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ON THE SYMMETRIES OF THE Sol3 LIE GROUP

Lakehal Belarbi

Abstract. In this work we consider the Sol3 Lie group, equipped with

the left-invariant metric, Lorentzian or Riemannian. We determine Killing
vector fields and affine vectors fields. Also we obtain a full classification

of Ricci, curvature and matter collineations.

1. Introduction

Symmetries in general relativity have been extensively studied because of
their interest both from the mathematical and physical viewpoint. The term
Symmetry here refers to a one-parameter group of diffeomorphisms of the space-
time preserving certain mathematical or physical quantity. Many works are
studying the symmetries of Lorentzian manifolds. See for example [1–6,8–11].

The aim of this paper is to investigate symmetries of the Sol3 Lie group.
Let (M, g) denote a Lorentzian manifold. A vector field X on M preserving
its metric tensor g, the corresponding Levi-Civita connection ∇, its curvature
tensor R or its Ricci tensor Ric, is respectively known as a Killing vector field,
an affine vector field, a curvature collineation or a Ricci collineation. If T
is a tensor on (M, g), codifying some mathematical or physical quantity, a
symmetry of a tensor field T is a one-parameter group of diffeomorphisms of
(M, g), which leaves T invariant (i.e., If the C1 local diffeomorphisms associated
with X are denoted by φt, then φ∗tT = T ). By this definition, each symmetry
corresponds to a vector field X which satisfies LXT = 0, where L denotes
the Lie derivative. Famous symmetries are: symmetries of the metric tensor
g which correspond to the Killing vector fields, symmetries of the Levi-Civita
connection∇ which correspond to the affine vector fields, and symmetries of the
Ricci tensor Ric which correspond to the Ricci collineations, and symmetries
of the curvature tensor R which correspond to the curvature collineations.

A matter collineation of a Lorentzian or Riemannian manifold (M, g) is a
vector field X, corresponding to a symmetry of the energy-momentum tensor
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T = Ric− 1
2τg, where τ denotes the scalar curvature. Matter collineations are

more relevant from a physical point of view [7] and [8].
In this paper, we shall investigate symmetries of the three-dimensional solv-

able Lie group Sol3, equipped with a left invariant metric g, Lorentzian or
Riemannian. We determine Killing vector fields and affine vector fields of the
Sol3 Lie group. Also we obtain a full classification of Ricci, curvature and
matter collineations, and we remark that all solutions of matter collineation
coincide with curvature collineation of the Sol3 Lie group.

2. Connection and curvature of the Sol3 group

Let us consider the three-dimensional solvable Lie group Sol3 which is dif-
feomorphic to the cartesian space R3(x, y, z).

The group structure of three-dimensional Lie group Sol3 is given by

(x′, y′, z′) ? (x, y, z) = (e−z
′
x+ x′, ez

′
y + y′, z + z′).

The isometries under the Lorentzian metric (1) are

(x, y, z) 7→ (±e−cx+ a,±ecy + b, z + c),

where a, b and c are any real numbers.
The isometries under the Riemannian metric (7) are

(x, y, z) 7→ (±e−cx+ a,±ecy + b, z + c)

and

(x, y, z) 7→ (±e−cy + a,±ecx+ b,−z + c),

where a, b and c are any real numbers.
Throughout the paper, we shall endow the three-dimensional solvable Lie

group Sol3 with left-invariant Lorentzian and Riemannian metric g.
We will denote by ∇ the Levi-Civita connection of (Sol3, g), by R its curva-

ture tensor, taken with the sign convention:

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z,

and by Ric the Ricci tensor of (Sol3, g), which is defined by

Ric (X,Y ) =

3∑
k=1

g (Ek, Ek) g(R(Ek, X)Y,Ek),

where {Ek}k=1,...,3 is an orthonormal basis.

2.1. Lorentzian setting

The Lorentzian Sol3 Lie group is a Lie group R3 endowed with a left-
invariant Lorentzian metric

(1) g = e2zdx2 − e−2zdy2 + dz2,

where (x, y, z) the usual coordinates of R3.
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A left-invariant orthonormal frame {E1, E2, E3} in the Lorentzian Sol3 Lie
group is given by

(2) E1 = e−z
∂

∂x
, E2 = ez

∂

∂y
, E3 =

∂

∂z
.

The Levi-Civita connection ∇ of the Lorentzian Sol3 Lie group with respect to
this frame is

(3)

 ∇E1E1 = −E3,∇E1E2 = 0,∇E1E3 = E1,
∇E2

E1 = 0,∇E2
E2 = −E3,∇E2

E3 = −E2,
∇E3

E1 = 0,∇E3
E2 = 0,∇E3

E3 = 0.

The non-vanishing curvature tensor R components are computed as

(4)

 R(E1, E2)E1 = −E2, R(E1, E2)E2 = −E1,
R(E1, E3)E1 = E3, R(E1, E3)E3 = −E1,
R(E2, E3)E2 = −E3, R(E2, E3)E3 = −E2.

The Ricci curvature components {Ricij} are computed as

(5) Ric11 = Ric12 = Ric13 = Ric23 = Ric22 = 0, Ric33 = −2.

The scalar curvature τ of the Lorentzian Sol3 Lie group is constant and we
have

(6) τ = trRic =

3∑
i=1

g(Ei, Ei)Ric(Ei, Ei) = −2.

2.2. Riemannian setting

The Riemannian Sol3 Lie group is a Lie group R3 endowed with a left-
invariant Riemannian metric

(7) g = e2zdx2 + e−2zdy2 + dz2,

where (x, y, z) the usual coordinates of R3.
A left-invariant orthonormal frame {E1, E2, E3} in the Riemannian Sol3 Lie

group is given by

(8) E1 = e−z
∂

∂x
, E2 = ez

∂

∂y
, E3 =

∂

∂z
.

The Levi-Civita connection ∇ of the Riemannian Sol3 Lie group with respect
to this frame is

(9)

 ∇E1
E1 = −E3,∇E1

E2 = 0,∇E1
E3 = E1,

∇E2
E1 = 0,∇E2

E2 = E3,∇E2
E3 = −E2,

∇E3
E1 = 0,∇E3

E2 = 0,∇E3
E3 = 0.

The non-vanishing curvature tensor R components are computed as

(10)

 R(E1, E2)E1 = −E2, R(E1, E2)E2 = E1,
R(E1, E3)E1 = E3, R(E1, E3)E3 = −E1,
R(E2, E3)E2 = E3, R(E2, E3)E3 = −E2.
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The Ricci curvature components {Ricij} are computed as

(11) Ric11 = Ric12 = Ric13 = Ric23 = Ric22 = 0, Ric33 = −2.

The scalar curvature τ of the Riemannian Sol3 Lie group is constant and we
have

(12) τ = trRic =

3∑
i=1

g(Ei, Ei)Ric(Ei, Ei) = −2.

3. Killing and affine vector fields of the Sol3 Lie group

In this section we completely classify Killing vector fields and affine vec-
tor fields of three-dimensional Lorentzian and Riemannian solvable Lie group
(Sol3, g). We will denote the coordinates basis{ ∂∂x ,

∂
∂y ,

∂
∂z} by {∂x, ∂y, ∂z}.

3.1. Lorentzian metric

We first classify Killing and affine vector fields of the Lorentzian Sol3 Lie
group. The classifications we obtain are summarized in the following theorem.

Theorem 3.1. Let X = f1E1 + f2E2 + f3E3 be an arbitrary vector field on
the Lorentzian Sol3 Lie group.

• X is a Killing vector field if and only if f1 = −(αx+ β)ez,
f2 = (αy + γ)e−z,
f3 = α, α, β, γ ∈ R.

• X is an affine vector field if and only if f1 = −βxez,
f2 = βye−z,
f3 = β, β ∈ R.

Proof. Let X = f1E1 + f2E2 + f3E3 denote an arbitrary vector field on the
Lorentzian Sol3 Lie group, for some arbitrary smooth functions f1, f2, f3 on
Lorentzian Sol3 group. Starting from (1), a direct calculation yields the fol-
lowing description of the Lie derivative of the metric tensor g:

(13)



(LXg)(E1, E1) = 2[f3 + e−z∂xf1],
(LXg)(E1, E2) = −e−z∂xf2 + ez∂yf1,
(LXg)(E1, E3) = e−z∂xf3 − f1 + ∂zf1,
(LXg)(E2, E2) = 2[f3 − ez∂yf2],
(LXg)(E2, E3) = ez∂yf3 − f2 − ∂zf2,
(LXg)(E3, E3) = 2∂zf3.

In order to determine the Killing vector fields, we then must solve the system
of PDEs obtained requiring that all the coefficients in the above Lie derivative
are equal to zero.
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A straightforward calculation leads to prove that f1 = −(αx+ β)ez,
f2 = (αy + γ)e−z,
f3 = α, α, β, γ ∈ R.

To determine the affine vector fields, we need to calculate the Lie derivative
of the Levi-Civita connection∇. Staring from (3), we find the following possibly
non-vanishing components:

(14)



(LX∇)(E1, E1) = [−f1 + 2e−z∂xf3 + ∂zf1 + e−2z∂2xf1]E1

+ [f2 + ∂zf2 + e−2z∂2xf2]E2

+ [∂zf3 − 2f3 − 2e−z∂xf1 + e−2z∂2xf3]E3,

(LX∇)(E1, E2) = [ez∂yf3 + ∂x∂yf1]E1 + [−e−z∂xf3 + ∂x∂yf2]E2

+ [−e−z∂xf2 − ez∂yf1 + ∂x∂yf3]E3,

(LX∇)(E1, E3) = [−e−z∂xf1 + e−z∂x∂zf1 + ∂zf3]E1

+ [−e−z∂xf2 + e−z∂x∂zf2]E2

+ [−e−z∂xf3 + e−z∂x∂zf3 + f1 − ∂zf1]E3,

(LX∇)(E2, E2) = [−f1 + ∂zf1 + e2z∂2yf1]E1

+ [f2 + ∂zf2 − 2ez∂yf3 + e2z∂2yf2]E2

+ [∂zf3 + 2f3 − 2ez∂yf2 + e2z∂2yf3]E3,

(LX∇)(E2, E3) = [ez∂yf1 + ez∂y∂zf1]E1

+ [ez∂yf2 + ez∂y∂zf2 − ∂zf3]E2

+ [ez∂yf3 + ez∂y∂zf3 − f2 − ∂zf2]E3,

(LX∇)(E3, E3) = [−f1 + ∂2zf1]E1 + [−f2 + ∂2zf2]E2 + [∂2zf3]E3.

In order to determine the affine vector fields, we then must solve the system
of PDEs obtained requiring that all the coefficients in the above Lie derivative
are equal to zero.

From (LX∇)3(E3, E3) = 0 it follows that f3 = H(x, y)z+H(x, y), where H
and H are real-valuable smooth functions on R2.

We then replace f3 in the equation given by (LX∇)3(E2, E2) = 0 we get

∂yf2 =
1

2
e−z[H + 2Hz + 2H + e2z∂2yHz + e2z∂2yH]

and

∂y∂zf2 =
1

2
e−z[H − 2Hz − 2H + e2z∂2yHz + e2z∂2yH + e2z∂2yH].
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And we replace f3, ∂yf2 and ∂y∂zf2 in the equation given by (LX∇)2(E2, E3) =
0 we get

(15)

{
∂2yH = 0,

∂2yH = 0.

From the equation given by (LX∇)3(E1, E1) = 0 and we replace f3 we get

∂xf1 =
1

2
ez[H − 2Hz − 2H + e−2z∂2xHz + e−2z∂2xH]

and

∂x∂zf1 =
1

2
ez[−H − 2Hz − 2H − e−2z∂2xHz + e−2z∂2xH − e−2z∂2xH].

We replace f3, ∂xf1 and ∂x∂zf1 in the equation given by (LX∇)1(E1, E3) = 0
and we get

(16)

{
∂2xH = 0,

∂2xH = 0.

From (15) and (16) we conclude that

(17)

{
H(x, y) = α1x+ α2y + α3xy + α4, αi ∈ R,

H(x, y) = β1x+ β2y + β3xy + β4, βi ∈ R,

which together with equations (LX∇)1(E1, E2) = 0 and (LX∇)2(E1, E2) = 0
gives

(18)


f1 =

1

2
ez[α4x− 2α4xz − β1x2 − 2β2xy − β3x2y − 2β4x] + α5,

f2 =
1

2
e−z[α4y + 2α4yz + 2β1xy + β2y

2 + β3xy
2 + 2β4y] + β5,

f3 = α4z +H, αi, βi ∈ R.

Replacing f1 into equations (LX∇)1(E2, E2) = 0 and (LX∇)1(E2, E3) = 0 we
get

α4 = α5 = β2 = β3 = 0.

And similarly replacing f2 into equations

(LX∇)2(E1, E1) = 0 and (LX∇)2(E1, E3) = 0

we get

α4 = α5 = β1 = β3 = 0.

Thus the final solution of PDEs system obtained requiring that all the coeffi-
cients in the above Lie derivative are equal to zero are given by

(19)


f1 = −β4xez,
f2 = β4ye

−z,

f3 = β4, β4 ∈ R. �



ON THE SYMMETRIES OF THE Sol3 LIE GROUP 529

3.2. Riemannian metric

We first classify Killing and affine vector fields of the Riemannian Sol3 Lie
group. The classifications we obtain are summarized in the following theorem.

Theorem 3.2. Let X = f1E1 + f2E2 + f3E3 be an arbitrary vector field on
the Riemannian Sol3 Lie group.

• X is a Killing vector field if and only if
f1 = −(αx+ β)ez,

f2 = (αy + γ)e−z,

f3 = α, α, β, γ ∈ R.

• X is an affine vector field if and only if
f1 = −βxez,
f2 = βye−z,

f3 = β, β ∈ R.

Proof. Let X = f1E1 + f2E2 + f3E3 denote an arbitrary vector field on the
Riemannian Sol3 Lie group, for some arbitrary smooth functions f1, f2, f3 on
Riemannian Sol3 Lie group. Starting from (7), a direct calculation yields the
following description of the Lie derivative of the metric tensor g:

(20)



(LXg)(E1, E1) = 2[f3 + e−z∂xf1],

(LXg)(E1, E2) = e−z∂xf2 + ez∂yf1,

(LXg)(E1, E3) = e−z∂xf3 − f1 + ∂zf1,

(LXg)(E2, E2) = −2[f3 − ez∂yf2],

(LXg)(E2, E3) = ez∂yf3 + f2 + ∂zf2,

(LXg)(E3, E3) = 2∂zf3.

In order to determine the Killing vector fields, we then must solve the system
of PDEs obtained requiring that all the coefficients in the above Lie derivative
are equal to zero.

A straightforward calculation leads to prove that
f1 = −(αx+ β)ez,

f2 = (αy + γ)e−z,

f3 = α, α, β, γ ∈ R.

To determine the affine vector fields, we need to calculate the Lie derivative
of the Levi-Civita connection∇. Staring from (9), we find the following possibly
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non-vanishing components:

(21)



(LX∇)(E1, E1) = [−f1 + 2e−z∂xf3 + ∂zf1 + e−2z∂2xf1]E1

+ [f2 + ∂zf2 + e−2z∂2xf2]E2

+ [∂zf3 − 2f3 − 2e−z∂xf1 + e−2z∂2xf3]E3,

(LX∇)(E1, E2) = [ez∂yf3 + ∂x∂yf1]E1

+ [−e−z∂xf3 + ∂x∂yf2]E2

+ [e−z∂xf2 − ez∂yf1 + ∂x∂yf3]E3,

(LX∇)(E1, E3) = [−e−z∂xf1 + e−z∂x∂zf1 + ∂zf3]E1

+ [−e−z∂xf2 + e−z∂x∂zf2]E2

+ [−e−z∂xf3 + e−z∂x∂zf3 + f1 − ∂zf1]E3,

(LX∇)(E2, E2) = [f1 − ∂zf1 + e2z∂2yf1]E1

+ [−f2 − ∂zf2 − 2ez∂yf3 + e2z∂2yf2]E2

+ [−∂zf3 − 2f3 + 2ez∂yf2 + e2z∂2yf3]E3,

(LX∇)(E2, E3) = [ez∂yf1 + ez∂y∂zf1]E1

+ [ez∂yf2 + ez∂y∂zf2 − ∂zf3]E2

+ [ez∂yf3 + ez∂y∂zf3 + f2 + ∂zf2]E3,

(LX∇)(E3, E3) = [−f1 + ∂2zf1]E1 + [−f2 + ∂2zf2]E2 + [∂2zf3]E3.

In order to determine the affine vector fields, we then must solve the system
of PDEs obtained requiring that all the coefficients in the above Lie derivative
are equal to zero.

A straightforward calculation leads to prove that
f1 = −βxez,
f2 = βye−z,

f3 = β, β ∈ R. �

4. Ricci and curvature collineations vector fields of the Sol3 Lie
group

In this section we completely classify Ricci and curvature collineations vector
fields and affine vector fields of three-dimensional Lorentzian and Riemannian
solvable Lie group (Sol3, g).

4.1. Lorentzian metric

In this subsection we give a full classification of Ricci and curvature col-
lineations vector fields of the Lorentzian Sol3 Lie group. The classifications we
obtain are summarized in the following theorem.



ON THE SYMMETRIES OF THE Sol3 LIE GROUP 531

Theorem 4.1. Let X = f1E1 + f2E2 + f3E3 be an arbitrary vector field on
the Lorentzian Sol3 Lie group.

• X is a Ricci collineation if and only if


f1 = H(x, y, z),

f2 = F (x, y, z),

f3 = α, α ∈ R,

where H and F are any smooth functions on Sol3 Lie group.
• X is a curvature collineation vector field if and only if


f1 = (−αx+ β)ez,

f2 = (αy + γ)e−z,

f3 = α, α, β, γ ∈ R.

Proof. Let X = f1E1 + f2E2 + f3E3 denote an arbitrary vector field on the
Lorentzian Sol3 Lie group, for some arbitrary smooth functions f1, f2, f3 on
Lorentzian Sol3 Lie group. Starting from (5), a direct calculation yields the
following description of the Lie derivative of the Ricci tensor Ric in the direction
of X given by:

(22)



(LXRic)(E1, E1) = 0,

(LXRic)(E1, E2) = 0,

(LXRic)(E1, E3) = −2e−z∂xf3,

(LXRic)(E2, E2) = 0,

(LXRic)(E2, E3) = −2ez∂yf3,

(LXRic)(E3, E3) = −4∂zf3.

Ricci collineations are then calculated by solving the system of PDEs obtained
by requiring that all the above coefficients of LXRic vanish. From equations
given by (LXRic)(E1, E3) = 0, (LXRic)(E2, E3) = 0, and (LXRic)(E3, E3) =
0 we get

f3 = α,

where α ∈ R. And f1, f2 are any smooth functions on Sol3 Lie group.
To determine the curvature collineations, we need to calculate the Lie de-

rivative of the curvature tensor R in the direction of X. Staring from (4), we
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find the following possibly non-vanishing components:

(23)



(LXR)(E1, E2, E1) = [ez∂yf1 − e−z∂xf2]E1 − 2[f3 + e−z∂xf1]E2

+ 2[ez∂yf3]E3,

(LXR)(E1, E2, E2) = 2[f3 − ez∂yf2]E1 + [−ez∂yf1 + e−z∂xf2]E2

+ 2[e−z∂xf3]E3,

(LXR)(E1, E2, E3) = [−ez∂yf3 − f2 − ∂zf2]E1

+ [f1 + e−z∂xf3 − ∂zf1]E2,

(LXR)(E1, E3, E1) = [f1 − ∂zf1 − e−z∂xf3]E1 − 2[f2 + ∂zf2]E2

+ 2[f3 + e−z∂xf1]E3,

(LXR)(E1, E3, E2) = − [f2 + ∂zf2 + ez∂yf3]E1

+ [ez∂yf1 − e−z∂xf2]E3,

(LXR)(E1, E3, E3) = − 2[∂zf3]E1 + [e−z∂xf3 − f1 + ∂zf1]E3,

(LXR)(E2, E3, E1) = − [e−z∂xf3 + f1 − ∂zf1]E2

+ [ez∂yf1 − e−z∂xf2]E3,

(LXR)(E2, E3, E2) = − 2[f1 − ∂zf1]E1 + [f2 + ∂zf2 − ez∂yf3]E2

+ 2[f3 − ez∂yf2]E3,

(LXR)(E2, E3, E3) = − 2[∂zf3]E2 + [ez∂yf3 − f2 − ∂zf2]E3.

In order to determine the curvature collineation vector fields, we then must
solve the system of PDEs obtained requiring that all the coefficients in the above
Lie derivative of the curvature tensor in the direction of X are equal to zero,
which together with equations (LXR)3(E1, E2, E1) = 0, (LXR)3(E1, E2, E2) =
0 and (LXR)1(E1, E3, E3) = 0 gives

f3 = α1, α1 ∈ R.

From the equations given by (LXR)1(E1, E2, E2) = 0 and (LXR)2(E1, E3, E1)
= 0 we get

f2 = α1ye
−z +H(x)e−z + α2

for some arbitrary smooth function H = H(x) on R and α2 ∈ R. Replacing f2
in equation (LXR)2(E1, E3, E1) = 0, we get α2 = 0. Together with equations
(LXR)2(E1, E2, E1) = 0 and (LXR)1(E2, E3, E2) = 0 we get

f1 = −α1xe
z + F (y)ez + α3

for some arbitrary smooth function F = F (y) on R and α3 ∈ R. Replacing f1
in equation (LXR)1(E2, E3, E2) = 0, we get α3 = 0. Then we replace f1 and
f2 in the equation given by (LXR)1(E1, E2, E1) = 0 and we get{

F = α4,

H = α5, α4, α5 ∈ R.
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The final solution of the system of PDEs obtained requiring that all the coeffi-
cients in the above Lie derivative of the curvature tensor in the direction of X
are equal to zero are given by

f1 = (−α1x+ α4)ez,

f2 = (α1y + α5)e−z,

f3 = α1, αi ∈ R. �

4.2. Riemannian metric

In this subsection we give a full classification of Ricci and curvature col-
lineations vector fields of the Riemannian Sol3 Lie group. The classifications
we obtain are summarized in the following theorem.

Theorem 4.2. Let X = f1E1 + f2E2 + f3E3 be an arbitrary vector field on
the Riemannian Sol3 Lie group.

• X is a Ricci collineation if and only if
f1 = ϕ(x, y, z),

f2 = ψ(x, y, z),

f3 = α, α ∈ R,
where ϕ and ψ are any smooth functions on Sol3 Lie group.
• X is a curvature collineation vector field if and only if

f1 = (−αx+ β)ez,

f2 = (αy + γ)e−z,

f3 = α, α, β, γ ∈ R.
Proof. Let X = f1E1 + f2E2 + f3E3 denote an arbitrary vector field on the
Riemannian Sol3 Lie group, for some arbitrary smooth functions f1, f2, f3 on
Riemannian Sol3 Lie group. Starting from (11), a direct calculation yields
the following description of the Lie derivative of the Ricci tensor Ric in the
direction of X given by:

(24)



(LXRic)(E1, E1) = 0,

(LXRic)(E1, E2) = 0,

(LXRic)(E1, E3) = −2e−z∂xf3,

(LXRic)(E2, E2) = 0,

(LXRic)(E2, E3) = −2ez∂yf3,

(LXRic)(E3, E3) = −4∂zf3.

Ricci collineations are then calculated by solving the system of PDEs obtained
by requiring that all the above coefficients of LXRic vanish. From equations
given by (LXRic)(E1, E3) = 0, (LXRic)(E2, E3) = 0, and (LXRic)(E3, E3) =
0 we get

f3 = α,
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where α ∈ R. And f1, f2 are any smooth functions on Sol3 Lie group.
To determine the curvature collineations, we need to calculate the Lie de-

rivative of the curvature tensor R in the direction of X. Staring from (10), we
find the following possibly non-vanishing components:

(25)



(LXR)(E1, E2, E1) = [ez∂yf1 + e−z∂xf2]E1 − 2[f3 + e−z∂xf1]E2

+ 2[ez∂yf3]E3,

(LXR)(E1, E2, E2) = − 2[f3 − ez∂yf2]E1 − [ez∂yf1 + e−z∂xf2]E2

− 2[e−z∂xf3]E3,

(LXR)(E1, E2, E3) = [−ez∂yf3 + f2 + ∂zf2]E1

+ [f1 + e−z∂xf3 − ∂zf1]E2,

(LXR)(E1, E3, E1) = [f1 − ∂zf1 − e−z∂xf3]E1 − 2[f2 + ∂zf2]E2

+ 2[f3 + e−z∂xf1]E3,

(LXR)(E1, E3, E2) = [f2 + ∂zf2 − ez∂yf3]E1

+ [ez∂yf1 + e−z∂xf2]E3,

(LXR)(E1, E3, E3) = − 2[∂zf3]E1 + [e−z∂xf3 − f1 + ∂zf1]E3,

(LXR)(E2, E3, E1) = − [e−z∂xf3 + f1 − ∂zf1]E2

+ [ez∂yf1 + e−z∂xf2]E3,

(LXR)(E2, E3, E2) = 2[f1 − ∂zf1]E1 − [f2 + ∂zf2 + ez∂yf3]E2

− 2[f3 − ez∂yf2]E3,

(LXR)(E2, E3, E3) = − 2[∂zf3]E2 + [ez∂yf3 + f2 + ∂zf2]E3.

In order to determine the curvature collineation vector fields, we then must
solve the system of PDEs obtained requiring that all the coefficients in the
above Lie derivative of the curvature tensor in the direction of X are equal to
zero. A straightforward calculation leads to prove that

f1 = (−α1x+ α2)ez,

f2 = (α1y + α4)e−z,

f3 = α1, αi ∈ R. �

5. Matter collineations vector fields of the Sol3 Lie group

In this section we classify matter collineation vector fields of the Lorentzian
and Riemannian Sol3 Lie group.

5.1. Lorentzian metric

In this subsection we give a full classification of matter collineations vec-
tor fields of the Lorentzian Sol3 Lie group. The classifications we obtain are
summarized in the following theorem.
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Theorem 5.1. Let X = f1E1 + f2E2 + f3E3 be an arbitrary vector field on
the Lorentzian Sol3 Lie group.

• X is a matter collineation vector field if and only if
f1 = (−α1x+ α2)ez,

f2 = (α1y + α3)e−z,

f3 = α1,

where α1, α2, α3 ∈ R.

Proof. Let X = f1E1 + f2E2 + f3E3 denote an arbitrary vector field on
the Lorentzian Sol3 group, for some arbitrary smooth functions f1, f2, f3 on
Lorentzian Sol3 Lie group. Starting from equations (1), (5) and (6), a direct
calculation yields in the Lorentzian Sol3 group, with respect to the orthonormal
basis {Ei}i∈{1,2,3}, the tensor T = Ric− τ

2 g described by:

(26) T =

 1 0 0
0 −1 0
0 0 −1

 .

When we compute the Lie derivative of T with respect to X and we find:

(27)



(LXT )(E1, E1) = 2[f3 + e−z∂xf1],

(LXT )(E1, E2) = −e−z∂xf2 + ez∂yf1,

(LXT )(E1, E3) = −e−z∂xf3 − f1 + ∂zf1,

(LXT )(E2, E2) = 2[f3 − ez∂yf2],

(LXT )(E2, E3) = −ez∂yf3 − f2 − ∂zf2,
(LXT )(E3, E3) = −2∂zf3.

To determine matter collineation we solve the system of PDEs obtained requir-
ing that all the coefficients in the above Lie derivative of the tensor field T in
the direction of X are equal to zero (i.e., LXT = 0), we get that all solutions
coincide with curvature collineation of Lorentzian Sol3 Lie group. �

5.2. Riemannian metric

In this subsection we give a full classification of matter collineations vector
fields of the Riemannian Sol3 Lie group. The classifications we obtain are
summarized in the following theorem.

Theorem 5.2. Let X = f1E1 + f2E2 + f3E3 be an arbitrary vector field on
the Riemannian Sol3 Lie group.

• X is a matter collineation vector field if and only if
f1 = (−α1x+ α2)ez,

f2 = (α1y + α3)e−z,

f3 = α1,
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where α1, α2, α3 ∈ R.

Proof. Let X = f1E1 + f2E2 + f3E3 denote an arbitrary vector field on the
Riemannian Sol3 Lie group, for some arbitrary smooth functions f1, f2, f3 on
Lorentzian Sol3 Lie group. Starting from equations (7), (11) and (12), a di-
rect calculation yields in the Riemannian Sol3 Lie group, with respect to the
orthonormal basis {Ei}i∈{1,2,3}, the tensor T = Ric− τ

2 g described by:

(28) T =

 1 0 0
0 1 0
0 0 −1

 .

When we compute the Lie derivative of T with respect to X and we find:

(29)



(LXT )(E1, E1) = 2[f3 + e−z∂xf1],

(LXT )(E1, E2) = e−z∂xf2 + ez∂yf1,

(LXT )(E1, E3) = −e−z∂xf3 − f1 + ∂zf1,

(LXT )(E2, E2) = −2[f3 − ez∂yf2],

(LXT )(E2, E3) = −ez∂yf3 + f2 + ∂zf2,

(LXT )(E3, E3) = −2∂zf3.

To determine matter collineation we solve the system of PDEs obtained requir-
ing that all the coefficients in the above Lie derivative of the tensor field T in
the direction of X are equal to zero (i.e., LXT = 0), we get that all solutions
coincide with curvature collineation of Riemannian Sol3 Lie group. �
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