• 제목/요약/키워드: Riemannian metric

검색결과 153건 처리시간 0.021초

THE SET OF ZOLL METRICS IS NOT PRESERVED BY SOME GEOMETRIC FLOWS

  • Azami, Shahroud;Fasihi-Ramandi, Ghodratallah
    • 대한수학회논문집
    • /
    • 제34권3호
    • /
    • pp.855-861
    • /
    • 2019
  • The geodesics on the round 2-sphere $S^2$ are all simple closed curves of equal length. In 1903 Otto Zoll introduced other Riemannian surfaces with the same property. After that, his name is attached to the Riemannian manifolds whose geodesics are all simple closed curves of the same length. The question that "whether or not the set of Zoll metrics on 2-sphere $S^2$ is connected?" is still an outstanding open problem in the theory of Zoll manifolds. In the present paper, continuing the work of D. Jane for the case of the Ricci flow, we show that a naive application of some famous geometric flows does not work to answer this problem. In fact, we identify an attribute of Zoll manifolds and prove that along the geometric flows this quantity no longer reflects a Zoll metric. At the end, we will establish an alternative proof of this fact.

SEMI-INVARIANT SUBMANIFOLDS OF CODIMENSION 3 SATISFYING 𝔏ξ∇ = 0 IN A NONFLAT COMPLEX SPACE FORM

  • AHN, SEONG-SOO;LEE, SEONG-BAEK;LEE, AN-AYE
    • 호남수학학술지
    • /
    • 제23권1호
    • /
    • pp.133-143
    • /
    • 2001
  • In this paper, we characterize some semi-invariant submanifolds of codimension 3 with almost contact metric structure (${\phi}$, ${\xi}$, g) satisfying 𝔏ξ∇ = 0 in a nonflat complex space form, where ${\nabla}$ denotes the Riemannian connection induced on the submanifold, and 𝔏ξ is the operator of the Lie derivative with respect to the structure vector field ${\xi}$.

  • PDF

VANISHING OF PROJECTIVE VECTOR FIELDS ON COMPACT FINSLER MANIFOLDS

  • Shen, Bin
    • 대한수학회지
    • /
    • 제55권1호
    • /
    • pp.1-16
    • /
    • 2018
  • In this paper, we give characteristic differential equations of a kind of projective vector fields on Finsler manifolds. Using these equations, we prove the vanishing theorem of projective vector fields on any compact Finsler manifold with the negative mean Ricci curvature, which is defined in [10]. This result involves the vanishing theorem of Killing vector fields in the Riemannian case and the work of [1, 14].

ON $\eta$K-CONFORMAL KILLING TENSOR IN COSYMPLECTIC MANIFOLD WITH VANISHING COSYMPLECTIC BOCHNER CURVATURE TENSOR$^*$

  • Jun, Jae-Bok;Kim, Un-Kyu
    • 대한수학회보
    • /
    • 제32권1호
    • /
    • pp.25-34
    • /
    • 1995
  • S. Tachibana [10] has defined a confornal Killing tensor in a n-dimensional Riemannian manifold M by a skew symmetric tensor $u_[ji}$ satisfying the equation $$ \nabla_k u_{ji} + \nabla_j u_{ki} = 2\rho_i g_{kj} - \rho_j g_{ki} - \rho_k g_{ji}, $$ where $g_{ji}$ is the metric tensor of M, $\nabla$ denotes the covariant derivative with respect to $g_{ji}$ and $\rho_i$ is a associated covector field of $u_{ji}$. In here, a covector field means a 1-form.

  • PDF

HOLOMORPHIC SECTIONAL CURVATURE OF THE TANGENT BUNDLE$^*$

  • Pak, Jin-Suk;Pahk, Yoi-Sook;Kwon, Jung-Hwan
    • 대한수학회보
    • /
    • 제32권1호
    • /
    • pp.13-18
    • /
    • 1995
  • In order to investigate the differential structure of a Riemannian manifold (M, g), it seems a powerful tool to study the differential structure of its tangent bundle TM. In this point of view, K. Aso [1] studied, using the Sasaki metric $\tilde{g}$, the relation between the curvature tensor on (M, g) and that on (TM, $\tilde{g}$).

  • PDF

HARMONIC TRANSFORMATIONS OF THE HYPERBOLIC PLANE

  • Park, Joon-Sik
    • 충청수학회지
    • /
    • 제22권4호
    • /
    • pp.771-776
    • /
    • 2009
  • Let (H, g) denote the upper half plane in $R^2$ with the Riemannian metric g := ($(dx)^2$ + $(dy)^2$)$/y^2$. First of all we get a necessary and sufficient condition for a diffeomorphism $\phi$ of (H, g) to be a harmonic map. And, we obtain the fact that if a diffeomorphism $\phi$ of (H, g) is a harmonic function, then the following facts are equivalent: (1) $\phi$ is a harmonic map; (2) $\phi$ is an affine transformation; (3) $\phi$ is an isometry (motion).

  • PDF

TOPOLOGICAL ASPECTS OF THE THREE DIMENSIONAL CRITICAL POINT EQUATION

  • CHANG, JEONGWOOK
    • 호남수학학술지
    • /
    • 제27권3호
    • /
    • pp.477-485
    • /
    • 2005
  • Let ($M^n$, g) be a compact oriented Riemannian manifold. It has been conjectured that every solution of the equation $z_g=D_gdf-{\Delta}_gfg-fr_g$ is an Einstein metric. In this article, we deal with the 3 dimensional case of the equation. In dimension 3, if the conjecture fails, there should be a stable minimal hypersurface in ($M^3$, g). We study some necessary conditions to guarantee that a stable minimal hypersurface exists in $M^3$.

  • PDF

Conformally Flat Totally Umbilical Submanifolds in Some Semi-Riemannian Manifolds

  • Ewert-Krzemieniewski, Stanislaw
    • Kyungpook Mathematical Journal
    • /
    • 제48권2호
    • /
    • pp.183-194
    • /
    • 2008
  • We prove that totally umbilical submanifold M of an extended quasi-recurren manifold is also extended quasi-recurrent. If, moreover, M is conformally flat then, locally, M is isometric to the manifold with known metric. Some curvature properties of such submanifold are investigated. Making use of these results we shall prove the existence of totally umbilical submanifold being pseudosymmetric in the sense of Ryszard Deszcz and satisfying some other curvature conditions.

Semi-Slant Lightlike Submanifolds of Indefinite Sasakian Manifolds

  • Shukla, Shiv Sharma;Yadav, Akhilesh
    • Kyungpook Mathematical Journal
    • /
    • 제56권2호
    • /
    • pp.625-638
    • /
    • 2016
  • In this paper, we introduce the notion of semi-slant lightlike submanifolds of indefinite Sasakian manifolds giving characterization theorem with some non-trivial examples of such submanifolds. Integrability conditions of distributions $D_1$, $D_2$ and RadTM on semi-slant lightlike submanifolds of an indefinite Sasakian manifold have been obtained. We also obtain necessary and sufficient conditions for foliations determined by above distributions to be totally geodesic.