PF-rings of Generalized Power Series

Hwankoo Kim
Department of Information Security, College of Engineering, Hoseo University, Asan 336-795, Korea
e-mail: hkkim@office.hoseo.ac.kr
TaE In Kwon
Department of Applied Mathematics, Changwon National University, Changwon 641-773, Korea
e-mail: taekwon@sarim.changwon.ac.kr

Abstract. In this paper, we show that if R is a commutative ring with identity and (S, \leq) is a strictly totally ordered monoid, then the ring $\left[\left[R^{S, \leq}\right]\right]$ of generalized power series is a PF-ring if and only if for any two S-indexed subsets A and B of R such that $B \subseteq \operatorname{ann}_{R}(A)$, there exists $c \in \operatorname{ann}_{R}(A)$ such that $b c=b$ for all $b \in B$, and that for a Noetherian ring R, $\left[\left[R^{S, \leq}\right]\right]$ is a PP ring if and only if R is a PP ring.

1. Introduction and preliminaries

Let R be a commutative ring with identity. Then R is called a $P F$-ring (resp., $P P$-ring) if every principal ideal of R is a flat (resp., projective) R-module. It is well-known that if R is Noetherian, then these two notions are equal (cf., [16, Corollary 4.3]). It is proved in [1] that a ring R is a PF-ring if and only if the annihilator of each element $r \in R, \operatorname{ann}_{R}(r)$, is a pure ideal; that is, for all $b \in \operatorname{ann}_{R}(r)$ there exists $c \in \operatorname{ann}_{R}(r)$ such that $b c=b$. It may be worth reminding the reader that for a commutative ring R, R is a PF-ring if and only if R is a locally integral domain (i.e., every localization R_{P} is an integral domain for any prime (resp., maximal) ideal P of R) ([3], [11]). It is also proved in [2] that the power series ring $R[[X]]$ is a PF-ring if and only if for any two countable subsets $A=\left\{a_{0}, a_{1}, \cdots\right\}$ and $B=\left\{b_{0}, b_{1}, \cdots\right\}$ of R such that $A \subseteq \operatorname{ann}_{R}(B)$, there exists $r \in \operatorname{ann}_{R}(B)$ such that $a r=a$ for all $a \in A$. In [7, Theorem 3, Theorem 4], J.-H. Kim proved that for a Noetherian ring $R, R[[X]]$ is a PF (resp., PP) ring if and only if R is a PF (resp., PP) ring. In recent years, Many researchers (for example, P. Ribenboim ([4], [12], [13], [14], [15]), Z. Liu ([8], [10], [9]), and the first author ([5], [6])) have carried out an extensive study of rings of generalized power series. In particular, Liu and

[^0]Ahsan proved in [10] that the ring [[$R^{S, \leq]] \text { of generalized power series is a PP-ring }}$ if and only if R is a PP-ring and every S-indexed subset C of $B(R)$ (the set of all idempotents of R) has a least upper bound in $B(R)$.

In this paper, we will show that if R is a commutative ring with identity and (S, \leq) is a strictly totally ordered monoid, then the ring $\left[\left[R^{S, \leq]] \text { of generalized }}\right.\right.$ power series is a PF-ring if and only if for any two S-indexed subsets A and B of R such that $B \subseteq \operatorname{ann}_{R}(A)$, there exists $c \in \operatorname{ann}_{R}(A)$ such that $b c=b$ for all $b \in B$, and that for a Noetherian ring $R,\left[\left[R^{S, \leq]]}\right.\right.$ is a PP ring if and only if R is a PP ring.

Let (S, \leq) be an ordered set. Recall that (S, \leq) is artinian if every strictly decreasing sequence of elements of S is finite, and that (S, \leq) is narrow if every subset of pairwise order-incomparable elements of S is finite. It is easy to see that (S, \leq) is artinian if and only if every non-empty subset of S has a minimal element. Moreover, if \leq is a total order, then (S, \leq) is artinian if and only if it is well-ordered. Recall that an ordered monoid (S, \leq) is strictly ordered if $s, s^{\prime} \in S$ with $s<s^{\prime}$, then $s+t<s^{\prime}+t$ for any $t \in S$. For example, if S is cancellative or the order is trivial, then (S, \leq) is a strictly ordered monoid.

The following definition is due to P. Ribenboim [4]: Let (S, \leq) be a strictly ordered monoid and let R be a commutative ring with 1 . Let $\left[\left[R^{S, \leq}\right]\right]$ be the set of all functions $f: S \rightarrow R$ such that $\operatorname{Supp}(f)=\{s \in S \mid f(s) \neq 0\}$ is artinian and narrow. We call $\{f(s) \mid s \in \operatorname{Supp}(f)\}$ the set of all coefficients of f. It is clear that R is an additive abelian group with pointwise addition. For every $s \in S$ and $f_{1}, \cdots, f_{n} \in R$, let $X_{s}\left(f_{1}, \cdots, f_{n}\right)=\left\{\left(u_{1}, \cdots, u_{n}\right) \in S^{n} \mid s=u_{1}+\cdots+u_{n}, u_{i} \in\right.$ $\operatorname{Supp}\left(f_{i}\right)$ for each $\left.i\right\}$. It follows from [4, (e) p. 368] that $X_{s}\left(f_{1}, \cdots, f_{n}\right)$ is finite. This fact allows one to define the operation of convolution $*$ as follows:

$$
(f * h)(s)=\sum_{(u, v) \in X_{s}(f, h)} f(u) h(v) .
$$

With this operation, and pointwise addition, $\left[\left[R^{S, \leq}\right]\right]$ becomes a commutative ring with identity element e, where

$$
e(s)= \begin{cases}1 & \text { if } s=0 \\ 0 & \text { if } 0 \neq s \in S\end{cases}
$$

We call $\left[\left[R^{S, \leq]]}\right.\right.$ the ring of generalized power series. It should be noted that the definition of $\left[\left[R^{S, \leq}\right]\right]$ depends on the order \leq, for example, see [4, p. 371]. Following [12, 2.5], R is an integral domain if and only if D is an integral domain, and S is torsion-free and cancellative. It follows from [4, p. 368] that R is canonically em-
 of $\left(\left[\left[R^{S, \leq]] \backslash\{0\}, *) \text {. Numerous examples of rings of generalized power series are }}\right.\right.\right.$ given in [12, 13].

In [4], [12], [13], [14], [15], there are many results on ordered monoids and the rings of generalized power series. The following result is well-known and will be frequently used in the sequel.

Lemma 1.1 ([14]).

(1) If S has a compatible strict total order \leq, then S is torsion-free and cancellative.
(2) Let S be a torsion-free and cancellative monoid. If \leq is any compatible order on S, then there exists a compatible total order \leq^{\prime} on S, which is finer than \leq (i.e., if $s, t \in S$ such that $s \leq t$, then $s \leq^{\prime} t$).

General references for any undefined terminology or notation are [4], [12], [13], [14], [15].

2. Main results

Recall that a ring R is called a $P F$-ring if every principal ideal of R is a flat R-module. It is proved in [1] that a ring R is a PF-ring if and only if the annihilator of each element $r \in R, \operatorname{ann}_{R}(r)$, is a pure ideal; that is, for all $b \in \operatorname{ann}_{R}(r)$ there exists $c \in \operatorname{ann}_{R}(r)$ such that $b c=b$.

Lemma 2.1 ([12, 3.5]). Let S be a torsion-free and cancellative monoid and $\leq a$ strict order on S. Then $\left[\left[R^{S, \leq]]}\right.\right.$ is reduced if and only if R is reduced.

Lemma 2.2 ([2, Lemma 1]). Any PF-ring is reduced.
Lemma 2.3 ([9, Corollary 3.3]). Let S be a torsion-free and cancellative monoid, $\leq a$ strict order on S, and R a reduced ring. If $f_{1}, f_{2}, \cdots, f_{n} \in\left[\left[R^{S, \leq}\right]\right]$ are such that $f_{1} f_{2} \cdots f_{n}=0$, then $f_{1}\left(s_{1}\right) f_{2}\left(s_{2}\right) \cdots f_{n}\left(s_{n}\right)=0$ for all $s_{1}, s_{2}, \cdots, s_{n} \in S$.

Let A be a subset of R. As in [10], we will say that A is S-indexed if there exists an artinian and narrow subset I of S such that A is indexed by I.

Theorem 2.4. Let R be a commutative ring with identity and (S, \leq) a strictly totally ordered monoid. Then $\left[\left[R^{S, \leq}\right]\right]$ is a PF-ring if and only if for any two S indexed subsets A and B of R such that $B \subseteq \operatorname{ann}_{R}(A)$, there exists $c \in a n n_{R}(A)$ such that $b c=b$ for all $b \in B$.
Proof. Note that S is torsion-free and cancellative by Lemma 1.1, since (S, \leq) is a strictly totally ordered monoid.
$(\Leftarrow):$ Let $f, g \in\left[\left[R^{S, \leq]]}\right.\right.$ and let $g \in \operatorname{ann}_{\left[\left[R^{S, \leq 1]}\right.\right.}(f)$. Then $g f=0$. Note that, in particular, R is a PF-ring, since for all $b \in a n n_{R}(a)$, there exists $c \in a n n_{R}(a)$ such that $b c=b$. So by Lemma 2.2, R is reduced. Thus by Lemma 2.3, $g(t) f(s)=0$ for all $s, t \in S$. Let $A=\{f(s) \mid s \in \operatorname{Supp}(f)\}$ and $B=\{g(t) \mid t \in \operatorname{Supp}(g)\}$. Then A and B are S-indexed and $B \subseteq \operatorname{ann}_{R}(A)$. So by hypothesis, there exists $c \in \operatorname{ann}_{R}(A)$ such that $g(t) c=g(t)$ for all $g(t) \in B$, and so $g(t) c=g(t)$ for all $t \in S$. Hence $g c=g$ and $c \in \operatorname{ann}_{\left[\left[R^{s, \leq]]}\right.\right.}(f)$. Therefore $\left[\left[R^{S, \leq]]}\right.\right.$ is a PF-ring.
(\Rightarrow) : Assume that $\left[\left[R^{S, \leq]]}\right.\right.$ is a PF-ring. Let $A=\left\{a_{s} \mid s \in I\right\}$ and $B=\left\{b_{t} \mid t \in\right.$ $J\}$ be two S-indexed subsets of R such that $B \subseteq \operatorname{ann}_{R}(A)$, where I and J are
artinian and narrow subsets of S. Define $f: S \rightarrow R(g: S \rightarrow R$ respectively) via

$$
f(s)=\left\{\begin{array}{ll}
a_{s} & \text { if } s \in I \\
0 & \text { if } s \notin I,
\end{array} \quad \text { and } \quad g(t)= \begin{cases}b_{t} & \text { if } t \in J \\
0 & \text { if } t \notin J\end{cases}\right.
$$

 It is easy to see that $g f=0$. Therefore $g \in \operatorname{ann}_{\left[\left[R^{S, \leq]]}\right.\right.}(f)$. Thus by assumption there exists $h \in \operatorname{ann}_{\left[\left[R^{s, \leq]]}\right.\right.}(f)$ such that $g h=g$. Therefore, we have $h f=0$ and $g(h-e)=0$. Since, by Lemma 2.2 and Lemma 2.1, R is reduced, $h(u) f(s)=0$ for all $u, s \in S$ and $g(t)(h(0)-1)=0$ for all $t \in S$. So $h(0) \in \operatorname{ann}_{R}(A)$ and $b h(0)=b$ for all $b \in B$. Therefore the above condition holds.

The following corollaries will give us other examples of PF-rings.
Corollary 2.5. Let $\mathbb{Q}^{+}=\{a \in \mathbb{Q} \mid a \geq 0\}$ and $\mathbb{R}^{+}=\{a \in \mathbb{R} \mid a \geq 0\}$. Then the
 \leq is the usual order.

Corollary 2.6. Let $\left(S_{1}, \leq_{1}\right), \cdots,\left(S_{m}, \leq_{m}\right)$ be strictly totally ordered monoids. Denote by $\left(\right.$ lex $\left.\leq_{i}\right)$ and (rev lex \leq_{i}) the lexicographic order and the reverse lexicographic order, respectively, on the monoid $S_{1} \times \cdots \times S_{m}$. If R is a commutative ring satisfying property: for any two S-indexed subsets A and B of R such that $B \subseteq a n n_{R}(A)$, there exists $c \in \operatorname{ann}_{R}(A)$ such that $b c=b$ for all $b \in B$. Then $\left[\left[R^{S_{1} \times \cdots \times S_{m},\left(\text { lex } \leq_{i}\right)}\right]\right]$ and $\left[\left[R^{S_{1} \times \cdots \times S_{m},\left(\text { rev lex } \leq_{i}\right)}\right]\right]$ are PF-rings.

Let R be a commutative ring, and consider the multiplicative monoid $\mathbb{N}_{\geq 1}$, endowed with the usual order \leq. Then $\left[\left[R^{\mathbb{N} \geq 1}, \leq\right]\right]$ is the ring of arithmetical functions with values in R, endowed with the Dirichlet convolution: $f g(n)=\sum_{d \mid n} f(d) g\left(\frac{n}{d}\right)$, for each $n \geq 1$.

Corollary 2.7. Let R be a commutative ring. Then $\left[\left[R^{\mathbb{N} \geq 1, \leq]] \text { is a PF-ring if and }}\right.\right.$ only if for any two S-indexed subsets A and B of R such that $B \subseteq a n n_{R}(A)$, there exists $c \in a n n_{R}(A)$ such that $b c=b$ for all $b \in B$.

Corollary 2.8. Let R be a commutative ring and (S, \leq) a strictly ordered monoid with S being cancellative and torsion-free. If for any two S-indexed subsets A and B of R such that $B \subseteq \operatorname{ann}_{R}(A)$, there exists $c \in a n n_{R}(A)$ such that $b c=b$ for all $b \in B$ and (S, \leq) is narrow, then $\left[\left[R^{S, \leq}\right]\right]$ is a PF-ring.

Recall that R called a generalized $P F$-ring (for short, $G P F$-ring) if, given any $a \in R$, then the principal ideal $R a^{n}$ is flat as an R-module for some $n \geq 1$. It is proved in [3] that a commutative ring R is a GPF-ring if and only if, given any $a \in R$, either a is a regular element in every prime localization R_{P} or for some $n \geq 1, a^{n}=0$ in every R_{P}. Also note in [3] that a commutative ring R is a PF-ring if and only if R is a reduced GPF-ring.

Recall that a ring R is called a $P P$-ring if every principal ideal of R is a projective R-module. It is well-known that a ring R is a PP-ring if and only if the annihilator,
$a n n_{R}(a)$, is generated by an idempotent for every $a \in R$ (cf., [1]). It is proved in [10, Theorem 2.3] that the ring $\left[\left[R^{S, \leq]]}\right.\right.$ of generalized power series is a PP-ring if and only if R is a PP-ring and every S-indexed subset C of $B(R)$ has a least upper bound in $B(R)$, where $B(R)$ is the set of all idempotents of R.

For each $f \in\left[\left[R^{S, \leq}\right]\right]$, let $C(f)$ denote the ideal of R generated by the coefficients

$$
c_{r}(s)= \begin{cases}r & \text { if } \quad s=0 \\ 0 & \text { if } \quad 0 \neq s \in S\end{cases}
$$

Lemma 2.9 ([10, Lemma 2.2]). Let R be a reduced commutative ring and S a cancellative and torsion-free monoid. If $g^{2}=g \in\left[\left[R^{S, \leq}\right]\right]$, then there exists an idempotent $e \in R$ such that $g=c_{e}$.

Theorem 2.10. Let R be a Noetherian ring and let (S, \leq) be a strictly totally ordered monoid. Then $\left[\left[R^{S, \leq}\right]\right]$ is a $P P$-ring if and only if R is a $P P$-ring.
Proof. Suppose that $\left[\left[R^{S, \leq]]}\right.\right.$ is a PP-ring. Let $a \in R$. Then $a n n_{\left[\left[R^{S, \leq]]}\right.\right.}(a)=$ $g\left[\left[R^{S, \leq]]}\right.\right.$ for some $g \in\left[\left[R^{S, \leq]]}\right.\right.$ such that $g^{2}=g$. By Lemma 2.9, there exists an idempotent $e \in R$ such that $g=c_{e}$. We claim that $a n n_{R}(a)=e R$. If $b \in a n n_{R}(a)$, then $b a=0$. Then $b \in a n n_{\left[\left[R^{S, \leq]]}\right.\right.}(a)=c_{e}\left[\left[R^{S, \leq]]}\right.\right.$, and so we have $b=c_{e} h$ for some $h \in\left[\left[R^{S, \leq}\right]\right]$. Thus $b=e h(0)$. Hence $\operatorname{ann}_{R}(a) \subseteq e R$. For the opposite inclusion, suppose that $d \in e R$. Then $d=e r$ for some $r \in R$. Since $e \in a n n_{R}(a)$, we have $d \in a n n_{R}(a)$. Thus $a n n_{R}(a) \supseteq e R$, and so $a n n_{R}(a)=e R$. Therefore R is a PP-ring.

Conversely, assume that R is a PP-ring. Let $h \in\left[\left[R^{S, \leq}\right]\right]$ and $f \in$ $a n n_{\left[\left[R^{s, \leq]]}\right.\right.}(h)$. Since R is reduced, $f(s) h(t)=0$ for all $s, t \in S$. Since R is Notherian, $C(h)$ is finitely generated, say $c(h)=\left(h\left(t_{0}\right), h\left(t_{1}\right), \cdots, h\left(t_{n}\right)\right)$. Let $N=\operatorname{ann}_{R}\left(h\left(t_{0}\right), h\left(t_{1}\right), \cdots, h\left(t_{n}\right)\right)$. Then $f(s) \in N$ for each $s \in S$. Therefore, $f \in\left[\left[N^{S, \leq}\right]\right]$ and $\operatorname{ann}_{\left[\left[R^{S, \leq \leq]}\right.\right.}(h) \subseteq\left[\left[N^{S, \leq]]}\right.\right.$. If $g \in\left[\left[N^{S, \leq]] \text {, then } C(g) \subseteq}\right.\right.$ $N=\operatorname{ann}_{R}(C(h))$. Therefore, $g \in a n n_{\left[\left[R^{S, \leq]]}\right.\right.}(h)$. Hence $a n n_{\left[\left[R^{S, \leq}\right]\right]}(h)=\left[\left[N^{S, \leq]]}\right.\right.$ and $N=\bigcap_{i=0}^{n} \operatorname{ann}_{R}\left(h\left(t_{i}\right)\right)$. Since R is a PP-ring, $a n n_{R}\left(h\left(t_{i}\right)\right)=e_{i} R$ for each $i=0,1, \cdots, n$, where e_{i} is an idempotent element of R. Then $N=$ $\bigcap_{i=0}^{n} e_{i} R=\left(e_{1} e_{2} \cdots e_{n}\right) R=e R$, where e is an idempotent element of R. Therefore $\operatorname{ann}_{\left[\left[R^{S, \leq} \leq\right]\right.}(h)=e\left[\left[R^{S, \leq]]}\right.\right.$. Hence $\left[\left[R^{S, \leq]]}\right.\right.$ is a PP-ring.

References

[1] H. Al-Ezeh, On some properties of polynomial rings, Int. J. Math. Math. Sci., $\mathbf{1 0}$ (1987), 311-314.
[2] H. Al-Ezeh, Two properties of the power series ring, Int. J. Math. Math. Sci., 11(1988), 9-14.
[3] H. Al-Ezeh, On generalized PF-rings, Math. J. Okayama Univ., 31(1989), 25-29.
[4] G. A. Elliott and P. Ribenboim, Fields of generalized power series, Arch. Math., $\mathbf{5 4}(1990), 365-371$.
[5] H. Kim, On t-closedness of generalized power series rings, J. Pure Appl. Algebra, 166(2002), 277-284.
[6] H. Kim and Y. S. Park, Krull domains of generalized power series, J. Algebra, 237(2001), 292-301.
[7] J.-H. Kim, A note on the quotient ring $R((X))$ of the power series ring $R[[X]]$, J. Korean Math. Soc., 25(1998), 265-271.
[8] Z. Liu, On n-closedness of generalized power series rings over pairs of rings, J. Pure Appl. Algebra, 144(1999), 303-312.
[9] Z. Liu, Special properties of rings of generalized power series, Comm. Algebra, 32(2004), 3215-3226.
[10] Z. Liu and J. Ahsan, PP-rings of generalized power series, Acta. Math. Sinica, 16(2000), 573-578.
[11] E. Matlis, The minimal spectrum of a reduced ring, Ill. J. Math., 27(1983), 353-391.
[12] P. Ribenboim, Rings of generalized power series: Nilpotent elements, Abh. Math. Sem. Univ. Hamburg, 61(1991), 15-33.
[13] P. Ribenboim, Noetherian rings of generalized power series, J. Pure Appl. Algebra, 79(1992), 293-312.
[14] P. Ribenboim, Rings of generalized power series, II: Units and zero-divisors, J. Algebra, 168(1994), 71-89.
[15] P. Ribenboim, Special properties of generalized power series, J. Algebra, 173(1995), 566-586.
[16] J. J. Rotman, "An Introduction to Homological Algebra", Academic Press, San Diego, 1993.

[^0]: Received January 13, 2006.
 2000 Mathematics Subject Classification: 13F25, 13C11.
 Key words and phrases: PF-ring, PP-ring, generalized power series ring.
 The first author was supported by Hoseo University Research Fund, 2005. The second author was supported by Changwon National University Research Fund, 2005.

