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Abstract. Let D be an integral domain, t be the so-called t-operation on D, and S

be a (not necessarily saturated) multiplicative subset of D. In this paper, we study the

Nagata ring of S-Noetherian domains and locally S-Noetherian domains. We also inves-

tigate the t-Nagata ring of t-locally S-Noetherian domains. In fact, we show that if S is

an anti-archimedean subset of D, then D is an S-Noetherian domain (respectively, locally

S-Noetherian domain) if and only if the Nagata ring D[X]N is an S-Noetherian domain

(respectively, locally S-Noetherian domain). We also prove that if S is an anti-archimedean

subset of D, then D is a t-locally S-Noetherian domain if and only if the polynomial ring

D[X] is a t-locally S-Noetherian domain, if and only if the t-Nagata ring D[X]Nv is a

t-locally S-Noetherian domain.

1. Introduction

1.1 Star-operations
To help readers better understanding this paper, we briefly review some defi-

nitions and notation related to star-operations. Let D be an integral domain with
quotient field K, and let F(D) be the set of nonzero fractional ideals of D. For
an I ∈ F(D), set I−1 := {x ∈ K | xI ⊆ D}. The mapping on F(D) de-
fined by I 7→ Iv := (I−1)−1 is called the v-operation on D, and the mapping
on F(D) defined by I 7→ It :=

⋃{Jv | J is a nonzero finitely generated fractional
subideal of I} is called the t-operation on D; and the mapping on F(D) defined by
I 7→ Iw := {a ∈ K | Ja ⊆ I for some finitely generated ideal J of D with Jv = D}
is called the w-operation on D. It is easy to see that I ⊆ Iw ⊆ It ⊆ Iv for all
I ∈ F(D); and if an I ∈ F(D) is finitely generated, then Iv = It. An I ∈ F(D)
is called a t-ideal (respectively, w-ideal) of D if It = I (respectively, Iw = I). A

Received September 10, 2014; accepted November 7, 2014.
2010 Mathematics Subject Classification: 13A15, 13B25, 13E99, 13G05.
Key words and phrases: S-Noetherian domain, (t-)locally S-Noetherian domain, (t-)
Nagata ring, finite (t-)character.

507



508 Jung Wook Lim

maximal t-ideal means a t-ideal which is maximal among proper integral t-ideals.
It is well known that a maximal t-ideal of D always exists if D is not a field. We
say that D is of finite character (respectively, of finite t-character) if each nonzero
nonunit in D belongs to only finitely many maximal ideals (respectively, maximal
t-ideals) of D.

1.2 S-Noetherian domains
Let D be an integral domain and S a (not necessarily saturated) multiplicative

subset of D. In [4], the authors introduced the concept of “almost finitely gen-
erated” to study Querre’s characterization of divisorial ideals in integrally closed
polynomial rings. Later, the authors in [2] generalized the concept of (almost)
finitely generatedness and defined a general notion of Noetherian domains. (Recall
that D is a Noetherian domain if it satisfies the ascending chain condition on inte-
gral ideals of D, or equivalently, every (prime) ideal of D is finitely generated.) To
do this, they first built the notion of S-finiteness. Let I be an ideal of D. Then I
is said to be S-finite if there exist an element s ∈ S and a finitely generated ideal J
of D such that sI ⊆ J ⊆ I. Also, D is called an S-Noetherian domain if each ideal
of D is S-finite. As mentioned above, the concept of S-Noetherian domains can be
regarded as a slight generalization of that of Noetherian domains, because two no-
tions precisely coincide when S consists of units. Hence the results on S-Noetherian
domains can recover known facts for Noetherian domains.

Among other results in [2], Anderson and Dumitrescu proved the Hilbert basis
theorem for S-Noetherian domains, which states that if S is an anti-archimedean
subset of an S-Noetherian domain D, then the polynomial ring D[X] is also an
S-Noetherian domain [2, Proposition 9]. (Recall that a multiplicative subset S
of D is anti-archimedean if

⋂
n≥1 snD ∩ S 6= ∅ for all s ∈ S. For example, if V

is a valuation domain with no height-one prime ideals, then V \ {0} is an anti-
archimedean subset of V [3, Proposition 2.1].) After the paper by Anderson and
Dumitrescu, more properties of S-Noetherian domains have been studied further.
In [14], Liu found an equivalent condition for the generalized power series ring to be
an S-Noetherian domain. In [12], the authors studied the S-Noetherian properties
in special pullbacks which are the so-called composite ring extensions D + E[Γ∗]
and D + [[EΓ∗,≤]]. As a continuation of [12], the same authors investigated when
the amalgamated algebra along an ideal has the S-Noetherian property [13]. For
more results, the readers can refer to [2, 12, 13, 14].

Let P denote one of the properties “Noetherian” or “S-Noetherian”. We say
that D is locally P (respectively, t-locally P) if DM is P for all maximal ideals
(respectively, maximal t-ideals) M of D.

The purpose of this paper is to study the Nagata ring of S-Noetherian domains
and locally S-Noetherian domains, and to investigate the t-Nagata ring of t-locally
S-Noetherian domains. (The concepts of Nagata rings and t-Nagata rings will be
reviewed in Section .) More precisely, we show that if S is an anti-archimedean
subset of D, then D is an S-Noetherian domain (respectively, locally S-Noetherian
domain) if and only if the Nagata ring D[X]N is an S-Noetherian domain (respec-
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tively, locally S-Noetherian domain); a locally S-Noetherian domain with finite
character is an S-Noetherian domain; and if S is an anti-archimedean subset of D,
then D is a t-locally S-Noetherian domain if and only if the polynomial ring D[X]
is a t-locally S-Noetherian domain, if and only if the t-Nagata ring D[X]Nv is a
t-locally S-Noetherian domain.

2. Main Results

We start this section with a simple result for a quotient ring of S-Noetherian
domains. This also recovers the fact that any quotient ring of a Noetherian domain
is Noetherian [5, Proposition 7.3].

Lemma 1. Let D be an integral domain and S a (not necessarily saturated) multi-
plicative subset of D. If D is an S-Noetherian domain and T is a (not necessarily
saturated) multiplicative subset of D, then DT is an S-Noetherian domain.

Proof. Let A be an ideal of DT . Then A = IDT for some ideal I of D. Since D
is an S-Noetherian domain, there exist an element s ∈ S and a finitely generated
ideal J of D such that sI ⊆ J ⊆ I. Therefore we obtain

sA = sIDT ⊆ JDT ⊆ IDT = A,

and hence A is S-finite. Thus DT is an S-Noetherian domain. 2

The next result is an S-Noetherian version of well-known facts that a Noetherian
domain is locally Noetherian; and a locally Noetherian domain with finite character
is Noetherian [5, Section 7, Exercise 9].

Theorem 2. The following statements hold.

(1) An S-Noetherian domain is locally S-Noetherian.

(2) A locally S-Noetherian domain with finite character is S-Noetherian.

Proof. (1) This is an immediate consequence of Lemma 1.
(2) Assume that D is a locally S-Noetherian domain which is of finite character,

and let I be an ideal of D. If I ∩ S 6= ∅, then for any s ∈ I ∩ S, sI ⊆ (s) ⊆ I; so
I is S-finite. Next, we consider the case when I does not intersect S. Choose any
0 6= a ∈ I. Since D has finite character, a belongs to only a finite number of maximal
ideals of D, say M1, . . . , Mn. Fix an i ∈ {1, . . . , n}. Since DMi is S-Noetherian,
there exist an element si ∈ S and a finitely generated subideal Fi of I such that
siIDMi ⊆ FiDMi . By letting s = s1 · · · sn and setting C = (a) + F1 + · · · + Fn,
we obtain that sIDMi ⊆ CDMi . Let M ′ be a maximal ideal of D which is distinct
from M1, . . . , Mn. Then a is a unit in DM ′ ; so IDM ′ = DM ′ = CDM ′ . Therefore
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sIDM ⊆ CDM for all maximal ideals M of D. Hence we have

sI =
⋂

M∈Max(D)

sIDM

⊆
⋂

M∈Max(D)

CDM

= C,

where Max(D) denotes the set of maximal ideals of D and the equalities follow from
[9, Proposition 2.8(3)]. Note that C is a finitely generated subideal of I. Therefore
I is S-finite, and thus D is an S-Noetherian domain. 2

Recall that an integral domain D is an almost Dedekind domain if DM is a
Noetherian valuation domain for all maximal ideals M of D.

Remark 3. The converse of Theorem 2(1) does not generally hold. (This also
indicates that the condition being finite character in Theorem 2(2) is essential.)
For example, if D is an almost Dedekind domain which is not Noetherian, then D
is a locally S-Noetherian domain which is not S-Noetherian. (This is the case when
S consists of units in D.) For a concrete illustration, see [8, Example 42.6].

Let D be an integral domain and D[X] be the polynomial ring over D. For
an f ∈ D[X], c(f) denotes the content ideal of f , i.e., the ideal of D generated
by the coefficients of f , and for an ideal I of D[X], c(I) stands for the ideal of
D generated by the coefficients of polynomials in I, i.e., c(I) =

∑
f∈I c(f). Let

N = {f ∈ D[X] | c(f) = D}. Then N is a saturated multiplicative subset of D[X]
and the quotient ring D[X]N is called the Nagata ring of D. It was shown that D
is a Noetherian domain if and only if D[X] is a Noetherian domain [5, Theorem 7.5
(Hilbert basis theorem)] (or [10, Theorem 69]), if and only if D[X]N is a Noetherian
domain (cf. [1, Theorem 2.2(2)]). We now give the S-Noetherian analogue of these
equivalences.

Theorem 4. Let D be an integral domain, S an anti-archimedean subset of D, and
N := {f ∈ D[X] | c(f) = D}. Then the following statements are equivalent.

(1) D is an S-Noetherian domain.

(2) D[X] is an S-Noetherian domain.

(3) D[X]N is an S-Noetherian domain.

Proof. (1) ⇒ (2) This implication appears in [2, Proposition 9].
(2) ⇒ (3) This was shown in Lemma 1.
(3) ⇒ (1) Let I be an ideal of D. Then ID[X]N is an ideal of D[X]N . Since

D[X]N is an S-Noetherian domain, we can find an element s ∈ S and a finitely
generated subideal J of ID[X] such that sID[X]N ⊆ JD[X]N ; so sID[X]N ⊆
c(J)D[X]N . Let a ∈ I. Then sag ∈ c(J)D[X] for some g ∈ N ; so sa ∈ c(J).
Hence sI ⊆ c(J). Note that c(J) is a finitely generated subideal of I. Therefore I
is S-finite, and thus D is an S-Noetherian domain. 2
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Let D be an integral domain and let Nv = {f ∈ D[X] | c(f)v = D}. Then
Nv is a saturated multiplicative subset of D[X] and the quotient ring D[X]Nv

is
called the t-Nagata ring of D. It was shown that D is t-locally Noetherian if and
only if D[X] is t-locally Noetherian, if and only if D[X]Nv is t-locally Noetherian
[6, Theorem 1.4]. To investigate the (t-)Nagata ring of (t-)locally S-Noetherian
domains, we need the following lemma.

Lemma 5. Let D be a quasi-local domain with unique maximal ideal M , S a (not
necessarily saturated) multiplicative subset of D, and I an ideal of D. Then I is
S-finite if and only if ID[X]MD[X] is S-finite.

Proof. If I is S-finite, then there exist an element s ∈ S and a finitely generated
subideal J of I such that sI ⊆ J ; so we obtain

sID[X]MD[X] ⊆ JD[X]MD[X] ⊆ ID[X]MD[X].

Thus ID[X]MD[X] is S-finite. Conversely, if ID[X]MD[X] is S-finite, then there
exist suitable elements s ∈ S and f1, . . . , fn ∈ ID[X] such that sID[X]MD[X] ⊆
(f1, . . . , fn)D[X]MD[X]; so we obtain

sID[X]MD[X] ⊆ (c(f1) + · · ·+ c(fn))D[X]MD[X].

Note that JD[X]MD[X] ∩ D = J for all ideals J of D, because D is quasi-local.
Hence we obtain

sI = sID[X]MD[X] ∩D

⊆ (c(f1) + · · ·+ c(fn))D[X]MD[X] ∩D

= c(f1) + · · ·+ c(fn).

Note that c(f1)+· · ·+c(fn) is a finitely generated subideal of I. Thus I is S-finite.2

We are ready to study the polynomial extension and the t-Nagata ring of t-
locally S-Noetherian domains.

Theorem 6. Let D be an integral domain, S an anti-archimedean subset of D, and
Nv := {f ∈ D[X] | c(f)v = D}. Then the following statements are equivalent.

(1) D is a t-locally S-Noetherian domain.

(2) D[X] is a t-locally S-Noetherian domain.

(3) D[X]Nv is a locally S-Noetherian domain.

(4) D[X]Nv is a t-locally S-Noetherian domain.

Proof. (1) ⇒ (2) Let M be a maximal t-ideal of D[X] and let K be the quotient
field of D. If M ∩ D = (0), then D[X]M is a quotient ring of K[X]; so D[X]M
is a principal ideal domain. Hence D[X]M is an S-Noetherian domain. Next, we
assume that M ∩ D 6= (0), and let P = M ∩ D. Then M = PD[X] and P is a
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maximal t-ideal of D [7, Proposition 2.2]. Since D is t-locally S-Noetherian, DP

is S-Noetherian. Also, since S is an anti-archimedean subset of DP , DP [X] is S-
Noetherian [2, Proposition 9]; so by Lemma 1, DP [X]PDP [X] is S-Noetherian. Note
that D[X]M = DP [X]PDP [X]; so D[X]M is an S-Noetherian domain. From both
cases, we conclude that D[X] is a t-locally S-Noetherian domain.

(2) ⇒ (3) Let Q be a maximal ideal of D[X]Nv
. Then Q = MD[X]Nv

for
some maximal t-ideal M of D [9, Proposition 2.1(2)]. Note that (D[X]Nv

)Q =
(D[X]Nv

)MD[X]Nv
= D[X]MD[X] and MD[X] is a maximal t-ideal of D[X] [7,

Proposition 2.2]. Since D[X] is t-locally S-Noetherian, D[X]MD[X], and hence
(D[X]Nv )Q is S-Noetherian. Thus D[X]Nv is a locally S-Noetherian domain.

(3) ⇒ (1) Let M be a maximal t-ideal of D. Then MD[X]Nv
is a maximal ideal

of D[X]Nv
[9, Proposition 2.1(2)]. Note that (D[X]Nv

)MD[X]Nv
= D[X]MD[X] =

DM [X]MDM [X]; so DM [X]MDM [X] is S-Noetherian, because D[X]Nv is locally S-
Noetherian. Let I be an ideal of DM . Then IDM [X]MDM [X] is S-finite. Since DM

is quasi-local, Lemma 5 forces I to be S-finite. Hence DM is S-Noetherian, and
thus D is a t-locally S-Noetherian domain.

(3) ⇔ (4) This equivalence follows directly from the fact that the set of maximal
t-ideals of D[X]Nv is precisely the same as that of maximal ideals of D[X]Nv (cf.
[9, Propositions 2.1(2) and 2.2(3)]). 2

We next study locally S-Noetherian domains in terms of the Nagata ring.

Theorem 7. Let D be an integral domain, S an anti-archimedean subset of D, and
N := {f ∈ D[X] | c(f) = D}. Then the following statements are equivalent.

(1) D is a locally S-Noetherian domain.

(2) D[X]N is a locally S-Noetherian domain.

Proof. (1) ⇒ (2) Let Q be a maximal ideal of D[X]N . Then Q = MD[X]N for
some maximal ideal M of D [9, Proposition 2.1(2)]. Since D is locally S-Noetherian,
DM is S-Noetherian. Also, since S is an anti-archimedean subset of DM , DM [X]
is S-Noetherian [2, Proposition 9]. Hence by Lemma 1, DM [X]MDM [X] is an S-
Noetherian domain. Note that (D[X]N )Q = D[X]MD[X] = DM [X]MDM [X]; so
(D[X]N )Q is S-Noetherian. Thus D[X]N is a locally S-Noetherian domain.

(2) ⇒ (1) Let M be a maximal ideal of D. Then MD[X]N is a maximal
ideal of D[X]N [9, Proposition 2.1(2)]. Since D[X]N is locally S-Noetherian,
(D[X]N )MD[X]N is S-Noetherian. Note that (D[X]N )MD[X]N = D[X]MD[X] =
DM [X]MDM [X]; so DM [X]MDM [X] is S-Noetherian. Let I be an ideal of DM . Then
IDM [X]MDM [X] is S-finite. Since DM is quasi-local, I is S-finite by Lemma 5.
Hence DM is S-Noetherian, and thus D is a locally S-Noetherian domain. 2

We are closing this article by comparing our results with recent researches re-
lated to S-Noetherian domains. In [11], the authors defined an integral domain
D to be an S-strong Mori domain (S-SM-domain) if for each nonzero ideal I of
D, there exist an element s ∈ S and a finitely generated ideal J of D such that
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sI ⊆ Jw ⊆ Iw. This concept generalizes the notions of both S-Noetherian do-
mains and strong Mori domains. (Recall from [15, Definition 4] that D is a strong
Mori domain (SM-domain) if it satisfies the ascending chain condition on integral
w-ideals of D, or equivalently, for each (prime) w-ideal I of D, I = Jw for some
finitely generated ideal J of D [15, Theorem 4.3].) It was shown that if D is a
t-locally S-Noetherian domain with finite t-character, then D is an S-SM-domain
[11, Proposition 2.1(2)]; and that if S is an anti-archimedean subset of D, then D
is an S-SM-domain if and only if D[X]Nv

is an S-SM-domain [11, Theorem 2.10].

Lemma 8. Let D be an integral domain, N := {f ∈ D[X] | c(f) = D}, and
Nv := {f ∈ D[X] | c(f)v = D}. Then the following assertions hold.

(1) D is of finite character if and only if D[X]N is of finite character.

(2) D is of finite t-character if and only if D[X]Nv is of finite character.

Proof. The equivalence is an immediate consequence of the fact that {MD[X]N | M
is a maximal ideal of D} (respectively, {MD[X]Nv

| M is a maximal t-ideal of D}) is
the set of maximal ideals of D[X]N (respectively, D[X]Nv ) [9, Proposition 2.1(2)].2

By Theorems 6 and 7 and Lemma 8, we obtain

Corollary 9. Let D be an integral domain, S an anti-archimedean subset of D,
N := {f ∈ D[X] | c(f) = D}, and Nv := {f ∈ D[X] | c(f)v = D}. Then the
following assertions hold.

(1) D is a locally S-Noetherian domain with finite character if and only if D[X]N
is a locally S-Noetherian domain with finite character.

(2) D is a t-locally S-Noetherian domain with finite t-character if and only if
D[X]Nv is a locally S-Noetherian domain with finite character.
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integral closure, Comm. Algebra, 26(1998), 1017-1039.

[8] R. Gilmer, Multiplicative Ideal Theory, Queen’s Papers in Pure Appl. Math., 90,
Queen’s University, Kingston, Ontario, 1992.
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