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NONNIL-S-COHERENT RINGS

Najib Mahdou and El Houssaine Oubouhou

Abstract. Let R be a commutative ring with identity. If the nilpotent

radical Nil(R) of R is a divided prime ideal, then R is called a ϕ-ring.

Let R be a ϕ-ring and S be a multiplicative subset of R. In this paper, we
introduce and study the class of nonnil-S-coherent rings, i.e., the rings in

which all finitely generated nonnil ideals are S-finitely presented. Also,
we define the concept of ϕ-S-coherent rings. Among other results, we

investigate the S-version of Chase’s result and Chase Theorem charac-

terization of nonnil-coherent rings. We next study the possible transfer
of the nonnil-S-coherent ring property in the amalgamated algebra along

an ideal and the trivial ring extension.

1. Introduction

Throughout this paper, it is assumed that all rings are commutative with
non-zero identity and all modules are unitary. If R is a ring, then we denote
by Nil(R) and Z(R) the ideal of all nilpotent elements and the set of all
zero-divisors of R, respectively. A nonempty subset S of R is said to be a
multiplicative subset if 1 ∈ S, 0 ̸∈ S and for each a, b ∈ S we have ab ∈ S. A
prime ideal P of R is called divided prime if it is comparable to every ideal of
R. Set H = {R |R is a commutative ring and Nil(R) is a divided prime ideal
of R}. If R ∈ H, then R is called a ϕ-ring. Let R be a ϕ-ring with a total
quotient ring T . As in [4], we define ϕ : T → K := RNil(R) such that ϕ(ab ) =

a
b

for each a ∈ R and every b ∈ R \ Z(R). Then ϕ is a ring homomorphism from
T into K, and ϕ restricted to R is also a ring homomorphism from R into K
given by ϕ(x) = x

1 for every x ∈ R.
Let R be a ring and M be an R-module. Set

ϕ− tor(M) = {x ∈M | sx = 0 for some s ∈ R \Nil(R)}.

If ϕ−tor(M) =M , thenM is called a ϕ-torsion module, and if ϕ−tor(M) = 0,
then M is called a ϕ-torsion free module. Recall from [22] that an R-module F
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is said to be ϕ-flat if for every R-monomorphism f : A → B with Cokerf a ϕ-
torsion R-module, we have 1F⊗Rf : F⊗RA→ F⊗RB is an R-monomorphism;
equivalently, TorR1 (F,M) = 0 for every ϕ-torsion R-module M . The suitable
background on ϕ-flat modules is [15,17,21,22]. In [3], Khoualdia and Benhissi
introduced two versions of coherent rings that are in the class H. A ϕ-ring R
is called nonnil-coherent if each finitely generated nonnil ideal of R is finitely
presented, and R is said to be ϕ-coherent if ϕ(R) is a nonnil-coherent ring.
Among other things, they proved the Chase Theorem for nonnil-coherent rings
using ϕ-flat modules. Next, the authors of [18] showed that any nonnil-coherent
ring is ϕ-coherent, and they gave an example to show that the converse does
not hold (see [18, Example 1.5]).

In [1], Anderson and Dumitrescu introduced the notion of S-Noetherian rings
as a generalization of Noetherian rings. Let R be a ring, S be a multiplicative
set of R, and M be an R-module. We say that M is S-finite if there exist a
finitely generated sub-module F of M and s ∈ S such that sM ⊆ F . Also,
we say that M is S-Noetherian if each submodule of M is S-finite. A ring R
is said to be S-Noetherian if it is S-Noetherian as an R-module (i.e., if each
ideal of R is S-finite). In 2018, D. Bennis and M. El Hajoui [6] introduced S-
finitely presented modules and S-coherent rings, which are S-versions of finitely
presented modules and coherent rings, and they proved that a ring R is an S-
coherent ring, if and only if, (I : a) is an S-finite ideal of R for every finitely
generated ideal I of R and a ∈ R, if and only if, (0 : a) is an S-finite ideal
of R for every a ∈ R and the intersection of two finitely generated ideals of
R is an S-finite ideal of R (cf. [6, Theorem 3.8]). After that, the authors of
[19] investigate the open Question. (How to give an S-version of flatness that
characterizes S-coherent rings similarly to the classical case?), and they proved
that a ring R is an S-coherent ring, if and only if any product of flat R-modules
is S-flat, if and only if, any product of R is S-flat (cf. [19, Theorem 4.4.]), where
an R-module M is called S-flat if S−1M is a flat S−1R-module. In [16], Kwon
and Lim introduced the notion of nonnil-S-Noetherian rings as a generalization
of both nonnil-Noetherian rings and S-Noetherian rings. Let R be a ring and
S be a multiplicative set of R. Then R is said to be a nonnil-S-Noetherian ring
if each nonnil ideal of R is S-finite.

Let A and B be two rings, J an ideal of B and f : A → B be a ring
homomorphism. In this setting, we consider the following subring of A×B:

A ▷◁f J = {(a, f(a) + j) | a ∈ A and j ∈ J},

which is called the amalgamation of A and B along J with respect to f . The
interest of amalgamation resides, partly, in its ability to cover several basic
constructions in commutative algebra: pullbacks and trivial ring extensions.
See for instance [7, 8, 11].

The main purpose of this paper is to integrate the concepts of nonnil-
coherent rings and S-coherent rings. Then we construct a new class of rings
that contains the class of nonnil-coherent rings. Let R be a ϕ-ring and S be
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a multiplicative subset of R. We define R to be a nonnil-S-coherent if every
finitely generated nonnil ideal of R is S-finitely presented, and R is said to be a
ϕ-S-coherent ring if ϕ(R) is a nonnil-ϕ(S)-coherent ring. Note that if S consists
of units of R, then the concept of S-finitely presented modules is the same as
that of finitely presented module; so if S consists of units of R, then the notion
of nonnil-S-coherent (resp., ϕ-S-coherent) rings coincides with that of nonnil-
coherent (resp., ϕ-coherent) rings. Furthermore, if R is a domain, then the
concepts of nonnil-S-coherent and ϕ-S-coherent rings are precisely the same
as that of S-coherent domains. Clearly, if S1 ⊆ S2 are multiplicative subsets,
then any nonnil-S1-coherent ring (resp., ϕ-S1-coherent) is nonnil-S2-coherent
(resp., ϕ-S-coherent); and if S∗ is the saturation of S in R, then R is a nonnil-
S-coherent (resp., ϕ-S-coherent) ring if and only if R is a nonnil-S∗-coherent
(resp., ϕ-S∗-coherent) ring.

2. On nonnil-S-coherent rings

Let R be a ring, S be a multiplicative set of R, andM be an R-module. M is
said to be S-finitely presented, if there exists an exact sequence of R-modules
0 → K → F → M → 0, where K is S-finite and F is a finitely generated
free R-module. A ring R is S-coherent if every finitely generated ideal of R is
S-finitely presented.

The following theorem gives a characterization of nonnil-S-coherent rings.

Theorem 2.1. Let R be a ϕ-ring and S be a multiplicative subset of R. Then
the following assertions are equivalent:

(1) R is nonnil-S-coherent,
(2) (I : a) is an S-finite ideal of R for any non-nilpotent element a ∈ R and

any finitely generated ideal I of R,
(3) (0 : a) is an S-finite ideal for any non-nilpotent element a ∈ R, and

the intersection of two finitely generated nonnil ideals of R is an S-finite
nonnil ideal of R.

Proof. (1) ⇒ (2) Let I be a finitely generated ideal of R and b a non-nilpotent
element in R. So J = I +Rb is a finitely generated nonnil ideal of R, and so it
is S-finitely presented. Thus, there exists an exact sequence 0 → K → Rn+1 →
J → 0, where K is S-finite. By [12, Lemma 2.3.1], there exists a surjective
homomorphism g : K → (I : b), which shows that (I : b) is S-finite.

(2) ⇒ (1) Let I be a finitely generated nonnil ideal of R generated by
{a1, . . . , an}, where each ai is non-nilpotent. We will show that I is S-finitely
presented by induction on n. The case n = 1 follows from the exact sequence
0 → (0 : a1) → R → Ra1 → 0. For n > 1; let L = ⟨a1, . . . , an−1⟩ and consider
the exact sequence:

0 → (L : an) → R→ (Ran + L)/L→ 0.



48 N. MAHDOU AND E. H. OUBOUHOU

Then (Ran + L)/L = I/L is S-finitely presented by (2). Consider the exact
sequence 0 → L → I → I/L → 0. Since L and I/L are S-finitely presented, I
is also S-finitely presented by [6, Theorem 2.5(2)].

(1) ⇒ (3) Let a be a non-nilpotent element in R. Then Ra is S-finitely
presented. Consider the exact sequence:

0 → (0 : a) → R→ aR→ 0.

So the ideal (0 : a) is S-finite by [6, Proposition 2.4]. Now, let I and J be two
finitely generated nonnil ideals of R. Since Nil(R) ⊆ I ∩ J ⊆ I + J , it follows
that I + J is a finitely generated nonnil ideal, and so it is S-finitely presented.
Consider the following exact sequence:

0 → I ∩ J → I ⊕ J → I + J → 0.

Since I + J is S-finitely presented and I ⊕ J is finitely generated, we get that
I ∩ J is S-finite by [6, Theorem 2.5(5)].

(3) ⇒ (1) Let I be a finitely generated nonnil ideal of R. Write I = Rx1 +
· · · + Rxn with all ai ∈ R \Nil(R), and we will prove the result by induction
on n. For n = 1, we have I = Rx1. Since x1 is non-nilpotent, we get (0, x1) is
S-finite. Hence I is S-finitely presented. For n > 1, set J = Rx1+ · · ·+Rxn−1

is a finitely generated nonnil ideal of R. Then we have the following exact
sequence:

0 → J ∩Rxn → J ⊕Rxn → I → 0.

Note that J ⊕Rxn is S-finitely presented by [6, Theorem 2.5(2)]. On the other
hand, since J ∩Rxn is the intersection of two finitely generated nonnil ideals of
R, J ∩Rxn is S-finitely generated. So I is S-finitely presented by [6, Theorem
2.5(5)]. □

Let R be a ring and P be a prime ideal of R. Then R \P is a multiplicative
subset of R. We define an R-module M to be P -finitely presented if M is an
(R\P )-finitely presented module. The next result gives a local characterization
of finitely presented modules.

Proposition 2.2. Let R be a ring and M be a finitely generated R-module.
Then the following conditions are equivalent:

(1) M is finitely presented,
(2) M is P -finitely presented for every prime ideal P of R,
(3) M is Q-finitely presented for every maximal ideal Q of R.

Proof. (1) ⇒ (2) ⇒ (3) These are straightforward.
(3) ⇒ (1) Assume that M is Q-finitely presented for all maximal ideals Q

of R. Consider the following exact sequence:

0 → A = Ker(f) → Rn
f−→M → 0.

Then A is Q-finite for every maximal ideal Q of R by [6, Proposition 2.4].
So for each maximal ideal Q of R, there exist an element sQ ∈ R \m and a
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finitely generated sub-module FQ of A such that sQA ⊆ FQ. Let S = {sm |
m is a maximal ideal of R}. Since S generates R, there exist finite elements
sQ1 , . . . , sQn of S such that

A = (sQ1R+ · · ·+ sQnR)A ⊆ FQ1 + · · ·+ FQn ⊆ A,

which means that A = FQ1 + · · ·+ FQn . So A is finitely generated. Therefore
M is finitely presented. □

Let P be a prime ideal of R. We say R is P -coherent (resp., nonnil-P -
coherent) provided R is (R \ P )-coherent (resp., nonnil-(R \ P )-coherent).

Corollary 2.3. Let R be a ring. Then the following conditions are equivalent:

(1) R is a coherent ring,
(2) R is a P -coherent ring for all prime ideals P of R,
(3) R is a Q-coherent ring for all maximal ideals Q of R.

Corollary 2.4. Let R be a ϕ-ring. Then the following conditions are equivalent:

(1) R is a nonnil-coherent ring,
(2) R is a nonnil-P -coherent ring for all prime ideals P of R,
(3) R is a nonnil-Q-coherent ring for all maximal ideals Q of R.

The following result gives us a criterion to an S-finitely presented nonnil
ideal.

Theorem 2.5. Let R be a ϕ-ring, S be a multiplicative subset of R and I be an
S-finitely presented nonnil ideal of R. Then I/Nil(R) is a T -finitely presented
nonzero ideal of R/Nil(R) with T = S +Nil(R).

Proof. Let 0 → Ker(π1)
i1−→ Rn

π1−→ I → 0 be an exact sequence of R-modules
with Kerπ1 S-finite. Since I is a finitely generated nonnil ideal of R, I/Nil(R)
is a finitely generated non-zero ideal of R/Nil(R). Then there is an epimor-
phism π2 : (R/Nil(R))n → I/Nil(R). Therefore,

0 → Ker(π2)
i2−→ (R/Nil(R))n

π2−→ I/Nil(R) → 0

is an exact sequence of (R/Nil(R))-module. We can take as an exact sequence
of R-modules with (R/Nil(R))n a finitely generated R-module. Consider the
following commutative diagram:

0
i1−−−−→ Kerπ1 −−−−→ Rn

π1−−−−→ I −−−−→ 0yα yβ yγ
0

i2−−−−→ Kerπ2 −−−−→ (R/Nil(R))
n π2−−−−→ I/Nil(R) −−−−→ 0

We have π1 (Nil(R)
n) = Nil(R). Indeed, let m′ ∈ Nil(R)n. Thus π2 ◦

β (m′) = 0 = γ ◦ π1 (m′). Then π1 (m
′) ∈ Kerγ = Nil(R). Conversely, let

m ∈ Nil(R), and let a ∈ I \Nil(R). Then Nil(R) ⊆ Ra. Hence m = ar with
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r ∈ Nil(R) since Nil(R) is a prime ideal of R. Therefore m = ar = rπ1 (x) =
π1 (rx) ∈ π1 (Nil(R)

n).
Our aim is to show that α is an epimorphism, therefore, α (Ker(π1)) =

β (Ker(π2)) = Ker(π2). For this, let k ∈ Kerπ1. Then γ ◦ π1(k) = 0 = π2 ◦
β(k). Therefore, β(k) ∈ Ker(π2). Conversely, let k2 = β(k) ∈ Ker(π2). Then
π2 ◦ β(k) = 0 = γ ◦ π1(k). Therefore π1(k) ∈ Ker γ = Nil(R) = π1 (Nil(R)

n).
So there is j ∈ Nil(R)n such that π1(k) = π1(j). Then k− j ∈ Ker(π1). Hence
β(k) = β(k − j) + β(j) = β(k − j) ∈ β (Kerπ1). Then α is an epimorphism,
consequently Ker(π2) is S-finite. Hence, I/Nil(R) is a T -finitely presented
nonzero ideal of R/Nil(R). □

In light of Theorem 2.5, we give a new characterization of nonnil-S-coherent
rings using the integral domain R/Nil(R).

Theorem 2.6. Let R be a ϕ-ring and S be a multiplicative subset of R. Then
R is a nonnil-S-coherent ring if and only if R/Nil(R) is a T -coherent domain
with T = S + Nil(R) and (0 : r) is an S-finite ideal for every non-nilpotent
element r ∈ R.

Proof. Assume that R is a nonnil-S-coherent ring. Then (0 : r) is an S-finite
ideal for every non-nilpotent element r ∈ R by Theorem 2.1. Now, let J be
a finitely generated ideal of R/Nil(R). So J = I/Nil(R) for some finitely
generated nonnil ideal I of R. Since R is nonnil-S-coherent, we conclude that
I is S-finitely presented. Hence I/Nil(R) is a T -finitely presented nonzero ideal
of R/Nil(R) according to Theorem 2.5. Therefore R/Nil(R) is a T -coherent
domain.

Conversely, let I and J be two finitely generated nonnil ideals of R. Then
I/Nil(R) and J/Nil(R) are finitely generated non-zero ideals of R/Nil(R).
Thus (I ∩ J)/Nil(R) = I/Nil(R) ∩ J/Nil(R) is T -finite, therefore there exist
s ∈ S and a finitely generated nonnil ideal K of R such that s(I ∩J)/Nil(R) ⊆
K/Nil(R) ⊆ I ∩ J/Nil(R). Hence s(I ∩ J) ⊆ K ⊆ I ∩ J , so I ∩ J is S-finite.
Whence R is nonnil-S-coherent according to Theorem 2.1. □

Example 2.7. Let R be a nonnil-S-Noetherian ring such that (0 : r) is an
S-finite ideal of R for every non-nilpotent element r ∈ R. Then R is a nonnil-
S-coherent ring.

Corollary 2.8. Let R be a ϕ-strong ring and S be a multiplicative subset of
R. Then R is a nonnil-S-coherent ring if and only if R/Nil(R) is a T -coherent
domain with T = S +Nil(R).

Corollary 2.9. Let R be a ϕ-ring and S be a multiplicative subset of R. Then
R is a ϕ-S-coherent ring if and only if ϕ(R)/Nil(ϕ(R)) is a S′-coherent domain,
with S′ = ϕ(S) +Nil(ϕ(R)).

Proof. Note that R is a ϕ-S-coherent ring if and only if ϕ(R) is a nonnil-ϕ(S)-
coherent ring. Since ϕ(R) is a ϕ-ring with Nil(ϕ(R)) = Z(ϕ(R)), and according
to Corollary 2.8, we have the result. □
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Recall from [5, Lemma 1.1] that R/Nil(R) ∼= ϕ(R)/Nil(ϕ(R)) for every ϕ-
ring R. Then we have the following corollary as a direct consequence of this
result and Theorem 2.6.

Corollary 2.10. Let R be a ϕ-ring such that (0 : r) is an S-finite ideal for
every non-nilpotent element r ∈ R, and S be a multiplicative subset of R. Then
the following statements are equivalent:

(1) R is a nonnil-S-coherent ring,
(2) R/Nil(R) is an S-coherent domain with S = S +Nil(R),
(3) ϕ(R)/Nil(ϕ(R)) is an S′-coherent domain with S′ = ϕ(S) +Nil(ϕ(R)),
(4) ϕ(R) is a nonnil-ϕ(S)-coherent ring.

Let R be a ring, M be an R-module. Then R ∝ M , the set of pairs
(r,m) with component-by-component addition and multiplication defined by:
(r,m)(b, f) = (rb, rf + bm), is a unitary commutative ring, called the trivial
extension (or idealization) of R by M . For a suitable background on the com-
mutative trivial ring extensions, see [2,13,14]. Now we will give an example of
a nonnil-S-coherent ring that is neither nonnil-coherent nor S-coherent.

Example 2.11. Let D be a domain that is not a field, Q its quotient field and
E =

⊕∞
i=1Q/D. Let R = D ∝ E be the trivial extension construction and

S = S0 ∝ 0 with S0 = D \Nil(R). Then R is a nonnil-S-coherent ring which
is neither nonnil-coherent nor S-coherent.

Proof. We have R is a ϕ-ring which is not nonnil-coherent by [18, Example
1.5]. Note that R/Nil(R) ∼= D, and thus R is ϕ-S-coherent by Corollary
2.9. Let (d, e) be a non-nilpotent element of R. Then it is easy to verify
that (d, 0)(0 : (d, e)) = 0. Hence (0 : (d, e)) is S-finite. Consequently R is
a nonnil-S-coherent ring. But R is not a S-coherent ring; indeed, let x ∈ E
and so (0 : (0, x)) = AnnR(x) ∝ E with AnnR(x) := (0 : x). Assume that
AnnR(x) ∝ E is S-finite. Then there exist (r1, e1), . . . , (rn, en) ∈ AnnR(x) ∝ E
such that

(d, 0)AnnR(x) ∝ E ⊆ F = ⟨(r1, e1), . . . , (rn, en)⟩ ⊆ AnnR(x) ∝ E.

Since dE = E, we get E = ⟨e1, . . . , en⟩, which is contradiction. So (0 : (0, x))
is not S-finite. Therefore, R is not S-coherent. □

Recall from [3, Theorem 2.4] that a ϕ-ring R is nonnil-coherent, if and only
if, any direct product of ϕ-flat R-modules is ϕ-flat, if and only if, any prod-
uct of R is a ϕ-flat R-module. Now, we aim to give an S-version of flatness
that characterizes nonnil-S-coherent rings similarly to the classical case. For
this, we well start by the following definition from [19]. Let M and N be R-
modules and set τS(M) ≑ {x ∈ M | sx = 0 for some s ∈ S}. Then τS(M)
is called the total S-torsion submodule of M ; if τS(M) = 0, then M is called
an S-torsion-free module, and if τS(M) = M , then M is called an S-torsion
module. An R-homomorphism f : M → N is an S-monomorphism (resp.,
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an S-epimorphism, an S-isomorphism) if the induced S−1R-homomorphism
S−1f : S−1M → S−1N is a monomorphism (resp., an epimorphism, an iso-
morphism). A sequence 0 → M → N → L → 0 is S-exact if the induced
sequence 0 → S−1M → S−1N → S−1L→ 0 is exact.

Definition 2.12. Let M be an R-module. Then M is said to be ϕ-S-flat
if for any finitely generated nonnil ideal I of R, the natural homomorphism
I ⊗RM → R⊗RM is an S-monomorphism.

Obviously, every ϕ-flat module is ϕ-S-flat. However, the converse does not
hold; indeed, let R be a domain which is not a field and S be the set of nonzero
elements in R. Then every R-module is ϕ-S-flat. Since R is not a ϕ-Von
Neumann regular, there exists some ϕ-S-flat module which is not ϕ-flat by
[22, Theorem 4.1]. Clearly, if S1 ⊆ S2 are multiplicative subsets, then any
ϕ-S1-flat module is ϕ-S2-flat; and if S∗ is the saturation of S in R, then an
R-module M is ϕ-S-flat if and only it is ϕ-S∗-flat.

Now, we give a characterization of ϕ-S-flat modules.

Proposition 2.13. Let M be an R-module. Then the following assertions are
equivalent:

(1) M is ϕ-S-flat,
(2) for any finitely generated nonnil ideal I of R, ψ : I ⊗R M → IM is an

S-isomorphism,
(3) S−1M is a ϕ-flat S−1R-module.

Proof. (1) ⇐⇒ (2) Let I be a finitely generated nonnil ideal of R. Consider
the following commutative diagram:

I ⊗RM
f−−−−→ R⊗RM

ψ

y ∼=
y

0 −−−−→ IM −−−−→ M

We have M is ϕ-S-flat, if and only if, f is an S-monomorphism, if and only if,
ψ is an S-monomorphism.

(1) ⇒ (3) Let J = S−1I be a finitely generated nonnil ideal of S−1R, where
I is a finitely generated nonnil ideal of R. Since M is ϕ-S-flat, the natural
homomorphism I ⊗RM → R ⊗RM is an S-monomorphism. By localizing at
S, the natural homomorphism:

S−1I ⊗S−1R S
−1M ∼= S−1(I ⊗RM) → S−1(R⊗RM) ∼= S−1M

is an S−1R-monomorphism. Thus S−1I is a ϕ-flat S−1R-module.
(3) ⇒ (1) Let I be a finitely generated nonnil ideal of R. Then S−1I

is a finitely generated nonnil ideal of S−1R. Since S−1M is a ϕ-flat S−1R-
module, the natural homomorphism S−1(I

⊗
RM) → S−1(R

⊗
RM) is an

S−1R-monomorphism. Hence M is a ϕ-S-flat module. □
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Note that if there exists s ∈ S ∩Nil(R), then there exists a positive integer
n such that 0 = sn ∈ S, a contradiction. Hence we always have S∩Nil(R) = ∅.
Consequently every S-torsion R-module is ϕ-torsion and every ϕ-torsion free
R-module is S-torsion free.

In [3, Theorem 2.4], Khoualdia and Benhissi proved that a ϕ-ring R is nonnil-
coherent if and only if any product of R is ϕ-flat if and only if any product of
ϕ-flat R-modules is ϕ-flat. Now we extend this to the S-version and obtain the
promised result.

Theorem 2.14 (Nonnil-S-version of Chase Theorem). Let R be a ϕ-ring. The
following statements are equivalent:

(1) R is a nonnil-S-coherent ring,
(2) any product of ϕ-flat R-modules is ϕ-S-flat,
(3) any product of R is ϕ-S-flat.

Proof. (1) ⇒ (2) Let R be a nonnil-S-coherent ring, {Fi}i∈I be a family of ϕ-
S-flat R-modules and J be a finitely generated nonnil ideal of R. The following

exact sequence 0 → A = ker(πJ) → Rn
πJ−→ J → 0 shows that A is S-finite.

Consider the following commutative diagram of exact sequences:

A
⊗∏

i∈I Fi −−−−→ Rn
⊗∏

i∈I Fi −−−−→ J
⊗∏

i∈I Fi

β

y ∼=
y α

y∏
i∈I(A

⊗
Fi) −−−−→

∏
i∈I(R

n
⊗
Fi) −−−−→

∏
i∈I(J

⊗
Fi) −−−−→ 0

To prove that α is an S-monomorphism, we only need to show that β is an S-
epimorphism. Since A is S-finite, there exists a finitely generated submodule of
A such that sA ⊆ K ⊆ A for some s ∈ S. The natural commutative diagram:

K
⊗

R

∏
i∈I Fi −−−−→ A

⊗
R

∏
i∈I Fi

ν

y β

y∏
i∈I(K

⊗
R Fi) −−−−→

∏
i∈I(A

⊗
R Fi)

induces the following commutative diagram by localizing at S.

S−1K
⊗

S−1R S
−1(
∏
i∈I Fi)

∼=−−−−→ S−1A
⊗

S−1R S
−1(
∏
i∈I Fi)

S−1ν

y S−1β

y
S−1

(∏
i∈I(K

⊗
Fi)
) f−−−−→ S−1

(∏
i∈I(A

⊗
Fi)
)

Since K is finitely generated, ν is an epimorphism, so S−1ν is also. On the
other hand, for any ai ∈ A, qi ∈ Fi(i ∈ I) and t ∈ S, we obtain:

(ai
⊗

R qi)i∈I
t

=
s(ai

⊗
R qi)i∈I
st

=
(sai

⊗
R qi)i∈I
st

∈ S−1

(∏
i∈I

(K
⊗

Fi)

)
.
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Thus f is an epimorphism. Now consider the following exact sequence:

0 → K → A→ A/K → 0.

Since sA/K = 0, A/K is a ϕ-torsion R-module, hence:

0 → K
⊗

Fi → A
⊗

Fi → A/K
⊗

Fi → 0

is an exact sequence by [22, Theorem 3.2]. Then f is a monomorphism, so
it is an isomorphism. Thus S−1β is an epimorphism, and then β is an S-
epimorphism. Hence

∏
i∈I Fi is ϕ-S-flat by Proposition 2.13.

(2) ⇒ (3) This is straightforward.
(3) ⇒ (1) Let J be a nonnil ideal of R, the following exact sequence 0 →

J → R→ R/J → 0 induces the following commutative diagram:

J
⊗∏

R
f−−−−→ R

⊗∏
R −−−−→ R/J

⊗∏
R −−−−→ 0

β

y ∼=
y ∼=

y
0 −−−−→

∏
(J
⊗
R) −−−−→

∏
(R
⊗
R) −−−−→

∏
(R/J

⊗
R) −−−−→ 0

Since
∏
R is a ϕ-S-flat module, we get that f is an S-monomorphism. Thus

ker(f) = ker(β) is S-torsion, and consequently β is an S-monomorphism. Now
consider the following exact sequence:

0 → A = ker(f) → Rn
i−→ J → 0.

Then there is a commutative diagram of exact sequences:

A
⊗∏

R
f−−−−→ Rn

⊗∏
R −−−−→ J

⊗∏
R −−−−→ 0

α

y ∼=
y β

y
0 −−−−→

∏
(A
⊗
R) −−−−→

∏
(Rn

⊗
R) −−−−→

∏
(J
⊗
R) −−−−→ 0

Since β is an S-monomorphism, α is an S-epimorphism. Hence A is S-finite
by [19, Lemma 4.1]. Therefore, I is S-finitely presented. □

3. Nonnil-S-coherent properties on some ring constructions

Now, we study the transfer of nonnil-coherent rings in the trivial ring ex-
tensions and in the amalgamation algebra along an ideal. From [10, Corollary
2.4], the trivial ring extension R ∝ M is a ϕ-ring if and only if R is a ϕ-ring
and sM =M for all s ∈ R \Nil(R).

Let M be an R-module and r ∈ R. Set (0 :M r) := {m ∈ M | rm = 0}.
From [9], (0 :M r) is a submodule of M such that (0 : r)M ⊂ (0 :M r), and so
(0 : r) ∝ (0 :M r) is an ideal of R ∝ M . The following theorem characterizes
when a trivial ring extension is a nonnil-S-coherent ring.

Theorem 3.1. Let A be a ϕ-ring, and M be an A-module such that aM =M
for every a ∈ A \Nil(A). Let S be a multiplicative subset of R = A ∝ E. Set
S0 as the projection of S on A. Then the following statements are equivalent:
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(1) R is a nonnil-S-coherent ring,
(2) A is a nonnil-S0-coherent ring and (0 : r) ∝ (0 :M r) is an S-finite ideal

of R for each r ∈ A \Nil(A),
(3) A is a nonnil-S0-coherent ring and R(r, 0) is S-finitely presented for all

r ∈ A \Nil(A).

Proof. (1) ⇒ (2) Assume that R is a nonnil-S-coherent ring. Let I and J be
finitely generated nonnil ideals of A. It is easy to see that if I = ⟨a1, . . . , an⟩,
then I ∝ M = ⟨(a1, 0), . . . , (an, 0)⟩. Hence I ∝ M and J ∝ M are finitely
generated nonnil ideals of R. Since R is a nonnil-S-coherent ring, (I ∝ M) ∩
(J ∝ M) = (I ∩ J) ∝ M is S-finite by Theorem 2.1. So there exist (s, e) ∈ S
and (a1,m1), . . . , (an,mn) ∈ (I ∩ J) ∝M such that:

(s, e)(I ∩ J) ∝M ⊆ (a1,m1)R+ · · ·+ (an,mn)R.

In particular, s(I ∩ J) ⊆ a1A + · · · + anA. Therefore, I ∩ J is S0-finite. Let
r ∈ A \ Nil(A). Then, ((0, 0) : (r, 0)) = (0 : r) ∝ (0 :M r) is S-finite by
Theorem 2.1, and so (0 : r) is S0-finite. Therefore, A is a nonnil-S0-coherent
ring by Theorem 2.1.

(2)⇒ (1) Assume that A is a nonnil-S0-coherent ring and (0 : r) ∝ (0 :M r) is
an S-finite ideal of R for each r ∈ A\Nil(A). Let I ∝M and J ∝M be finitely
generated nonnil ideals of R. Then, I and J are finitely generated nonnil ideals
of A. Since A is a nonnil-S-coherent ring, I∩J is an S0-finite ideal of A, and so
there exist s ∈ S0 and a1, . . . , an ∈ I ∩ J such that s(I ∩ J) ⊆ a1A+ · · ·+ anA.
Since s ∈ S0, there exists u ∈ M such that (s, u) ∈ S, and consequently
(s, u)(I∩J) ⊆ (a1, 0)R+· · ·+(an, 0)R. Thus (I ∝M)∩(J ∝M) = (I∩J) ∝M
is an S-finite ideal of R. Let (r, u) ∈ R \Nil(R). Then, ((0, 0) : (r, u)) = (0 :
r) ∝ (0 :M r) is S-finite by hypothesis. Therefore, R is a nonnil-S-coherent
ring by Theorem 2.1.

(2) ⇔ (3) Let r ∈ A \ Nil(A). Then, the following sequence 0 → ((0, 0) :
(r, 0)) → R→ R(r, 0) → 0 is exact. Therefore, by [6, Proposition 2.4] (0 : r) ∝
(0 :Mr) is S-finite if and only if R(r, 0) is S-finitely presented. □

Corollary 3.2. Let R = A ∝ M be a ϕ-ring such that Z(A) = Nil(A) and S
be a multiplicative subset of R. Set S0 as the projection of S on A. Then R
is a nonnil-S-coherent ring if and only if A is a nonnil-S0-coherent ring and
(0 :M r) is S0-finite A-submodule of M for every r ∈ A \Nil(A).

Corollary 3.3. Let R = A ∝ M be a ϕ-ring such that Z(A) = Nil(A), and
let S be a multiplicative subset of R, set S0 as the projection of S on A and let
M be an S0-Noetherian A-module. Then R is a nonnil-S-coherent ring if and
only if A is a nonnil-S0-coherent ring.

For a ring R and an R-module M , set ZR(M) := {r ∈ R | rm = 0 for some
nonzero m ∈M}.

Corollary 3.4. Let R = A ∝ M be a ϕ-ring such that Z(A) = Nil(A) =
ZA(M) and S be a multiplicative subset of R. Set S0 as the projection of S on
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A. Then R is a nonnil-S-coherent ring if and only if A is a nonnil-S0-coherent
ring.

Example 3.5. Let D be an integral with quotient K. Then R = D ∝ K is a
nonnil-S-coherent ring with S = (D \ {0}) ∝ K.

Let A and B be two rings, J a nonzero ideal of B, and f : A → B be a
ring homomorphism. Set R := A ▷◁f J and N(J) := Nil(B) ∩ J . Recall from
[10, Theorem 2.1] that (1) If J is a nonnil ideal of B, then R is a ϕ-ring if and
only if f−1(J) = 0, A is an integral domain, and N(J) is a divided prime ideal
of f(A) + J , (2) If J ⊆ Nil(B), then R is a ϕ-ring if and only if A is a ϕ-ring,
and for each i, j ∈ J and each a ∈ A\Nil(A), there exist x ∈ Nil(A) and k ∈ J
such that xa = 0 and j = kf(a) + i(f(x) + k). Moreover, let ι : A → A ▷◁f J
be the natural embedding defined by a → (a, f(a)) for each a ∈ A, and S be
a multiplicative subset of A. Then S′ := {(s, f(s)) | s ∈ S} and f(S) are
multiplicative subsets of A ▷◁f J and B, respectively.

Now, we study the transfer of being ϕ-S-coherent rings in the amalgamation
algebra along an ideal.

Theorem 3.6. Let A and B be two rings and f : A → B be a ring homo-
morphism. Let J be a nonnil ideal of B and S be a multiplicative subset of A.
Define f̄ : A → B/N(J) by f̄(a) = f(a) + N(J) for any a ∈ A. Assume that
A ▷◁f J is a ϕ-ring. Then the following statements are equivalent:

(1) A ▷◁f J is a ϕ-S′-coherent ring,

(2) A ▷◁f̄ J
N(J) is an S̄′-coherent domain with S̄′ := {(s, f̄(s)) | s ∈ S},

(3) f̄(A) + J/N(J) is an f̄(S)-coherent domain.

Proof. (1) ⇒ (2) Assume that A ▷◁f J is a ϕ-S′-coherent ring. Since A ▷◁f J
is a ϕ-ring, it follows that A is an integral domain by [10, Theorem 2.1(1)], and

so Nil
(
A ▷◁f J

)
= 0×N(J). As A ▷◁f J is a ϕ-S′-coherent ring, A▷◁fJ

0×N(J) is an

S̄′-coherent domain. Therefore, A ▷◁f̄ J
N(J) is an S̄′-coherent domain.

(2) ⇒ (1) This follows directly from [20, Remark 2.6].

(2) ⇒ (3) Assume that A ▷◁f̄ J/N(J) is a coherent domain. Then according
to [10, Theorem 2.1(1)], we conclude that f−1(J) = f̄−1(J/N(J)) = 0, and
so by [7, Proposition 5.2] f̄(A) + J/N(J) is an integral domain. From [7,
Proposition 5.1], f̄(A) + J/N(J) ∼= A ▷◁f J/N(J), as desired.

(3) ⇒ (2) By [10, Theorem 2.1(1)], we have f̄−1(J/N(J)) = 0 and from

[7, Proposition 5.1], we obtain f̄(A) + J/N(J) ∼= A ▷◁f̄ J/N(J), which is an
S̄′-coherent domain, as desired. □

Corollary 3.7 investigates the transfer of being a nonnil-S-coherent ring be-
tween a ϕ-ring A and an amalgamation algebra A ▷◁f J along a nonnil ideal
J .

Corollary 3.7. Let A and B be two rings and f : A → B be a ring ho-
momorphism. Let J be a nonnil ideal of B. Define f̄ : A → B/N(J) by
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f̄(a) = f(a) + N(J) for any a ∈ A. Assume that A ▷◁f J is a ϕ-ring. Then
A ▷◁f J is a nonnil-S′-coherent ring if and only if f̄(A) + J/N(J) is an S̄′-
coherent domain and

(
A ▷◁f J

)
(r, f(r)+ j) is an S′-finitely presented ideal for

any non-nilpotent element (r, f(r) + j) of A ▷◁f J .

Proof. This follows immediately from Theorem 2.6 and Theorem 3.6. □

Theorem 3.8 studies the transfer of being a ϕ-S-coherent ring between a
ϕ-ring A and an amalgamation algebra A ▷◁f J along a nil ideal J .

Theorem 3.8. Let A and B be two rings and f : A→ B be a ring homomor-
phism. Let J be a nil ideal of B and S be a multiplicative subset of A. Assume
that A ▷◁f J is a ϕ-ring. Then, A ▷◁f J is a ϕ-S′-coherent ring if and only if
A is a ϕ-S-coherent ring.

Proof. Since J ⊆ Nil(B), we have N(J)=J , and so Nil
(
A ▷◁f J

)
=Nil(A) ▷◁f

J . Since A ▷◁f J is a ϕ-S′-coherent ring, A▷◁fJ
Nil(A)▷◁fJ

∼= A
Nil(A) is an (S+Nil(A))-

coherent domain. Thus A is a ϕ-S-coherent ring. Conversely, since A is a ϕ-S-

coherent ring, A
Nil(A)

∼= A▷◁fJ
Nil(A)▷◁fJ

is an (S′ +Nil(A ▷◁f J))-coherent domain.

Whence A ▷◁f J is a ϕ-S′-coherent ring. □

Corollary 3.9 studies the transfer of being a nonnil-coherent ring between a
ϕ-ring A and an amalgamation algebra A ▷◁f J along a nil ideal J .

Corollary 3.9. Let A and B be two rings and f : A→ B be a ring homomor-
phism. Let J be a nil ideal of B and S be a multiplicative subset of A. Assume
that A ▷◁f J is a ϕ-ring. Then the following are equivalent:

(1) A ▷◁f J is a nonnil-S′-coherent ring,
(2) A is a ϕ-S-coherent ring and

(
A ▷◁f J

)
(r, f(r) + j) is an S′-finitely

presented ideal for any non-nilpotent element (r, f(r) + j) of A ▷◁f J .

Proof. This follows immediately from Theorem 2.6 and Theorem 3.9. □
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