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Abstract. In this paper, we show that if R is a commutative ring with identity and (S,≤)

is a strictly totally ordered monoid, then the ring [[RS,≤]] of generalized power series is a

PF-ring if and only if for any two S-indexed subsets A and B of R such that B ⊆ annR(A),

there exists c ∈ annR(A) such that bc = b for all b ∈ B, and that for a Noetherian ring R,

[[RS,≤]] is a PP ring if and only if R is a PP ring.

1. Introduction and preliminaries

Let R be a commutative ring with identity. Then R is called a PF-ring (resp.,
PP-ring) if every principal ideal of R is a flat (resp., projective) R-module. It is
well-known that if R is Noetherian, then these two notions are equal (cf., [16, Corol-
lary 4.3]). It is proved in [1] that a ring R is a PF-ring if and only if the annihilator
of each element r ∈ R, annR(r), is a pure ideal; that is, for all b ∈ annR(r) there
exists c ∈ annR(r) such that bc = b. It may be worth reminding the reader that for
a commutative ring R, R is a PF-ring if and only if R is a locally integral domain
(i.e., every localization RP is an integral domain for any prime (resp., maximal)
ideal P of R) ([3], [11]). It is also proved in [2] that the power series ring R[[X]]
is a PF-ring if and only if for any two countable subsets A = {a0, a1, · · · } and
B = {b0, b1, · · · } of R such that A ⊆ annR(B), there exists r ∈ annR(B) such that
ar = a for all a ∈ A. In [7, Theorem 3, Theorem 4], J.-H. Kim proved that for a
Noetherian ring R, R[[X]] is a PF (resp., PP) ring if and only if R is a PF (resp.,
PP) ring. In recent years, Many researchers (for example, P. Ribenboim ([4], [12],
[13], [14], [15]), Z. Liu ([8], [10], [9]), and the first author ([5], [6])) have carried
out an extensive study of rings of generalized power series. In particular, Liu and
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Ahsan proved in [10] that the ring [[RS,≤]] of generalized power series is a PP-ring
if and only if R is a PP-ring and every S-indexed subset C of B(R) (the set of all
idempotents of R) has a least upper bound in B(R).

In this paper, we will show that if R is a commutative ring with identity and
(S,≤) is a strictly totally ordered monoid, then the ring [[RS,≤]] of generalized
power series is a PF-ring if and only if for any two S-indexed subsets A and B of
R such that B ⊆ annR(A), there exists c ∈ annR(A) such that bc = b for all b ∈ B,
and that for a Noetherian ring R, [[RS,≤]] is a PP ring if and only if R is a PP ring.

Let (S,≤) be an ordered set. Recall that (S,≤) is artinian if every strictly
decreasing sequence of elements of S is finite, and that (S,≤) is narrow if every
subset of pairwise order-incomparable elements of S is finite. It is easy to see that
(S,≤) is artinian if and only if every non-empty subset of S has a minimal element.
Moreover, if ≤ is a total order, then (S,≤) is artinian if and only if it is well-ordered.
Recall that an ordered monoid (S,≤) is strictly ordered if s, s′ ∈ S with s < s′, then
s + t < s′ + t for any t ∈ S. For example, if S is cancellative or the order is trivial,
then (S,≤) is a strictly ordered monoid.

The following definition is due to P. Ribenboim [4]: Let (S,≤) be a strictly
ordered monoid and let R be a commutative ring with 1. Let [[RS,≤]] be the set of
all functions f : S → R such that Supp(f) = {s ∈ S | f(s) 6= 0} is artinian and
narrow. We call {f(s) | s ∈ Supp(f)} the set of all coefficients of f . It is clear
that R is an additive abelian group with pointwise addition. For every s ∈ S and
f1, · · · , fn ∈ R, let Xs(f1, · · · , fn) = {(u1, · · · , un) ∈ Sn | s = u1 + · · · + un, ui ∈
Supp(fi) for each i}. It follows from [4, (e) p. 368] that Xs(f1, · · · , fn) is finite.
This fact allows one to define the operation of convolution ∗ as follows:

(f ∗ h)(s) =
∑

(u,v)∈Xs(f,h)

f(u)h(v).

With this operation, and pointwise addition, [[RS,≤]] becomes a commutative ring
with identity element e, where

e(s) =

{
1 if s = 0
0 if 0 6= s ∈ S.

We call [[RS,≤]] the ring of generalized power series. It should be noted that the
definition of [[RS,≤]] depends on the order ≤, for example, see [4, p. 371]. Following
[12, 2.5], R is an integral domain if and only if D is an integral domain, and S is
torsion-free and cancellative. It follows from [4, p. 368] that R is canonically em-
bedded as a subring of [[RS,≤]], and that S is canonically embedded as a submonoid
of ([[RS,≤]] \ {0}, ∗). Numerous examples of rings of generalized power series are
given in [12, 13].

In [4], [12], [13], [14], [15], there are many results on ordered monoids and the
rings of generalized power series. The following result is well-known and will be
frequently used in the sequel.
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Lemma 1.1 ([14]).

(1) If S has a compatible strict total order ≤, then S is torsion-free and cancella-
tive.

(2) Let S be a torsion-free and cancellative monoid. If ≤ is any compatible order
on S, then there exists a compatible total order ≤′ on S, which is finer than
≤ (i.e., if s, t ∈ S such that s ≤ t, then s ≤′ t).

General references for any undefined terminology or notation are [4], [12], [13],
[14], [15].

2. Main results

Recall that a ring R is called a PF-ring if every principal ideal of R is a flat
R-module. It is proved in [1] that a ring R is a PF-ring if and only if the annihilator
of each element r ∈ R, annR(r), is a pure ideal; that is, for all b ∈ annR(r) there
exists c ∈ annR(r) such that bc = b.

Lemma 2.1 ([12, 3.5]). Let S be a torsion-free and cancellative monoid and ≤ a
strict order on S. Then [[RS,≤]] is reduced if and only if R is reduced.

Lemma 2.2 ([2, Lemma 1]). Any PF-ring is reduced.

Lemma 2.3 ([9, Corollary 3.3]). Let S be a torsion-free and cancellative monoid,
≤ a strict order on S, and R a reduced ring. If f1, f2, · · · , fn ∈ [[RS,≤]] are such
that f1f2 · · · fn = 0, then f1(s1)f2(s2) · · · fn(sn) = 0 for all s1, s2, · · · , sn ∈ S.

Let A be a subset of R. As in [10], we will say that A is S-indexed if there exists
an artinian and narrow subset I of S such that A is indexed by I.

Theorem 2.4. Let R be a commutative ring with identity and (S,≤) a strictly
totally ordered monoid. Then [[RS,≤]] is a PF-ring if and only if for any two S-
indexed subsets A and B of R such that B ⊆ annR(A), there exists c ∈ annR(A)
such that bc = b for all b ∈ B.

Proof. Note that S is torsion-free and cancellative by Lemma 1.1, since (S,≤) is a
strictly totally ordered monoid.

(⇐): Let f, g ∈ [[RS,≤]] and let g ∈ ann[[RS,≤]](f). Then gf = 0. Note that, in
particular, R is a PF-ring, since for all b ∈ annR(a), there exists c ∈ annR(a) such
that bc = b. So by Lemma 2.2, R is reduced. Thus by Lemma 2.3, g(t)f(s) = 0 for
all s, t ∈ S. Let A = {f(s) | s ∈ Supp(f)} and B = {g(t) | t ∈ Supp(g)}. Then A
and B are S-indexed and B ⊆ annR(A). So by hypothesis, there exists c ∈ annR(A)
such that g(t)c = g(t) for all g(t) ∈ B, and so g(t)c = g(t) for all t ∈ S. Hence
gc = g and c ∈ ann[[RS,≤]](f). Therefore [[RS,≤]] is a PF-ring.

(⇒): Assume that [[RS,≤]] is a PF-ring. Let A = {as | s ∈ I} and B = {bt | t ∈
J} be two S-indexed subsets of R such that B ⊆ annR(A), where I and J are
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artinian and narrow subsets of S. Define f : S → R (g : S → R respectively) via

f(s) =

{
as if s ∈ I

0 if s 6∈ I,
and g(t) =

{
bt if t ∈ J

0 if t 6∈ J.

Then Supp(f) = I and Supp(g) = J are artinian and narrow, and so f, g ∈ [[RS,≤]].
It is easy to see that gf = 0. Therefore g ∈ ann[[RS,≤]](f). Thus by assumption
there exists h ∈ ann[[RS,≤]](f) such that gh = g. Therefore, we have hf = 0 and
g(h− e) = 0. Since, by Lemma 2.2 and Lemma 2.1, R is reduced, h(u)f(s) = 0 for
all u, s ∈ S and g(t)(h(0)− 1) = 0 for all t ∈ S. So h(0) ∈ annR(A) and bh(0) = b
for all b ∈ B. Therefore the above condition holds. ¤

The following corollaries will give us other examples of PF-rings.

Corollary 2.5. Let Q+ = {a ∈ Q | a ≥ 0} and R+ = {a ∈ R | a ≥ 0}. Then the
ring [[ZN,≤]], [[ZR+,≤]], [[ZZ,≤]], [[ZN,≤]], [[ZQ,≤]], and [[ZR,≤]] are PF-rings , where
≤ is the usual order.

Corollary 2.6. Let (S1,≤1), · · · , (Sm,≤m) be strictly totally ordered monoids.
Denote by (lex ≤i) and (rev lex ≤i) the lexicographic order and the reverse lexi-
cographic order, respectively, on the monoid S1 × · · · × Sm. If R is a commutative
ring satisfying property: for any two S-indexed subsets A and B of R such that
B ⊆ annR(A), there exists c ∈ annR(A) such that bc = b for all b ∈ B. Then
[[RS1×···×Sm,(lex≤i)]] and [[RS1×···×Sm,(rev lex≤i)]] are PF-rings.

Let R be a commutative ring, and consider the multiplicative monoid N≥1,
endowed with the usual order≤. Then [[RN≥1,≤]] is the ring of arithmetical functions
with values in R, endowed with the Dirichlet convolution: fg(n) =

∑
d|n f(d)g

(n

d

)
,

for each n ≥ 1.

Corollary 2.7. Let R be a commutative ring. Then [[RN≥1,≤]] is a PF-ring if and
only if for any two S-indexed subsets A and B of R such that B ⊆ annR(A), there
exists c ∈ annR(A) such that bc = b for all b ∈ B.

Corollary 2.8. Let R be a commutative ring and (S,≤) a strictly ordered monoid
with S being cancellative and torsion-free. If for any two S-indexed subsets A and
B of R such that B ⊆ annR(A), there exists c ∈ annR(A) such that bc = b for all
b ∈ B and (S,≤) is narrow, then [[RS,≤]] is a PF-ring.

Recall that R called a generalized PF-ring (for short, GPF-ring) if, given any
a ∈ R, then the principal ideal Ran is flat as an R-module for some n ≥ 1. It is
proved in [3] that a commutative ring R is a GPF-ring if and only if, given any
a ∈ R, either a is a regular element in every prime localization RP or for some
n ≥ 1, an = 0 in every RP . Also note in [3] that a commutative ring R is a PF-ring
if and only if R is a reduced GPF-ring.

Recall that a ring R is called a PP-ring if every principal ideal of R is a projective
R-module. It is well-known that a ring R is a PP-ring if and only if the annihilator,
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annR(a), is generated by an idempotent for every a ∈ R (cf., [1]). It is proved in
[10, Theorem 2.3] that the ring [[RS,≤]] of generalized power series is a PP-ring if
and only if R is a PP-ring and every S-indexed subset C of B(R) has a least upper
bound in B(R), where B(R) is the set of all idempotents of R.

For each f ∈ [[RS,≤]], let C(f) denote the ideal of R generated by the coefficients
of f : C(f) = ({f(s)|s ∈ S}). Let r ∈ R. Define a mapping cr ∈ [[RS,≤]] as follows:

cr(s) =

{
r if s = 0,

0 if 0 6= s ∈ S.

Lemma 2.9 ([10, Lemma 2.2]). Let R be a reduced commutative ring and S a
cancellative and torsion-free monoid. If g2 = g ∈ [[RS,≤]], then there exists an
idempotent e ∈ R such that g = ce.

Theorem 2.10. Let R be a Noetherian ring and let (S,≤) be a strictly totally
ordered monoid. Then [[RS,≤]] is a PP-ring if and only if R is a PP-ring.

Proof. Suppose that [[RS,≤]] is a PP-ring. Let a ∈ R. Then ann[[RS,≤]](a) =
g[[RS,≤]] for some g ∈ [[RS,≤]] such that g2 = g. By Lemma 2.9, there exists an
idempotent e ∈ R such that g = ce. We claim that annR(a) = eR. If b ∈ annR(a),
then ba = 0. Then b ∈ ann[[RS,≤]](a) = ce[[RS,≤]], and so we have b = ceh for some
h ∈ [[RS,≤]]. Thus b = eh(0). Hence annR(a) ⊆ eR. For the opposite inclusion,
suppose that d ∈ eR. Then d = er for some r ∈ R. Since e ∈ annR(a), we have
d ∈ annR(a). Thus annR(a) ⊇ eR, and so annR(a) = eR. Therefore R is a PP-ring.

Conversely, assume that R is a PP-ring. Let h ∈ [[RS,≤]] and f ∈
ann[[RS,≤]](h). Since R is reduced, f(s)h(t) = 0 for all s, t ∈ S. Since R is
Notherian, C(h) is finitely generated, say c(h) = (h(t0), h(t1), · · · , h(tn)). Let
N = annR(h(t0), h(t1), · · · , h(tn)). Then f(s) ∈ N for each s ∈ S. There-
fore, f ∈ [[NS,≤]] and ann[[RS,≤]](h) ⊆ [[NS,≤]]. If g ∈ [[NS,≤]], then C(g) ⊆
N = annR(C(h)). Therefore, g ∈ ann[[RS,≤]](h). Hence ann[[RS,≤]](h) = [[NS,≤]]
and N =

⋂n
i=0 annR(h(ti)). Since R is a PP-ring, annR(h(ti)) = eiR for

each i = 0, 1, · · · , n, where ei is an idempotent element of R. Then N =⋂n
i=0 eiR = (e1e2 · · · en)R = eR, where e is an idempotent element of R. Therefore

ann[[RS,≤]](h) = e[[RS,≤]]. Hence [[RS,≤]] is a PP-ring. ¤
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