.1007/s10114-005-0555-z
  15. G. Marks, Skew polynomial rings over 2-primal rings, Comm. Algebra 27 (1999), no. 9, 4411-4423. https://doi.org/10.1080/00927879908826705
  16. G. Marks, On 2-primal Ore extensions, Comm. Algebra 29 (2001), no. 5, 2113-2123. https://doi.org/10.1081/AGB-100002173
  17. G. Marks, R. Mazurek, and M. Ziembowski, A new class of unique product monoids with applications to ring theory, Semigroup Forum 78 (2009), no. 2, 210-225. https://doi.org/10.1007/s00233-008-9063-7
  18. G. Marks, R. Mazurek, and M. Ziembowski, A unified approach to various generalizations of Armendariz rings, Bull. Aust. Math. Soc. 81 (2010), no. 3, 361-397. https://doi.org/10.1017/S0004972709001178
  19. R. Mazurek, Left principally quasi-Baer and left APP-rings of skew generalized power series, J. Algebra Appl. 14 (2015), no. 3, 1550038, 36 pp. https://doi.org/10.1142/S0219498815500383
  20. R. Mazurek and K. Paykan, Simplicity of skew generalized power series rings, New York J. Math. 23 (2017), 1273-1293. http://nyjm.albany.edu:8000/j/2017/23_1273.html
  21. R. Mazurek and K. Paykan, The Jacobson radical of skew generalized power series rings, in preparation.
  22. R. Mazurek and M. Ziembowski, Uniserial rings of skew generalized power series, J. Algebra 318 (2007), no. 2, 737-764. https://doi.org/10.1016/j.jalgebra.2007.08.024
  23. R. Mazurek and M. Ziembowski, On von Neumann regular rings of skew generalized power series, Comm. Algebra 36 (2008), no. 5, 1855-1868. https://doi.org/10.1080/00927870801941150
  24. R. Mazurek and M. Ziembowski, Duo, Bezout and distributive rings of skew power series, Publ. Mat. 53 (2009), no. 2, 257-271. https://doi.org/10.5565/PUBLMAT_53209_01
  25. R. Mazurek and M. Ziembowski, The ascending chain condition for principal left or right ideals of skew generalized power series rings, J. Algebra 322 (2009), no. 4, 983-994. https://doi.org/10.1016/j.jalgebra.2009.03.040
  26. R. Mazurek and M. Ziembowski, On semilocal, Bezout and distributive generalized power series rings, Internat. J. Algebra Comput. 25 (2015), no. 5, 725-744. https://doi.org/10.1142/S0218196715500174
  27. W. K. Nicholson, Lifting idempotents and exchange rings, Trans. Amer. Math. Soc. 229 (1977), 269-278. https://doi.org/10.2307/1998510
  28. W. K. Nicholson, K. Varadarajan, and Y. Zhou, Clean endomorphism rings, Arch. Math. (Basel) 83 (2004), no. 4, 340-343. https://doi.org/10.1007/s00013-003-4787-9
  29. W. K. Nicholson and Y. Zhou, Rings in which elements are uniquely the sum of an idempotent and a unit, Glasg. Math. J. 46 (2004), no. 2, 227-236. https://doi.org/10.1017/S0017089504001727
  30. D. S. Passman, The Algebraic Structure of Group Rings, Pure and Applied Mathematics, Wiley-Interscience, New York, 1977.
  31. K. Paykan, Goldie ranks of skew generalized power series rings, to appear in Comm. Algebra, https://doi.org/10.1080/00927872.2020.1731821
  32. K. Paykan and A. Moussavi, Baer and quasi-Baer properties of skew generalized power series rings, Comm. Algebra 44 (2016), no. 4, 1615-1635. https://doi.org/10.1080/00927872.2015.1027370
  33. K. Paykan and A. Moussavi, Quasi-Armendariz generalized power series rings, J. Algebra Appl. 15(5) (2016), 1650086, 38 pp.
  34. K. Paykan and A. Moussavi, Semiprimeness, quasi-Baerness and prime radical of skew generalized power series rings, Comm. Algebra 45 (2017), no. 6, 2306-2324. https://doi.org/10.1080/00927872.2016.1233198
  35. K. Paykan and A. Moussavi, Some results on skew generalized power series rings, Taiwanese J. Math. 21 (2017), no. 1, 11-26. https://doi.org/10.11650/tjm.21.2017.7327
  36. K. Paykan and A. Moussavi, McCoy property and nilpotent elements of skew generalized power series rings, J. Algebra Appl. 16(10) (2017), 1750183, 33 pp.
  37. K. Paykan and A. Moussavi, Some characterizations of 2-primal skew generalized power series ring, Comm. Algebra 48 (2020), no. 6, 2346-2357. https://doi.org/10.1080/00927872.2020.1713326
  38. K. Paykan, A. Moussavi, and M. Zahiri, Special properties of rings of skew generalized power series, Comm. Algebra 42 (2014), no. 12, 5224-5248. https://doi.org/10.1080/00927872.2013.836532
  39. P. Ribenboim, Noetherian rings of generalized power series, J. Pure Appl. Algebra 79 (1992), no. 3, 293-312. https://doi.org/10.1016/0022-4049(92)90056-L
  40. P. Ribenboim, Special properties of generalized power series, J. Algebra 173 (1995), 566-586. https://doi.org/10.1006/jabr.1995.1103
  41. P. Ribenboim, Some examples of valued fields, J. Algebra 173 (1995), 668-678. https://doi.org/10.1006/jabr.1995.1108
  42. P. Ribenboim, Semisimple rings and von Neumann regular rings of generalized power series, J. Algebra 198 (1997), no. 2, 327-338. https://doi.org/10.1006/jabr.1997.7063
  43. L. H. Rowen, Ring Theory, student edition, Academic Press, Inc., Boston, MA, 1991.
  44. G. Shin, Prime ideals and sheaf representation of a pseudo symmetric ring, Trans. Amer. Math. Soc. 184 (1973), 43-60 (1974). https://doi.org/10.2307/1996398
  45. R. B. Warfield, Jr., Exchange rings and decompositions of modules, Math. Ann. 199 (1972), 31-36. https://doi.org/10.1007/BF01419573
  46. Y. Zhou and M. Ziembowski, On clean Laurent series rings, J. Aust. Math. Soc. 95 (2013), no. 3, 421-427. https://doi.org/10.1017/S1446788713000293