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NONNIL-S-COHERENT RINGS

NAJiB MAHDOU AND EL HOUSSAINE OUBOUHOU

ABSTRACT. Let R be a commutative ring with identity. If the nilpotent
radical Nil(R) of R is a divided prime ideal, then R is called a ¢-ring.
Let R be a ¢-ring and S be a multiplicative subset of R. In this paper, we
introduce and study the class of nonnil-S-coherent rings, i.e., the rings in
which all finitely generated nonnil ideals are S-finitely presented. Also,
we define the concept of ¢-S-coherent rings. Among other results, we
investigate the S-version of Chase’s result and Chase Theorem charac-
terization of nonnil-coherent rings. We next study the possible transfer
of the nonnil-S-coherent ring property in the amalgamated algebra along
an ideal and the trivial ring extension.

1. Introduction

Throughout this paper, it is assumed that all rings are commutative with
non-zero identity and all modules are unitary. If R is a ring, then we denote
by Nil(R) and Z(R) the ideal of all nilpotent elements and the set of all
zero-divisors of R, respectively. A nonempty subset S of R is said to be a
multiplicative subset if 1 € S, 0 ¢ S and for each a,b € S we have ab € S. A
prime ideal P of R is called divided prime if it is comparable to every ideal of
R. Set H = {R| R is a commutative ring and Nil(R) is a divided prime ideal
of R}. If R € H, then R is called a ¢-ring. Let R be a ¢-ring with a total
quotient ring 7'. As in [4], we define ¢ : T' — K := Ry;i(g) such that ¢(3) = ¢
for each a € R and every b € R\ Z(R). Then ¢ is a ring homomorphism from
T into K, and ¢ restricted to R is also a ring homomorphism from R into K
given by ¢(x) = 7 for every x € R.

Let R be a ring and M be an R-module. Set

¢ —tor(M) ={x € M | sz =0 for some s € R\ Nil(R)}.
If p—tor(M) = M, then M is called a ¢-torsion module, and if ¢ —tor(M) = 0,
then M is called a ¢-torsion free module. Recall from [22] that an R-module F
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is said to be ¢-flat if for every R-monomorphism f : A — B with Cokerf a ¢-
torsion R-module, we have 1p Qg f : FQrA — F®g B is an R-monomorphism;
equivalently, Torf‘(F , M) = 0 for every ¢-torsion R-module M. The suitable
background on ¢-flat modules is [15,17,21,22]. In [3], Khoualdia and Benhissi
introduced two versions of coherent rings that are in the class H. A ¢-ring R
is called nonnil-coherent if each finitely generated nonnil ideal of R is finitely
presented, and R is said to be ¢-coherent if ¢(R) is a nonnil-coherent ring.
Among other things, they proved the Chase Theorem for nonnil-coherent rings
using ¢-flat modules. Next, the authors of [18] showed that any nonnil-coherent
ring is ¢-coherent, and they gave an example to show that the converse does
not hold (see [18, Example 1.5]).

In [1], Anderson and Dumitrescu introduced the notion of S-Noetherian rings
as a generalization of Noetherian rings. Let R be a ring, S be a multiplicative
set of R, and M be an R-module. We say that M is S-finite if there exist a
finitely generated sub-module F' of M and s € S such that sM C F. Also,
we say that M is S-Noetherian if each submodule of M is S-finite. A ring R
is said to be S-Noetherian if it is S-Noetherian as an R-module (i.e., if each
ideal of R is S-finite). In 2018, D. Bennis and M. El Hajoui [6] introduced S-
finitely presented modules and S-coherent rings, which are S-versions of finitely
presented modules and coherent rings, and they proved that a ring R is an S-
coherent ring, if and only if, (I : a) is an S-finite ideal of R for every finitely
generated ideal I of R and a € R, if and only if, (0 : a) is an S-finite ideal
of R for every a € R and the intersection of two finitely generated ideals of
R is an S-finite ideal of R (cf. [6, Theorem 3.8]). After that, the authors of
[19] investigate the open Question. (How to give an S-version of flatness that
characterizes S-coherent rings similarly to the classical case?), and they proved
that a ring R is an S-coherent ring, if and only if any product of flat R-modules
is S-flat, if and only if, any product of R is S-flat (cf. [19, Theorem 4.4.]), where
an R-module M is called S-flat if S~1M is a flat S~!R-module. In [16], Kwon
and Lim introduced the notion of nonnil-S-Noetherian rings as a generalization
of both nonnil-Noetherian rings and S-Noetherian rings. Let R be a ring and
S be a multiplicative set of R. Then R is said to be a nonnil-S-Noetherian ring
if each nonnil ideal of R is S-finite.

Let A and B be two rings, J an ideal of B and f : A — B be a ring
homomorphism. In this setting, we consider the following subring of A x B:

Avaf J={(a,f(a) +j)|a€ A and j € J},

which is called the amalgamation of A and B along J with respect to f. The
interest of amalgamation resides, partly, in its ability to cover several basic
constructions in commutative algebra: pullbacks and trivial ring extensions.
See for instance [7,8,11].

The main purpose of this paper is to integrate the concepts of nonnil-
coherent rings and S-coherent rings. Then we construct a new class of rings
that contains the class of nonnil-coherent rings. Let R be a ¢-ring and S be
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a multiplicative subset of R. We define R to be a nonnil-S-coherent if every
finitely generated nonnil ideal of R is S-finitely presented, and R is said to be a
¢-S-coherent ring if ¢(R) is a nonnil-¢(S)-coherent ring. Note that if S consists
of units of R, then the concept of S-finitely presented modules is the same as
that of finitely presented module; so if S consists of units of R, then the notion
of nonnil-S-coherent (resp., ¢-S-coherent) rings coincides with that of nonnil-
coherent (resp., ¢-coherent) rings. Furthermore, if R is a domain, then the
concepts of nonnil-S-coherent and ¢-S-coherent rings are precisely the same
as that of S-coherent domains. Clearly, if S; C S5 are multiplicative subsets,
then any nonnil-S;-coherent ring (resp., ¢-Si-coherent) is nonnil-Ss-coherent
(resp., ¢-S-coherent); and if S* is the saturation of S in R, then R is a nonnil-
S-coherent (resp., ¢-S-coherent) ring if and only if R is a nonnil-S*-coherent
(resp., ¢-S*-coherent) ring.

2. On nonnil-S-coherent rings

Let R be aring, S be a multiplicative set of R, and M be an R-module. M is
said to be S-finitely presented, if there exists an exact sequence of R-modules
0 - K — F — M — 0, where K is S-finite and F' is a finitely generated
free R-module. A ring R is S-coherent if every finitely generated ideal of R is
S-finitely presented.

The following theorem gives a characterization of nonnil-S-coherent rings.

Theorem 2.1. Let R be a ¢-ring and S be a multiplicative subset of R. Then
the following assertions are equivalent:

(1) R is nonnil-S-coherent,

(2) (I :a) is an S-finite ideal of R for any non-nilpotent element a € R and
any finitely generated ideal I of R,

(3) (0 : a) is an S-finite ideal for any non-nilpotent element a € R, and
the intersection of two finitely generated nonnil ideals of R is an S-finite
nonnil ideal of R.

Proof. (1) = (2) Let I be a finitely generated ideal of R and b a non-nilpotent
element in R. So J = I + Rb is a finitely generated nonnil ideal of R, and so it
is S-finitely presented. Thus, there exists an exact sequence 0 — K — R —
J — 0, where K is S-finite. By [12, Lemma 2.3.1], there exists a surjective
homomorphism g : K — (I : b), which shows that (I : b) is S-finite.

(2) = (1) Let I be a finitely generated nonnil ideal of R generated by
{a1,...,an}, where each a; is non-nilpotent. We will show that I is S-finitely
presented by induction on n. The case n = 1 follows from the exact sequence
0—(0:a1) > R— Ra; — 0. For n > 1;let L = (ay,...,a,—1) and consider
the exact sequence:

0—(L:a,) > R— (Ra,+ L)/L — 0.
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Then (Ra,, + L)/L = I/L is S-finitely presented by (2). Consider the exact
sequence 0 — L — I — I/L — 0. Since L and I/L are S-finitely presented, I
is also S-finitely presented by [6, Theorem 2.5(2)].

(1) = (3) Let a be a non-nilpotent element in R. Then Ra is S-finitely
presented. Consider the exact sequence:

0—(0:a) = R—aR —0.

So the ideal (0 : a) is S-finite by [6, Proposition 2.4]. Now, let I and J be two
finitely generated nonnil ideals of R. Since Nil(R) CINJ C I+ J, it follows
that I + J is a finitely generated nonnil ideal, and so it is S-finitely presented.
Consider the following exact sequence:

O—=INnJ—->1eJ—>1+J—0.

Since I + J is S-finitely presented and I & J is finitely generated, we get that
InJ is S-finite by [6, Theorem 2.5(5)].

(3) = (1) Let I be a finitely generated nonnil ideal of R. Write I = Rz +
.-+ + Rz, with all a; € R\ Nil(R), and we will prove the result by induction
on n. For n = 1, we have I = Rxy. Since z; is non-nilpotent, we get (0,21) is
S-finite. Hence [ is S-finitely presented. For n > 1, set J = Rx1+---+ Rz,
is a finitely generated nonnil ideal of R. Then we have the following exact
sequence:

0—-JNRx, > J®Rx, —1—0.

Note that J ® Rz, is S-finitely presented by [6, Theorem 2.5(2)]. On the other
hand, since J N Rz, is the intersection of two finitely generated nonnil ideals of
R, JN Rz, is S-finitely generated. So I is S-finitely presented by [6, Theorem
2.5(5)]. O

Let R be a ring and P be a prime ideal of R. Then R\ P is a multiplicative
subset of R. We define an R-module M to be P-finitely presented if M is an
(R\ P)-finitely presented module. The next result gives a local characterization
of finitely presented modules.

Proposition 2.2. Let R be a ring and M be a finitely generated R-module.
Then the following conditions are equivalent:

(1) M is finitely presented,

(2) M is P-finitely presented for every prime ideal P of R,

(3) M is Q-finitely presented for every maximal ideal Q of R.

Proof. (1) = (2) = (3) These are straightforward.
(3) = (1) Assume that M is Q-finitely presented for all maximal ideals @
of R. Consider the following exact sequence:

0— A =Ker(f) » R -1 M — 0.

Then A is Q-finite for every maximal ideal @ of R by [6, Proposition 2.4].
So for each maximal ideal @ of R, there exist an element sg € R\ m and a
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finitely generated sub-module Fg of A such that sgA C Fg. Let S = {s, |
m is a maximal ideal of R}. Since S generates R, there exist finite elements
5Q,,---,5q, of S such that

A:(SQ1R+"'+SQ"R)AgFQ1+"'+FQn gA’

which means that A = Fg, 4+ --- 4+ Fg,. So A is finitely generated. Therefore
M is finitely presented. O

Let P be a prime ideal of R. We say R is P-coherent (resp., nonnil-P-
coherent) provided R is (R \ P)-coherent (resp., nonnil-(R \ P)-coherent).

Corollary 2.3. Let R be a ring. Then the following conditions are equivalent:

(1) R is a coherent ring,
(2) R is a P-coherent ring for all prime ideals P of R,
(3) R is a Q-coherent ring for all mazimal ideals Q of R.

Corollary 2.4. Let R be a ¢-ring. Then the following conditions are equivalent:
(1) R is a nonnil-coherent ring,

(2) R is a nonnil-P-coherent ring for all prime ideals P of R,
(3) R is a nonnil-Q-coherent ring for all mazimal ideals Q of R.

The following result gives us a criterion to an S-finitely presented nonnil
ideal.

Theorem 2.5. Let R be a ¢-ring, S be a multiplicative subset of R and I be an
S-finitely presented nonnil ideal of R. Then I/Nil(R) is a T-finitely presented
nonzero ideal of R/Nil(R) with T = S + Nil(R).

1

Proof. Let 0 — Ker(m) -~ R" =% I — 0 be an exact sequence of R-modules
with Kerm; S-finite. Since I is a finitely generated nonnil ideal of R, I/Nil(R)
is a finitely generated non-zero ideal of R/Nil(R). Then there is an epimor-
phism mg : (R/Nil(R))" — I/Nil(R). Therefore,

0 — Ker(my) —2 (R/Nil(R))™ 22 I/Nil(R) — 0

is an exact sequence of (R/Nil(R))-module. We can take as an exact sequence
of R-modules with (R/Nil(R))"™ a finitely generated R-module. Consider the
following commutative diagram:

0 —" & Kerm; — R™ SE TN I — 0

L s I
0 —2— Kermy —— (R/Nil(R))" —=— I/Nil(R) —— 0
We have 7 (Nil(R)™) = Nil(R). Indeed, let m’ € Nil(R)™. Thus my o
B(m') =0 =~om (m'). Then 7 (m') € Kery = Nil(R). Conversely, let
m € Nil(R), and let @ € I\ Nil(R). Then Nil(R) C Ra. Hence m = ar with
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r € Nil(R) since Nil(R) is a prime ideal of R. Therefore m = ar = rm (x) =
1 (rz) € m (Nil(R)™).

Our aim is to show that « is an epimorphism, therefore, o (Ker(m)) =
B (Ker(m2)) = Ker(mg). For this, let k¥ € Kerm;. Then yom(k) =0 =m0
B(k). Therefore, B(k) € Ker(mg). Conversely, let ko = 5(k) € Ker(mz). Then
ma 0 (k) =0 =y om (k). Therefore m (k) € Kery = Nil(R) = m (Nil(R)™).
So there is j € Nil(R)™ such that 71 (k) = m1(j). Then k — j € Ker(m). Hence
B(k) = Bk —j)+ B() = B(k —j) € B(Kerm). Then « is an epimorphism,
consequently Ker(my) is S-finite. Hence, I/Nil(R) is a T-finitely presented
nonzero ideal of R/Nil(R). O

In light of Theorem 2.5, we give a new characterization of nonnil-S-coherent
rings using the integral domain R/Nil(R).

Theorem 2.6. Let R be a ¢-ring and S be a multiplicative subset of R. Then
R is a nonnil-S-coherent ring if and only if R/Nil(R) is a T-coherent domain
with T = S + Nil(R) and (0 : r) is an S-finite ideal for every non-nilpotent
element r € R.

Proof. Assume that R is a nonnil-S-coherent ring. Then (0 : r) is an S-finite
ideal for every non-nilpotent element r € R by Theorem 2.1. Now, let J be
a finitely generated ideal of R/Nil(R). So J = I/Nil(R) for some finitely
generated nonnil ideal I of R. Since R is nonnil-S-coherent, we conclude that
I is S-finitely presented. Hence I/Nil(R) is a T-finitely presented nonzero ideal
of R/Nil(R) according to Theorem 2.5. Therefore R/Nil(R) is a T-coherent
domain.

Conversely, let I and J be two finitely generated nonnil ideals of R. Then
I/Nil(R) and J/Nil(R) are finitely generated non-zero ideals of R/Nil(R).
Thus (I NJ)/Nil(R) = I/Nil(R) N J/Nil(R) is T-finite, therefore there exist
s € S and a finitely generated nonnil ideal K of R such that s(INJ)/Nil(R) C
K/Nil(R) CInNJ/Nil(R). Hence s(INJ) C K CINJ,solINJis S-finite.
Whence R is nonnil-S-coherent according to Theorem 2.1. ([l

Example 2.7. Let R be a nonnil-S-Noetherian ring such that (0 : r) is an
S-finite ideal of R for every non-nilpotent element r» € R. Then R is a nonnil-
S-coherent ring.

Corollary 2.8. Let R be a ¢-strong ring and S be a multiplicative subset of
R. Then R is a nonnil-S-coherent ring if and only if R/Nil(R) is a T-coherent
domain with T = S + Nil(R).

Corollary 2.9. Let R be a ¢-ring and S be a multiplicative subset of R. Then
R is a ¢-S-coherent ring if and only if $(R)/Nil(¢(R)) is a S’-coherent domain,
with S" = ¢(S) + Nil(¢(R)).

Proof. Note that R is a ¢-S-coherent ring if and only if ¢(R) is a nonnil-¢(.5)-
coherent ring. Since ¢(R) is a ¢-ring with Nil(¢(R)) = Z(¢(R)), and according
to Corollary 2.8, we have the result. ([
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Recall from [5, Lemma 1.1] that R/Nil(R) = ¢(R)/Nil(¢(R)) for every ¢-
ring R. Then we have the following corollary as a direct consequence of this
result and Theorem 2.6.

Corollary 2.10. Let R be a ¢-ring such that (0 : r) is an S-finite ideal for
every non-nilpotent element r € R, and S be a multiplicative subset of R. Then
the following statements are equivalent:

(1) R is a nonnil-S-coherent ring,

(2) R/Nil(R) is an S-coherent domain with S = S + Nil(R),

(3) ¢(R)/Nil(¢(R)) is an S'-coherent domain with S' = ¢(S) + Nil(¢(R)),
(4) &(R) is a nonnil-¢(S)-coherent ring.

Let R be a ring, M be an R-module. Then R x M, the set of pairs
(r,m) with component-by-component addition and multiplication defined by:
(rym)(b, f) = (rb,rf + bm), is a unitary commutative ring, called the trivial
extension (or idealization) of R by M. For a suitable background on the com-
mutative trivial ring extensions, see [2,13,14]. Now we will give an example of
a nonnil-S-coherent ring that is neither nonnil-coherent nor S-coherent.

Example 2.11. Let D be a domain that is not a field, () its quotient field and
E =@;2,Q/D. Let R = D o E be the trivial extension construction and
S =8y x 0 with Sop = D\ Nil(R). Then R is a nonnil-S-coherent ring which
is neither nonnil-coherent nor S-coherent.

Proof. We have R is a ¢-ring which is not nonnil-coherent by [18, Example
1.5]. Note that R/Nil(R) & D, and thus R is ¢-S-coherent by Corollary
2.9. Let (d,e) be a non-nilpotent element of R. Then it is easy to verify
that (d,0)(0 : (d,e)) = 0. Hence (0 : (d,e)) is S-finite. Consequently R is
a nonnil-S-coherent ring. But R is not a S-coherent ring; indeed, let x € F
and so (0:(0,z)) = Anng(z) x E with Anng(z) := (0 : ). Assume that
Anng(x) o< E is S-finite. Then there exist (r1,e1), ..., (rn,en) € Anng(z) x E
such that

(d,0)Anng(z) x EC F ={(r1,e1),...,(rn,en)) C Anng(z) < E.

Since dE = E, we get E = (e, ..., e,), which is contradiction. So (0 : (0, z))
is not S-finite. Therefore, R is not S-coherent. O

Recall from [3, Theorem 2.4] that a ¢-ring R is nonnil-coherent, if and only
if, any direct product of ¢-flat R-modules is ¢-flat, if and only if, any prod-
uct of R is a ¢-flat R-module. Now, we aim to give an S-version of flatness
that characterizes nonnil-S-coherent rings similarly to the classical case. For
this, we well start by the following definition from [19]. Let M and N be R-
modules and set 7s(M) = {z € M | sz = 0 for some s € S}. Then 75(M)
is called the total S-torsion submodule of M; if 75(M) = 0, then M is called
an S-torsion-free module, and if 75(M) = M, then M is called an S-torsion
module. An R-homomorphism f : M — N is an S-monomorphism (resp.,
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an S-epimorphism, an S-isomorphism) if the induced S~—!R-homomorphism
S71f : S 'M — S7!N is a monomorphism (resp., an epimorphism, an iso-
morphism). A sequence 0 - M — N — L — 0 is S-exact if the induced
sequence 0 — S™'!M — S7IN — S~1L — 0 is exact.

Definition 2.12. Let M be an R-module. Then M is said to be ¢-S-flat
if for any finitely generated nonnil ideal I of R, the natural homomorphism
I®r M — R®gr M is an S-monomorphism.

Obviously, every ¢-flat module is ¢-S-flat. However, the converse does not
hold; indeed, let R be a domain which is not a field and S be the set of nonzero
elements in R. Then every R-module is ¢-S-flat. Since R is not a ¢-Von
Neumann regular, there exists some ¢-S-flat module which is not ¢-flat by
[22, Theorem 4.1]. Clearly, if S; C Sy are multiplicative subsets, then any
¢-S1-flat module is ¢-So-flat; and if S* is the saturation of S in R, then an
R-module M is ¢-S-flat if and only it is ¢-S*-flat.

Now, we give a characterization of ¢-S-flat modules.

Proposition 2.13. Let M be an R-module. Then the following assertions are
equivalent:
(1) M is ¢-S-flat,
(2) for any finitely generated nonnil ideal I of R, ¥ : I g M — IM s an
S-isomorphism,
(3) S7IM is a ¢-flat S~ R-module.

Proof. (1) <= (2) Let I be a finitely generated nonnil ideal of R. Consider
the following commutative diagram:

ITor M _r R®r M

al |
0O —— IM —— M
We have M is ¢-S-flat, if and only if, f is an S-monomorphism, if and only if,
1 is an S-monomorphism.
(1) = (3) Let J = S~'I be a finitely generated nonnil ideal of S~! R, where
I is a finitely generated nonnil ideal of R. Since M is ¢-S-flat, the natural
homomorphism I g M — R ®r M is an S-monomorphism. By localizing at
S, the natural homomorphism:

ST @ 1g STIM =S I@grM)— S (RerM)= S 'M

is an S~!R-monomorphism. Thus S~!I is a ¢-flat S~!R-module.

(3) = (1) Let I be a finitely generated nonnil ideal of R. Then ST
is a finitely generated nonnil ideal of ST'R. Since S™'M is a ¢-flat S~'R-
module, the natural homomorphism S~ (I @z M) = STHRQz M) is an
S~!R-monomorphism. Hence M is a ¢-S-flat module. O
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Note that if there exists s € SN Nil(R), then there exists a positive integer
n such that 0 = s™ € S, a contradiction. Hence we always have SN Nil(R) = ().
Consequently every S-torsion R-module is ¢-torsion and every ¢-torsion free
R-module is S-torsion free.

In [3, Theorem 2.4], Khoualdia and Benhissi proved that a ¢-ring R is nonnil-
coherent if and only if any product of R is ¢-flat if and only if any product of
¢-flat R-modules is ¢-flat. Now we extend this to the S-version and obtain the
promised result.

Theorem 2.14 (Nonnil-S-version of Chase Theorem). Let R be a ¢-ring. The
following statements are equivalent:

(1) R is a nonnil-S-coherent ring,
(2) any product of ¢-flat R-modules is ¢-S-flat,
(3) any product of R is ¢-S-flat.

Proof. (1) = (2) Let R be a nonnil-S-coherent ring, {F;};e; be a family of ¢-
S-flat R-modules and J be a finitely generated nonnil ideal of R. The following
exact sequence 0 — A = ker(ry) — R" =% J — 0 shows that A is S-finite.
Consider the following commutative diagram of exact sequences:

A®HieIFi —_— R"®HZ-61F1' e J®Hie1Fi
di | 3
[LLe;AQ F) —— [Lie;,(R"QF) —— [[;c;(VQFi) —— 0

To prove that « is an S-monomorphism, we only need to show that S is an S-
epimorphism. Since A is S-finite, there exists a finitely generated submodule of
A such that sA C K C A for some s € S. The natural commutative diagram:

KQrllier i —— AQgrllics/ Fi

‘| gl
[Lic;/ KQrFi) —— [Lic/(AQR Fi)

induces the following commutative diagram by localizing at S.
STK Qg-15 S (I ies i) —— 5714 Qs-17 5 (e Fi)

S_luJ( Silﬁl
STIL(E®F)  —— 5L, (AQF))

Since K is finitely generated, v is an epimorphism, so S~'v is also. On the
other hand, for any a; € A, ¢; € F;(i € I) and t € S, we obtain:

(@i Qrai)ier _ 5(ai Qraiier _ (36i Qpi)ier _ g1 (H(K®Fi)> .

t st st iy
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Thus f is an epimorphism. Now consider the following exact sequence:
0—-K—A—A/K —0.
Since sA/K =0, A/K is a ¢-torsion R-module, hence:

0+ KQF — AR Fi— A/KQ)F;—0

is an exact sequence by [22, Theorem 3.2]. Then f is a monomorphism, so
it is an isomorphism. Thus S™!f is an epimorphism, and then 3 is an S-
epimorphism. Hence [[,.; F; is ¢-S-flat by Proposition 2.13.

(2) = (3) This is straightforward.

(3) = (1) Let J be a nonnil ideal of R, the following exact sequence 0 —
J — R — R/J — 0 induces the following commutative diagram:

JRIR —1—~ RRIR —— R/JRQIIR —— 0

| |
0 — [[WQRR) —— J[[(RQQR) —— [[(R/IJQR) —— 0
Since [] R is a ¢-S-flat module, we get that f is an S-monomorphism. Thus
ker(f) = ker(p) is S-torsion, and consequently 5 is an S-monomorphism. Now
consider the following exact sequence:

K2

00— A=ker(f) = R"— J—=0.

Then there is a commutative diagram of exact sequences:

AQIIR —1— R"®IIR —— JQIIR —— 0

! | d
0 — [[MQYR) — [I(B"QR) —— [[QR) —— 0
Since 8 is an S-monomorphism, « is an S-epimorphism. Hence A is S-finite
by [19, Lemma 4.1]. Therefore, I is S-finitely presented. d

3. Nonnil-S-coherent properties on some ring constructions

Now, we study the transfer of nonnil-coherent rings in the trivial ring ex-
tensions and in the amalgamation algebra along an ideal. From [10, Corollary
2.4], the trivial ring extension R o< M is a ¢-ring if and only if R is a ¢-ring
and sM = M for all s € R\ Nil(R).

Let M be an R-module and » € R. Set (0:p; ) := {m € M | rm = 0}.
From [9], (0 :ps ) is a submodule of M such that (0: )M C (0 :ps 7), and so
(0:7) < (0:p 7) is an ideal of R o« M. The following theorem characterizes
when a trivial ring extension is a nonnil-S-coherent ring.

Theorem 3.1. Let A be a ¢-ring, and M be an A-module such that aM = M
for every a € A\ Nil(A). Let S be a multiplicative subset of R = A < E. Set
So as the projection of S on A. Then the following statements are equivalent:
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(1) R is a nonnil-S-coherent ring,

(2) A is a nonnil-Sy-coherent ring and (0 : 1) o< (0 :pr 7) is an S-finite ideal
of R for each r € A\ Nil(A),

(3) A is a nonnil-Sy-coherent ring and R(r,0) is S-finitely presented for all
re A\ Nil(A).

Proof. (1) = (2) Assume that R is a nonnil-S-coherent ring. Let I and J be
finitely generated nonnil ideals of A. It is easy to see that if I = (aq,...,a,),
then I o« M = {((a1,0),...,(an,0)). Hence I o« M and J o M are finitely
generated nonnil ideals of R. Since R is a nonnil-S-coherent ring, (I o« M) N
(Jx M)=(INJ)x M is S-finite by Theorem 2.1. So there exist (s,e) € S
and (a1, m1),...,(an,my) € (INJ) x M such that:

(s,e)(INJ)x M C (ar,m1)R+ -+ (an, my)R.

In particular, s(INJ) C a;A+ -+ + a,A. Therefore, I N J is Sp-finite. Let
r € A\ Nil(A). Then, ((0,0) : (r,0)) = (0 : 7) x (0 :pr r) is S-finite by
Theorem 2.1, and so (0 : r) is Sp-finite. Therefore, A is a nonnil-Sy-coherent
ring by Theorem 2.1.

(2) = (1) Assume that A is a nonnil-Sp-coherent ring and (0 : ) oc (0 :p7 7) is
an S-finite ideal of R for each r € A\ Nil(A). Let I < M and J o M be finitely
generated nonnil ideals of R. Then, I and J are finitely generated nonnil ideals
of A. Since A is a nonnil-S-coherent ring, INJ is an Syp-finite ideal of A, and so
there exist s € Sy and ay,...,a, € INJ such that s(INJ) Ca1A+---+a,A.
Since s € Sy, there exists u € M such that (s,u) € S, and consequently
(s,u)(INJ) C (a1,0)R+- - -+(an,0)R. Thus (I x M)N(J x M) =(INJ) x M
is an S-finite ideal of R. Let (r,u) € R\ Nil(R). Then, ((0,0) : (r,u)) = (0 :
r) o< (0 :a7 ) is S-finite by hypothesis. Therefore, R is a nonnil-S-coherent
ring by Theorem 2.1.

(2) & (3) Let r € A\ Nil(A). Then, the following sequence 0 — ((0,0) :
(r,0)) = R — R(r,0) — 0 is exact. Therefore, by [6, Proposition 2.4] (0 : r)
(0 : Mr) is S-finite if and only if R(r,0) is S-finitely presented. O

Corollary 3.2. Let R= A o< M be a ¢-ring such that Z(A) = Nil(A) and S
be a multiplicative subset of R. Set Sy as the projection of S on A. Then R
is a mnonnil-S-coherent ring if and only if A is a nonnil-So-coherent ring and
(0 :p7 7) is So-finite A-submodule of M for every r € A\ Nil(A).

Corollary 3.3. Let R = A « M be a ¢-ring such that Z(A) = Nil(A), and
let S be a multiplicative subset of R, set Sy as the projection of S on A and let
M be an So-Noetherian A-module. Then R is a nonnil-S-coherent ring if and
only if A is a nonnil-Sy-coherent ring.

For a ring R and an R-module M, set Zr(M) :={r € R | rm = 0 for some
nonzero m € M}.

Corollary 3.4. Let R = A < M be a ¢-ring such that Z(A) = Nil(A) =
ZA(M) and S be a multiplicative subset of R. Set Sy as the projection of S on
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A. Then R is a nonnil-S-coherent ring if and only if A is a nonnil-Sy-coherent
ring.

Example 3.5. Let D be an integral with quotient K. Then R =D x K is a
nonnil-S-coherent ring with S = (D \ {0}) x K.

Let A and B be two rings, J a nonzero ideal of B, and f : A — B be a
ring homomorphism. Set R := A >/ J and N(J) := Nil(B) N J. Recall from
[10, Theorem 2.1] that (1) If J is a nonnil ideal of B, then R is a ¢-ring if and
only if f~1(J) =0, A is an integral domain, and N(J) is a divided prime ideal
of f(A)+ J, (2) If J C Nil(B), then R is a ¢-ring if and only if A is a ¢-ring,
and for each i, j € J and each a € A\ Nil(A), there exist x € Nil(A) and k € J
such that xa = 0 and j = kf(a) +i(f(z) + k). Moreover, let ¢ : A — A/ J
be the natural embedding defined by a — (a, f(a)) for each a € A, and S be
a multiplicative subset of A. Then S’ := {(s, f(s)) | s € S} and f(S) are
multiplicative subsets of A >/ J and B, respectively.

Now, we study the transfer of being ¢-S-coherent rings in the amalgamation
algebra along an ideal.

Theorem 3.6. Let A and B be two rings and f : A — B be a ring homo-
morphism. Let J be a nonnil ideal of B and S be a multiplicative subset of A.
Define f : A — B/N(J) by f(a) = f(a) + N(J) for any a € A. Assume that
Al J is a ¢-ring. Then the following statements are equivalent:

(1) A</ J is a ¢-S'-coherent ring,

(2) Al ﬁ is an S’-coherent domain with S" := {(s, f(s)) | s € S},

(3) f(A)+ J/N(J) is an f(S)-coherent domain.

Proof. (1) = (2) Assume that A >/ J is a ¢-S’-coherent ring. Since A </ J
is a ¢-ring, it follows that A is an integral domain by [10, Theorem 2.1(1)], and

so Nil (Ap</ J) =0x N(J). As A</ J is a ¢-S’-coherent ring, % is an
S’-coherent domain. Therefore, A </ ﬁ is an S’-coherent domain.

(2) = (1) This follows directly from [20, Remark 2.6].

(2) = (3) Assume that A </ J/N(J) is a coherent domain. Then according
to [10, Theorem 2.1(1)], we conclude that f~'(J) = f~'(J/N(J)) = 0, and
so by [7, Proposition 5.2] f(A) + J/N(J) is an integral domain. From [7,
Proposition 5.1], f(A) + J/N(J) =2 A</ J/N(J), as desired.

(3) = (2) By [10, Theorem 2.1(1)], we have f~1(J/N(J)) = 0 and from
[7, Proposition 5.1], we obtain f(A) + J/N(J) = A s/ J/N(J), which is an
S’-coherent domain, as desired. O

Corollary 3.7 investigates the transfer of being a nonnil-S-coherent ring be-

tween a ¢-ring A and an amalgamation algebra A </ J along a nonnil ideal
J.

Corollary 3.7. Let A and B be two rings and f : A — B be a ring ho-
momorphism. Let J be a nonnil ideal of B. Define f : A — B/N(J) by
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f(a) = f(a) + N(J) for any a € A. Assume that A >/ J is a ¢-ring. Then
A ! J is a nonnil-S’-coherent ring if and only if f(A) + J/N(J) is an S'-
coherent domain and (A <! J) (r, f(r)+j) is an S'-finitely presented ideal for
any non-nilpotent element (r, f(r) + j) of A J.

Proof. This follows immediately from Theorem 2.6 and Theorem 3.6. ]

Theorem 3.8 studies the transfer of being a ¢-S-coherent ring between a
¢-ring A and an amalgamation algebra A </ J along a nil ideal J.

Theorem 3.8. Let A and B be two rings and f : A — B be a ring homomor-
phism. Let J be a nil ideal of B and S be a multiplicative subset of A. Assume
that A <! J is a ¢-ring. Then, A val J is a ¢-S’-coherent ring if and only if
A is a ¢-S-coherent ring.

Proof. Since J C Nil(B), we have N(J)=.J, and so Nil (A </ J)=Nil(A) >/
J. Since A</ J is a ¢-S’-coherent ring, Niﬁ'f)fb‘i” = Ni?}A) isan (S+Nil(A))-
coherent domain. Thus A is a ¢-S-coherent ring. Conversely, since A is a ¢-S-

coherent ring, NiﬁA) = Niﬁ‘j‘)fli” is an (S” + Nil(A >/ J))-coherent domain.

Whence A </ J is a ¢-S’-coherent ring. |

Corollary 3.9 studies the transfer of being a nonnil-coherent ring between a
¢-ring A and an amalgamation algebra A >/ .J along a nil ideal .J.

Corollary 3.9. Let A and B be two rings and f: A — B be a ring homomor-
phism. Let J be a nil ideal of B and S be a multiplicative subset of A. Assume
that Aaf J is a ¢-ring. Then the following are equivalent:

(1) A</ J is a nonnil-S’-coherent ring,
(2) A is a ¢-S-coherent ring and (A af J) (r, f(r) + j) is an S'-finitely
presented ideal for any non-nilpotent element (v, f(r) +j) of A<l J.

Proof. This follows immediately from Theorem 2.6 and Theorem 3.9. (]
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