PF-rings of Generalized Power Series

HWANKOO KIM

Department of Information Security, College of Engineering, Hoseo University, Asan 336-795, Korea

e-mail: hkkim@office.hoseo.ac.kr

TAE IN KWON

Department of Applied Mathematics, Changwon National University, Changwon 641-773, Korea

e-mail: taekwon@sarim.changwon.ac.kr

ABSTRACT. In this paper, we show that if R is a commutative ring with identity and (S, \leq) is a strictly totally ordered monoid, then the ring $[[R^{S,\leq}]]$ of generalized power series is a PF-ring if and only if for any two S-indexed subsets A and B of R such that $B \subseteq \operatorname{ann}_R(A)$, there exists $c \in \operatorname{ann}_R(A)$ such that bc = b for all $b \in B$, and that for a Noetherian ring R, $[[R^{S,\leq}]]$ is a PP ring if and only if R is a PP ring.

1. Introduction and preliminaries

Let R be a commutative ring with identity. Then R is called a PF-ring (resp., PP-ring) if every principal ideal of R is a flat (resp., projective) R-module. It is well-known that if R is Noetherian, then these two notions are equal (cf., [16, Corollary 4.3). It is proved in [1] that a ring R is a PF-ring if and only if the annihilator of each element $r \in R$, $\operatorname{ann}_R(r)$, is a pure ideal; that is, for all $b \in \operatorname{ann}_R(r)$ there exists $c \in \operatorname{ann}_R(r)$ such that bc = b. It may be worth reminding the reader that for a commutative ring R, R is a PF-ring if and only if R is a locally integral domain (i.e., every localization R_P is an integral domain for any prime (resp., maximal) ideal P of R) ([3], [11]). It is also proved in [2] that the power series ring R[[X]]is a PF-ring if and only if for any two countable subsets $A = \{a_0, a_1, \dots\}$ and $B = \{b_0, b_1, \dots\}$ of R such that $A \subseteq \operatorname{ann}_R(B)$, there exists $r \in \operatorname{ann}_R(B)$ such that ar = a for all $a \in A$. In [7, Theorem 3, Theorem 4], J.-H. Kim proved that for a Noetherian ring R, R[X] is a PF (resp., PP) ring if and only if R is a PF (resp., PP) ring. In recent years, Many researchers (for example, P. Ribenboim ([4], [12], [13], [14], [15]), Z. Liu ([8], [10], [9]), and the first author ([5], [6])) have carried out an extensive study of rings of generalized power series. In particular, Liu and

Received January 13, 2006.

²⁰⁰⁰ Mathematics Subject Classification: 13F25, 13C11.

Key words and phrases: PF-ring, PP-ring, generalized power series ring.

The first author was supported by Hoseo University Research Fund, 2005. The second author was supported by Changwon National University Research Fund, 2005.

Ahsan proved in [10] that the ring $[[R^{S,\leq}]]$ of generalized power series is a PP-ring if and only if R is a PP-ring and every S-indexed subset C of B(R) (the set of all idempotents of R) has a least upper bound in B(R).

In this paper, we will show that if R is a commutative ring with identity and (S, \leq) is a strictly totally ordered monoid, then the ring $[[R^{S,\leq}]]$ of generalized power series is a PF-ring if and only if for any two S-indexed subsets A and B of R such that $B \subseteq \operatorname{ann}_R(A)$, there exists $c \in \operatorname{ann}_R(A)$ such that bc = b for all $b \in B$, and that for a Noetherian ring R, $[[R^{S,\leq}]]$ is a PP ring if and only if R is a PP ring.

Let (S, \leq) be an ordered set. Recall that (S, \leq) is artinian if every strictly decreasing sequence of elements of S is finite, and that (S, \leq) is narrow if every subset of pairwise order-incomparable elements of S is finite. It is easy to see that (S, \leq) is artinian if and only if every non-empty subset of S has a minimal element. Moreover, if S is a total order, then S is artinian if and only if it is well-ordered. Recall that an ordered monoid S is S is S is S is S with S is S, then S is a total order in S, and S is cancellative or the order is trivial, then S is a strictly ordered monoid.

The following definition is due to P. Ribenboim [4]: Let (S, \leq) be a strictly ordered monoid and let R be a commutative ring with 1. Let $[[R^{S,\leq}]]$ be the set of all functions $f:S\to R$ such that $Supp(f)=\{s\in S\mid f(s)\neq 0\}$ is artinian and narrow. We call $\{f(s)\mid s\in Supp(f)\}$ the set of all coefficients of f. It is clear that R is an additive abelian group with pointwise addition. For every $s\in S$ and $f_1,\cdots,f_n\in R$, let $X_s(f_1,\cdots,f_n)=\{(u_1,\cdots,u_n)\in S^n\mid s=u_1+\cdots+u_n,\ u_i\in Supp(f_i)\ \text{for each }i\}$. It follows from $[4,(e)\ p.\ 368]$ that $X_s(f_1,\cdots,f_n)$ is finite. This fact allows one to define the operation of convolution * as follows:

$$(f * h)(s) = \sum_{(u,v) \in X_s(f,h)} f(u)h(v).$$

With this operation, and pointwise addition, $[[R^{S,\leq}]]$ becomes a commutative ring with identity element e, where

$$e(s) = \begin{cases} 1 & \text{if } s = 0 \\ 0 & \text{if } 0 \neq s \in S. \end{cases}$$

We call $[[R^{S,\leq}]]$ the ring of generalized power series. It should be noted that the definition of $[[R^{S,\leq}]]$ depends on the order \leq , for example, see [4, p. 371]. Following [12, 2.5], R is an integral domain if and only if D is an integral domain, and S is torsion-free and cancellative. It follows from [4, p. 368] that R is canonically embedded as a subring of $[[R^{S,\leq}]]$, and that S is canonically embedded as a submonoid of $([[R^{S,\leq}]] \setminus \{0\},*)$. Numerous examples of rings of generalized power series are given in [12, 13].

In [4], [12], [13], [14], [15], there are many results on ordered monoids and the rings of generalized power series. The following result is well-known and will be frequently used in the sequel.

Lemma 1.1 ([14]).

- If S has a compatible strict total order ≤, then S is torsion-free and cancellative.
- (2) Let S be a torsion-free and cancellative monoid. If \leq is any compatible order on S, then there exists a compatible total order \leq' on S, which is finer than \leq (i.e., if $s, t \in S$ such that $s \leq t$, then $s \leq' t$).

General references for any undefined terminology or notation are [4], [12], [13], [14], [15].

2. Main results

Recall that a ring R is called a PF-ring if every principal ideal of R is a flat R-module. It is proved in [1] that a ring R is a PF-ring if and only if the annihilator of each element $r \in R$, $\operatorname{ann}_R(r)$, is a pure ideal; that is, for all $b \in \operatorname{ann}_R(r)$ there exists $c \in \operatorname{ann}_R(r)$ such that bc = b.

Lemma 2.1 ([12, 3.5]). Let S be a torsion-free and cancellative monoid and $\leq a$ strict order on S. Then $[[R^{S,\leq}]]$ is reduced if and only if R is reduced.

Lemma 2.2 ([2, Lemma 1]). Any PF-ring is reduced.

Lemma 2.3 ([9, Corollary 3.3]). Let S be a torsion-free and cancellative monoid, $\leq a$ strict order on S, and R a reduced ring. If $f_1, f_2, \dots, f_n \in [[R^{S,\leq}]]$ are such that $f_1f_2 \dots f_n = 0$, then $f_1(s_1)f_2(s_2) \dots f_n(s_n) = 0$ for all $s_1, s_2, \dots, s_n \in S$.

Let A be a subset of R. As in [10], we will say that A is S-indexed if there exists an artinian and narrow subset I of S such that A is indexed by I.

Theorem 2.4. Let R be a commutative ring with identity and (S, \leq) a strictly totally ordered monoid. Then $[[R^{S,\leq}]]$ is a PF-ring if and only if for any two S-indexed subsets A and B of R such that $B \subseteq ann_R(A)$, there exists $c \in ann_R(A)$ such that bc = b for all $b \in B$.

Proof. Note that S is torsion-free and cancellative by Lemma 1.1, since (S, \leq) is a strictly totally ordered monoid.

- (⇐): Let $f, g \in [[R^{S,\leq}]]$ and let $g \in \operatorname{ann}_{[[R^{S,\leq}]]}(f)$. Then gf = 0. Note that, in particular, R is a PF-ring, since for all $b \in \operatorname{ann}_R(a)$, there exists $c \in \operatorname{ann}_R(a)$ such that bc = b. So by Lemma 2.2, R is reduced. Thus by Lemma 2.3, g(t)f(s) = 0 for all $s, t \in S$. Let $A = \{f(s) \mid s \in \operatorname{Supp}(f)\}$ and $B = \{g(t) \mid t \in \operatorname{Supp}(g)\}$. Then A and B are S-indexed and $B \subseteq \operatorname{ann}_R(A)$. So by hypothesis, there exists $c \in \operatorname{ann}_R(A)$ such that g(t)c = g(t) for all $g(t) \in B$, and so g(t)c = g(t) for all $t \in S$. Hence gc = g and $c \in \operatorname{ann}_{[R^{S,\leq}]}(f)$. Therefore $[[R^{S,\leq}]]$ is a PF-ring.
- (⇒): Assume that $[[R^{S,\leq}]]$ is a PF-ring. Let $A = \{a_s \mid s \in I\}$ and $B = \{b_t \mid t \in J\}$ be two S-indexed subsets of R such that $B \subseteq \operatorname{ann}_R(A)$, where I and J are

artinian and narrow subsets of S. Define $f: S \to R$ $(g: S \to R \text{ respectively})$ via

$$f(s) = \begin{cases} a_s & \text{if } s \in I \\ 0 & \text{if } s \notin I, \end{cases} \quad \text{and} \quad g(t) = \begin{cases} b_t & \text{if } t \in J \\ 0 & \text{if } t \notin J. \end{cases}$$

Then Supp(f)=I and Supp(g)=J are artinian and narrow, and so $f,g\in[[R^{S,\leq}]]$. It is easy to see that gf=0. Therefore $g\in \operatorname{ann}_{[[R^{S,\leq}]]}(f)$. Thus by assumption there exists $h\in \operatorname{ann}_{[[R^{S,\leq}]]}(f)$ such that gh=g. Therefore, we have hf=0 and g(h-e)=0. Since, by Lemma 2.2 and Lemma 2.1, R is reduced, h(u)f(s)=0 for all $u,s\in S$ and g(t)(h(0)-1)=0 for all $t\in S$. So $h(0)\in \operatorname{ann}_R(A)$ and h(0)=b for all $h\in B$. Therefore the above condition holds.

The following corollaries will give us other examples of PF-rings.

Corollary 2.5. Let $\mathbb{Q}^+ = \{a \in \mathbb{Q} \mid a \geq 0\}$ and $\mathbb{R}^+ = \{a \in \mathbb{R} \mid a \geq 0\}$. Then the ring $[[\mathbb{Z}^{\mathbb{N},\leq}]], [[\mathbb{Z}^{\mathbb{N},\leq}]], [[\mathbb{Z}^{\mathbb{N},\leq}]], [[\mathbb{Z}^{\mathbb{N},\leq}]], [[\mathbb{Z}^{\mathbb{N},\leq}]], and [[\mathbb{Z}^{\mathbb{R},\leq}]] are PF-rings, where <math>\leq$ is the usual order.

Corollary 2.6. Let $(S_1, \leq_1), \dots, (S_m, \leq_m)$ be strictly totally ordered monoids. Denote by $(lex \leq_i)$ and $(rev \ lex \leq_i)$ the lexicographic order and the reverse lexicographic order, respectively, on the monoid $S_1 \times \dots \times S_m$. If R is a commutative ring satisfying property: for any two S-indexed subsets A and B of R such that $B \subseteq ann_R(A)$, there exists $c \in ann_R(A)$ such that bc = b for all $b \in B$. Then $[[R^{S_1 \times \dots \times S_m, (lex \leq_i)}]]$ and $[[R^{S_1 \times \dots \times S_m, (rev \ lex \leq_i)}]]$ are PF-rings.

Let R be a commutative ring, and consider the multiplicative monoid $\mathbb{N}_{\geq 1}$, endowed with the usual order \leq . Then $[[R^{\mathbb{N}_{\geq 1},\leq}]]$ is the ring of arithmetical functions with values in R, endowed with the Dirichlet convolution: $fg(n) = \sum_{d|n} f(d)g\left(\frac{n}{d}\right)$, for each $n \geq 1$.

Corollary 2.7. Let R be a commutative ring. Then $[[R^{\mathbb{N}_{\geq 1},\leq}]]$ is a PF-ring if and only if for any two S-indexed subsets A and B of R such that $B \subseteq ann_R(A)$, there exists $c \in ann_R(A)$ such that bc = b for all $b \in B$.

Corollary 2.8. Let R be a commutative ring and (S, \leq) a strictly ordered monoid with S being cancellative and torsion-free. If for any two S-indexed subsets A and B of R such that $B \subseteq ann_R(A)$, there exists $c \in ann_R(A)$ such that bc = b for all $b \in B$ and (S, \leq) is narrow, then $[[R^{S, \leq}]]$ is a PF-ring.

Recall that R called a generalized PF-ring (for short, GPF-ring) if, given any $a \in R$, then the principal ideal Ra^n is flat as an R-module for some $n \geq 1$. It is proved in [3] that a commutative ring R is a GPF-ring if and only if, given any $a \in R$, either a is a regular element in every prime localization R_P or for some $n \geq 1$, $a^n = 0$ in every R_P . Also note in [3] that a commutative ring R is a PF-ring if and only if R is a reduced GPF-ring.

Recall that a ring R is called a PP-ring if every principal ideal of R is a projective R-module. It is well-known that a ring R is a PP-ring if and only if the annihilator,

 $ann_R(a)$, is generated by an idempotent for every $a \in R$ (cf., [1]). It is proved in [10, Theorem 2.3] that the ring $[[R^{S,\leq}]]$ of generalized power series is a PP-ring if and only if R is a PP-ring and every S-indexed subset C of B(R) has a least upper bound in B(R), where B(R) is the set of all idempotents of R.

For each $f \in [[R^{S,\leq}]]$, let C(f) denote the ideal of R generated by the coefficients of $f: C(f) = (\{f(s) | s \in S\})$. Let $r \in R$. Define a mapping $c_r \in [[R^{S,\leq}]]$ as follows:

$$c_r(s) = \begin{cases} r & \text{if } s = 0, \\ 0 & \text{if } 0 \neq s \in S. \end{cases}$$

Lemma 2.9 ([10, Lemma 2.2]). Let R be a reduced commutative ring and S a cancellative and torsion-free monoid. If $g^2 = g \in [[R^{S,\leq}]]$, then there exists an idempotent $e \in R$ such that $g = c_e$.

Theorem 2.10. Let R be a Noetherian ring and let (S, \leq) be a strictly totally ordered monoid. Then $[[R^{S,\leq}]]$ is a PP-ring if and only if R is a PP-ring.

Proof. Suppose that $[[R^{S,\leq}]]$ is a PP-ring. Let $a \in R$. Then $ann_{[[R^{S,\leq}]]}(a) = g[[R^{S,\leq}]]$ for some $g \in [[R^{S,\leq}]]$ such that $g^2 = g$. By Lemma 2.9, there exists an idempotent $e \in R$ such that $g = c_e$. We claim that $ann_R(a) = eR$. If $b \in ann_R(a)$, then ba = 0. Then $b \in ann_{[[R^{S,\leq}]]}(a) = c_e[[R^{S,\leq}]]$, and so we have $b = c_e h$ for some $h \in [[R^{S,\leq}]]$. Thus b = eh(0). Hence $ann_R(a) \subseteq eR$. For the opposite inclusion, suppose that $d \in eR$. Then d = er for some $r \in R$. Since $e \in ann_R(a)$, we have $d \in ann_R(a)$. Thus $ann_R(a) \supseteq eR$, and so $ann_R(a) = eR$. Therefore R is a PP-ring.

Conversely, assume that R is a PP-ring. Let $h \in [[R^{S,\leq}]]$ and $f \in ann_{[[R^{S,\leq}]]}(h)$. Since R is reduced, f(s)h(t)=0 for all $s,t\in S$. Since R is Notherian, C(h) is finitely generated, say $c(h)=(h(t_0),h(t_1),\cdots,h(t_n))$. Let $N=ann_R(h(t_0),h(t_1),\cdots,h(t_n))$. Then $f(s)\in N$ for each $s\in S$. Therefore, $f\in [[N^{S,\leq}]]$ and $ann_{[[R^{S,\leq}]]}(h)\subseteq [[N^{S,\leq}]]$. If $g\in [[N^{S,\leq}]]$, then $C(g)\subseteq N=ann_R(C(h))$. Therefore, $g\in ann_{[[R^{S,\leq}]]}(h)$. Hence $ann_{[[R^{S,\leq}]]}(h)=[[N^{S,\leq}]]$ and $N=\bigcap_{i=0}^n ann_R(h(t_i))$. Since R is a PP-ring, $ann_R(h(t_i))=e_iR$ for each $i=0,1,\cdots,n$, where e_i is an idempotent element of R. Then $N=\bigcap_{i=0}^n e_iR=(e_1e_2\cdots e_n)R=eR$, where e is an idempotent element of R. Therefore $ann_{[[R^{S,\leq}]]}(h)=e[[R^{S,\leq}]]$. Hence $[[R^{S,\leq}]]$ is a PP-ring.

References

- [1] H. Al-Ezeh, On some properties of polynomial rings, Int. J. Math. Math. Sci., 10(1987), 311-314.
- [2] H. Al-Ezeh, Two properties of the power series ring, Int. J. Math. Math. Sci., 11(1988), 9-14.
- [3] H. Al-Ezeh, On generalized PF-rings, Math. J. Okayama Univ., 31(1989), 25-29.
- [4] G. A. Elliott and P. Ribenboim, Fields of generalized power series, Arch. Math., 54(1990), 365-371.

- [5] H. Kim, On t-closedness of generalized power series rings, J. Pure Appl. Algebra, 166(2002), 277-284.
- [6] H. Kim and Y. S. Park, Krull domains of generalized power series, J. Algebra, 237(2001), 292-301.
- [7] J.-H. Kim, A note on the quotient ring R((X)) of the power series ring R[[X]], J. Korean Math. Soc., **25**(1998), 265-271.
- [8] Z. Liu, On n-closedness of generalized power series rings over pairs of rings, J. Pure Appl. Algebra, 144(1999), 303-312.
- [9] Z. Liu, Special properties of rings of generalized power series, Comm. Algebra, 32(2004), 3215-3226.
- [10] Z. Liu and J. Ahsan, PP-rings of generalized power series, Acta. Math. Sinica, 16(2000), 573-578.
- [11] E. Matlis, The minimal spectrum of a reduced ring, Ill. J. Math., 27(1983), 353-391.
- [12] P. Ribenboim, Rings of generalized power series: Nilpotent elements, Abh. Math. Sem. Univ. Hamburg, **61**(1991), 15-33.
- [13] P. Ribenboim, Noetherian rings of generalized power series, J. Pure Appl. Algebra, 79(1992), 293-312.
- [14] P. Ribenboim, Rings of generalized power series, II: Units and zero-divisors, J. Algebra, 168(1994), 71-89.
- [15] P. Ribenboim, Special properties of generalized power series, J. Algebra, 173(1995), 566-586.
- [16] J. J. Rotman, "An Introduction to Homological Algebra", Academic Press, San Diego, 1993.