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VANISHING OF PROJECTIVE VECTOR FIELDS ON

COMPACT FINSLER MANIFOLDS

Bin Shen

Abstract. In this paper, we give characteristic differential equations

of a kind of projective vector fields on Finsler manifolds. Using these
equations, we prove the vanishing theorem of projective vector fields on

any compact Finsler manifold with the negative mean Ricci curvature,
which is defined in [10]. This result involves the vanishing theorem of

Killing vector fields in the Riemannian case and the work of [1, 14].

1. Introduction

Projective vector fields are a class of important vector fields on differential
manifolds. They include some important concepts such as Killing vector fields,
affine vector fields, etc. All those fields describe some symmetries of the space.
On the other hand, a projective field is related to a projective transformation,
which preserves the geodesics in set-theoretic sense. It is also related to the
Hilbert’s forth problem [11].

In Riemann geometry, a projective flat manifold must be a space form with
constant curvature by the Beltrami’s theorem. This fact somehow restricts
applications of projective fields. However, conformal fields play much more
important roles in Riemann geometry [9]. Even the Killing fields are concerned
more than projective fields [8, 15, 16]. However, in general Finsler spaces, pro-
jective transformations perform much better than conformal transformations.
There are lots of work on projective flat metrics in Finsler geometry [4, 13].
To look into the symmetries and the properties of connections, R. L. Lovas
considered the equivalent characterization equations of affine and projective
fields on Finsler manifolds using the Lie algebra [5]. H. J. Tian also discussed
a vanishing theorem of projective fields [14]. However, H. Akbar-Zadeh had
already studied this topic in [1], which included Tian’s work. We can access
their result in another approach. See Theorem 5.3 below.
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In this article, we consider the Finsler projective fields and give two equiva-
lent differential equations about the Chern connection of some projective vector
fields. From the convenience of analysis, we think the Chern connection is bet-
ter than the Yano’s derivative, which was used in [5].

Theorem 1.1. Let (M,F ) be a Finsler manifold and let V be a vector field on
M . The following statements are equivalent:

i) There are a 0-homogeneous 1-form ψ and a (−1)-homogeneous 2-form
τ such that

V i|j|k − V
pR i

j kp + ysV r|sP
i
j kr = ψjδ

i
k + ψkδ

i
j + τjky

i,(1)

ii) there are a 0-homogeneous 1-form ψ and a (−1)-homogeneous 2-form
τ such that

Vi|j|k + Vj|i|k = 2ψkgij + ψigjk + ψjgik + τikyj + τjkyi(2)

− 2V pCijsR
s
kp − 2ysV r|s(Cijr|k − 2ypP l

k prCijl),

where “|” denotes the horizontal covariant derivative with respect to the Chern
connection. Either one of the above implies that

iii) V is a projective field on M .

We can prove vanishing theorems of projective fields by applying the Bochner
technique on Finsler manifolds to the equations in Theorem 1.1. The most
interesting result is the following.

Theorem 1.2. Let (M,F ) be a compact Finsler manifold with non-positive

mean Ricci curvature R̃icci ≤ 0. Then every projective field V on M is almost
parallel, that is ∇V (y) = λ(x, y)y for some scalar function λ(x, y) on TM , and

R̃icci(V, V ) = 0. Furthermore, if the mean Ricci curvature is negative, then
there is no any nontrivial projective field.

This conclusion improves the result in [1, 14] and can be considered as the
extension of the similar theorem about Killing fields in [10].

2. Finsler manifolds and some concepts

In this section, we will shortly introduce the concepts we need on a general
Finsler manifold.

Let (M,F ) be a Finsler manifold, with F = F (x, y) being the Finsler
metric. F is actually a non-negative function continuously defined on TM
and smoothly defined on T0M := TM \ {0}. We call F a Riemannian met-

ric if F =
√
gij(x)yiyj , where the fundamental tensor locally expressed by

gij = 1
2
∂2F 2

∂yi∂yj is independent of the tangent coordinates y. The Cartan curva-

ture C = Cijkdx
i ⊗ dxj ⊗ dxk is locally given by Cijk = 1

2
∂gij
∂yk

= 1
4

∂3F 2

∂yi∂yj∂yk
,

which vanishes if and only if the metric is Riemannian. Moreover, the mean
Cartan curvature I = Ikdx

k is locally defined by Ik = gijCijk, which also
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vanishes if and only if the metric is Riemannian. A Landsberg curvature
L = Lijkdx

i⊗dxj⊗dxk is locally related to the Cartan tensor by Lijk = Cijk|0
with “|” denoting the horizontal covariant derivative with respect to the Chern
connection. It is obvious to see Lijky

i = Lijky
j = Lijky

k = 0.
The spray G is a special vector field defined on the punched tangent bundle

T0M . It is locally described by

G = yi
∂

∂xi
− 2Gi(x, y)

∂

∂yi
,(3)

where the spray coefficients Gi satisfy Gi(x, λy) = λ2Gi(x, y) for any λ > 0.
If the spray is induced from a Finsler metric, then it is related to the Chern
connection as

Gi = Γijky
jyk, and (Gi)yjyk = Γijk + Lijk.

The Chern connection is the unique affine connection on a Finsler manifold
which is torsion free and almost metric compatible. The Christoffel symbol of
Chern connection is locally defined by

Γlij =
1

2
glk(

δgik
δxj

+
δgjk
δxi
− δgij
δxk

),

where δ
δxi := ∂

∂xi − N j
i
∂
∂yj is called the horizontal derivative. We call N i

j

the nonlinear connection coefficients, which can be obtained from the spray
coefficients by

N i
j =

∂Gi

∂yj
.(4)

[2] provides the definition of Chern-Riemannian curvature tensor locally by

R i
j kl :=

δΓijl
δxk

−
δΓijk
δxl

+ ΓikmΓmjl − ΓilmΓmjk.(5)

One can compute directly to get that

Rijkl +Rjikl = −2CijmR
m
kl,(6)

and

Rklij −Rjikl = − CklmRmji + CjimR
m
kl − CkimRmlj − CljmRmki(7)

− CilmRmjk − CjkmRmil.

The flag curvature is an analog of the sectional curvature in Riemann ge-
ometry, which is defined by

K(Πy) :=
−Rijklyivjykvl

(gikgjl − gilgjk)yivjykvl
,(8)

where Rijkl := R s
i klgsj and Πy = span{y, v} is a section of dimension 2, with

y = yi∂i and v = vi∂i.
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If we define Rikl = ysR i
s kl, then (5) combining with the relation N i

j = ykΓijk
shows that

Rijk =
∂N i

k

∂xj
−
∂N i

j

∂xk
+Ns

k

∂N i
j

∂ys
−Ns

j

∂N i
k

∂ys
.(9)

If we define

Rik := yjR i
j kly

l, Rjk := gijR
i
k = −Rijlkyiyl,

the flag curvature can be concisely expressed by

K(Πy)(v) = F−2Rjkv
jvk.(10)

So Rik or Rjk is also called the flag curvature tensor. It is also denoted by Ry for
short since the flag curvature is obtained by contracting the Chern-Riemannian
curvature tensor with y.

The Chern-non-Riemannian curvature tensor is locally defined by

P i
j kl :=

∂Γijk
∂yl

.(11)

The symmetry of jk in Γijk implies that

P i
j kl = P i

k jl.(12)

A complete lifting of vector field V = V i∂i on a Finsler manifold is denoted
by V̂ and locally defined by

V̂ = V i
∂

∂xi
+ yj

∂V i

∂xj
∂

∂yi
.(13)

For any Finsler metric, the mean Ricci curvature R̃icci is first introduced
in [10], which reduces to the Ricci curvature when the metric is Riemannian.
The related Riemannian metric can be found in [6], which is

aij(x) =

∫
SxM

gij(x, y)ωx =

∫
SxM

∂2F 2

∂yi∂yj
ωx,(14)

where ωx is a volume form on S1 := {ξ ∈ Rn |F (ξ) = 1}. There are some
different volume forms on a Finsler manifold. In this article, we adopt the
Holmes-Thompson volume form. That is,

dVF := σH(x)dx,(15)

σH(x) :=
1

cn−1

∫
SxM

√
det(gij)dν,(16)

dν :=
√

det(gij)
∑
i

(−1)i−1yidy1 ∧ · · · ∧ d̂yi ∧ · · · ∧ dyn,(17)

where “̂” means the term is suppressed and cn−1 denotes the volume of the
Euclidean sphere Sn−1 of dimension (n − 1). We know that dν is the volume
form on the tangent sphere SxM .
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At last, the following mean Ricci curvature can be used to solve a lot of
problems.

Definition 2.1 ([10]). The mean Ricci curvature R̃icci is the integral of the
flag curvature tensor on the indicatrix SxM of each point, i.e.,

R̃icci(v) =
1

cn−1

∫
SxM

K(Πy)(v)

√
det gij√
det aij

dν(18)

=
1

cn−1

∫
SxM

F−2Rjkv
jvk
√

det gij√
det aij

dν,

where aij is the related Riemannian metric defined in (14) and dν is defined in
(17).

3. Projective vector fields on Riemannian manifolds

In this section, we recall some results about the Riemannian projective vector
fields. For the convenience of the reader, we deduce the relations between
different definitions. At last, we give the vanishing theorem of the projective
fields in the Riemannian version without proof.

Let (M, g) be a Riemannain manifold. Denote the Lie derivative by L as
usual. It defines on Riemannian manifolds in [3] that

LV∇(Y,Z) = [V,∇Y Z]−∇[V,Y ]Z −∇Y [V,Z],(19)

where V = V i∂i, Y = Y j∂j and Z = Zk∂k are arbitrary vector fields. Cus-
tomarily, a vector field V is called a projective field if there is a 1-form ψ such
that V satisfies

LV∇(Y, Z) = ψ(Y )Z + ψ(Z)Y.(20)

It is equivalent to the following equations

Vi|j|k + Vj|i|k = 2ψkgij + ψigjk + ψkgij .(21)

From the point of view of the Spray geometry, (19) actually curves the
Lie derivative of Spray [12]. V is a projective vector field if and only if the 1-
parameter transformation generated by V is a locally projective transformation,
which locally preserves the geodesics. So (19) is not simply considered as the
definition. Indeed, it is a formula of projective fields which can be acquired from
computation and the local definition of Lie derivative of Levi-Civita connection
that LV∇(Y,Z) = LV ΓijkY

jZk∂i, which can be calculated by infinitesimal

analysis [14]. We prove the following property.

Proposition 3.1. On any Riemannian manifold, (19) holds for any vector
fields V, Y, Z. Furthermore, V is a projective field, (20) and (21) are equivalent
mutually.



6 B. SHEN

Proof. From the definition of the Lie derivative, we know that

(22) LV Γijk =
∂2V i

∂xj∂xk
+ Γijl

∂V l

∂xk
+ Γilk

∂V l

∂xj
− Γljk

∂V i

∂xl
+ V l

∂Γijk
∂xl

.

On the other hand,

[X,∇Y Z] = [Xi∂i, (Y
j∂jZ

k + Y jZlΓkjl)∂k](23)

=
(
Xi(∂iY

j∂jZ
k + Y j∂i∂jZ

k + ∂iY
jZlΓkjl + Y jZl∂iΓ

k
jl)

− (Y j∂jZ
i∂iX

k + Y jZlΓijl∂iX
k)
)
∂k,

∇[X,Y ]Z = ∇(Xi∂iY j−Y i∂iXj)∂j (Z
k∂k)

(24)

= (Xi∂iY
j∂jZ

k +Xi∂iY
jZlΓkjl − Y i∂iXj∂jZ

k − Y i∂iXjZlΓkjl)∂k,

and

∇Y [X,Z] = ∇Y i∂i(X
j∂jZ

k − Zj∂jXk)∂k(25)

= Y i(∂iX
j∂jZ

k +Xj∂i∂jZ
k − ∂iZj∂jXk − Zj∂i∂jXk

+Xj∂jZ
lΓkil − Zj∂jX lΓkil)∂k.

So (19) follows from (22)-(25) directly.
Furthermore, suppose V is a projective field. From [11], we know it preserves

the geodesics and is equal to

(26) LVGi = Pyi,

where P is a y-homogeneous function of degree one. Taking the second deriv-
ative of y, noticing that V is a Riemannian projective field and LV yi = 0, we
get

(27) LV Γijk = Pjδ
i
k + Pkδ

i
j .

Hence (20) holds with ψi = Pi. Since the manifold is Riemannian, Pi is only
depend on x, because Pjk = 0 for any j, k. Therefore, ψ = ψidx

i is a 1-form.
Contracting (27) with yiyj yields (26).

It follows from (20) and (19) that

(28)
1

2
(∂iV

lΓkjl + ∂jV
lΓkil + ∂i∂jV

k + V l∂lΓ
k
ij − ∂lV kΓlij) =

1

2
(ψjδ

k
i + ψiδ

k
j ),

which implies that

(29) V i|j|k − V
pR i

j kp = ψjδ
i
k + ψkδ

i
j ,

and

(30) Vi|j|k − V pRjikp = ψjgik + ψkgij .

Adding up (30) and the equation exchanged i, j in (30) yields (21).
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Conversely, suppose (21) holds. We can obtain from the Ricci identity and
the first Bianchi identity that

2ψkgij + ψjgik + ψigjk

= Vi|j|k + Vj|i|k

= Vi|j|k + Vj|k|i + VmR
m
j ki

= Vi|j|k − Vk|j|i + 2ψigjk + ψjgik + ψkgij + VmR
m
j ki

= Vi|j|k − Vk|i|j − VmR m
k ji + 2ψigjk + ψjgik + ψkgij + VmR

m
j ki

= Vi|j|k + Vi|k|j − 2ψjgik − ψigjk − ψkgij
− VmR m

k ji + 2ψigjk + ψjgik + ψkgij + VmR
m
j ki

= Vi|j|k + Vi|j|k + VmR
m
i kj − 2ψjgik − ψigjk − ψkgij

− VmR m
k ji + 2ψigjk + ψjgik + ψkgij + VmR

m
j ki

= 2Vi|j|k + Vm(R m
j ki −R m

k ji +R m
i kj) + ψigjk − ψjgik

= 2Vi|j|k − 2VmR
m
i jk + ψigjk − ψjgik

which implies (30). �

It follows from Proposition 3.1 and the definition of Ricci curvature that:

Theorem 3.2. Suppose (M, g) is a compact Riemannian manifold with non-
positive Ricci curvature Ric ≤ 0. Then every projective field V is parallel and
Ric(V, V ) = 0. Furthermore, if the Ricci curvature is negative Ric < 0, then
there is no nontrivial (nonzero) projective field.

The proof of the theorem can be reduced from the proof of the vanishing
theorem of the Finsler version, which will be presented in the next section. So
we omit it.

4. Projective vector fields on Finsler manifolds

As emphasised in Section 1, through this paper, we use the Chern connection.
We denote the horizontal covariant derivative about the Chern connection by
“|” and the vertical covariant derivative about the Chern connection by “; ”.
Noticing the infinitesimal coordinate transformation on TM

(31) xi = xi + V idt, yi = yi + yj
∂V i

∂xj
dt,

and (11), the Lie derivative of Chern-Riemannian connection coefficients with

respect to the complete lifting V̂ of V is

(32) LV̂ Γijk =
∂2V i

∂xj∂xk
+Γijl

∂V l

∂xk
+Γilk

∂V l

∂xj
−Γljk

∂V i

∂xl
+V l

∂Γijk
∂xl

+ys
∂V l

∂xs
P i
j kl.

The reason why we use the Chern connection is based on the Bochner technique
in Finsler geometry [10]. Unfortunately, we don’t get a similar expression of
the Lie derivative of the Chern connection LV̂∇ as brief as (19). Although we
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can get a formula by lifting Y,Z and V into the TTM (or HTM) and then
projecting back onto TM several times, which seems too artificial. We think
it is a nice work for anyone to find a natural and integral way to express the
Lie derivative of the Chern connection LV̂∇.

If V is a projective field on a Finsler manifold (M,F ), then

(33) LV̂G = Pyi
∂

∂yi
, i.e., LV̂G

i = Pyi,

where P = P (x, y) is a y-homogeneous function of degree one [5].
For applications, we focus on the following projective vector fields on Finlser

manifolds.

Definition 4.1. A vector field V on a Finsler manifold (M,F ) is called a
strongly projective vector field if the complete lifting of V satisfies that

(34) 2LV̂ Γijk = Pjδ
i
k + Pkδ

i
j + Pjky

i,

where Pi = ∂P
∂yi and Pij = ∂2P

∂yi∂yj .

Hence a strongly projective vector field satisfies that

(35) LV̂∇(Y,Z) = ψ(Y )Z + ψ(Z)Y + τ(Y,Z)l̂,

where ψ = ψidx
i is a 1-form with ψi = Pi, τ = τijdx

i ⊗ dxj is a 2-form with

τij = 1
2Pij and l̂ = yi ∂

∂yi .

Remark 4.2. It follows from LV̂ yi = 0 and Gi = Γijky
jyk that (34) implies

(33). It means a strongly projective vector field must be a projective vector
field.

Now we give the following lemma.

Lemma 4.3. V is a strongly projective field on Finsler manifolds if and only
if there are a 0-homogeneous 1-form ψ and a (−1)-homogeneous 2-form τ such
that

(36) V i|j|k − V
pR i

j kp + ysV r|sP
i
j kr = ψjδ

i
k + ψkδ

i
j + τjky

i,

where R i
j kp and P i

j kr are given in (5) and (11) respectively. Therefore,

Vi|j|k + Vj|i|k = 2ψkgij + ψigjk + ψjgik + τikyj + τjkyi(37)

− 2V pCijsR
s
kp − 2ysV r|s(Cijr|k − 2ypP l

k prCijl),

where Rskp are given in (9) and Cijk are components of the Cartan tensor.

Proof. It follows directly that V i|j = ∂V i

∂xj + V lΓilj , and

V i|j|k =
∂2V i

∂xj∂xk
+
∂V l

∂xk
Γilj + V l(

∂Γilj
∂xk

−Nr
k

∂Γilj
∂yr

)(38)

+
∂V l

∂xj
Γilk + V rΓlrjΓ

i
lk −

∂V i

∂xl
Γljk − V rΓirlΓljk,
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which can deduce the following equation by comparing with (32),

(39) V i|j|k = LV̂ Γijk −
∂V l

∂xs
ysP i

j kl − V lNr
k

∂Γilj
∂yr

+ V rΓlrjΓ
i
lk − V rΓirlΓljk.

On the other hand

V pR i
j kp = V p(

δΓipj
δxk

−
δΓijk
δxp

+ ΓljpΓ
i
kl − ΓilpΓ

l
jk)(40)

= V p(
∂Γipj
∂xk

−Nr
k

∂Γipj
∂yr

−
∂Γijk
∂xp

+Nr
p

∂Γijk
∂yr

+ ΓljpΓ
i
kl − ΓilpΓ

l
jk).

Therefore,

V i|j|k − V
pR i

j kp = LV Γijk −
∂V l

∂xs
ysP i

j kl − V pNr
p

∂Γijk
∂yr

(41)

= LV Γijk − (
∂V r

∂xs
ys + V pΓrpsy

s)P i
j kr

= LV Γijk − ysV r|sP
i
j kr,

which implies (36) provided that V is a projective field.
Applying the analogous method in the Riemannian case, one can easily

obtain that

Vi|j|k + Vj|i|k = 2ψkgij + ψigjk + ψjgik + V p(Rjikp +Rijkp)(42)

+ ysV r|s(Pjikr + Pijkr) + τjkyi + τikyj

= 2ψkgij + ψigjk + ψjgik − 2V pCijsR
s
kp

− ysV r|s(Pjikr + Pijkr) + τjkyi + τikyj .

It follows from (11) that

Pjikr = gsiP
s
j kr = gsi

∂Γsjk
∂yr

=
∂

∂yr
(gsiΓ

s
jk)− 2ΓsjkCsir,

and

Pijkr =
∂

∂yr
(gsjΓ

s
ik)− 2ΓsikCsjr.

Then
∂

∂ys
(gsiΓ

s
jk + gsjΓ

s
jk) =

∂

∂yr
δ

δxk
Gij(43)

=
δ

δxk
(
∂

∂yr
gij)− (

∂

∂yr
N l
k)

∂

∂yl
gij

= 2
δ

δxk
Cijr − 2ΓlkrCijl − 2ypP l

k prCijl,

which yields

Pjikr + Pijkr = 2(
δ

δxk
Cijr − ΓlkrCijl − ΓsjkCsir − ΓsikCsjr − ypP l

k prCijl)(44)

= 2Cijr|k − 2ypP l
k prCijl.
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Hence (37) follows from (42) and (44). �

Before presenting the analogous characterizations of Finsler strongly projec-
tive vector fields as the ones in the Riemmannian geometry, we introduce the
following Ricci identity in Finsler geometry.

Lemma 4.4 (Ricci type formula [10]). For any vector field v = vi(x, y)∂i on
a Finsler manifold, the exchange of horizontal covariant derivatives about the
Chern connection satisfies

(45) vj|k|l − vj|l|k = Rm
j klvm +Rmklvj;m,

where Rm
j lk is the Chern-Riemannian curvature tensor.

One can deduce from Lemma 4.4 that for any vector V = V i(x)∂i,

(46) Vi|j|k − Vi|k|j = R m
i jkVm + 2RmkjVpC

p
im.

Now we prove Theorem 1.1, which is equal to:

Theorem 4.5. Suppose V is a strongly projective field on Finsler manifolds.
(36) and (37) are equivalent mutually.

Proof. We only need to prove that (37) implies (36) by Lemma 4.3. It follows
directly from (37) and Lemma 4.4 that

Vi|j|k + Vj|i|k

= Vi|j|k + Vj|k|i + VmR
m
j ik + 2RmikVpC

p
mj

= Vi|j|k + Vk|j|i + VmR
m
j ik + 2RmikVpC

p
mj + 2ψigjk + ψjgik + ψkgij

+ τijyj + τijyk − 2V pCkjsR
s
ip − ysV r|s(Pjkir + Pkjir)

= Vi|j|k − Vk|i|j − VmR m
k ji − 2RmjiVpC

p
mk + VmR

m
j ik + 2RmikVpC

p
mj

+ 2ψigjk + ψjgik + ψkgij + τijyj + τijyk

− 2V pCkjsR
s
ip − ysV r|s(Pjkir + Pkjir)

= Vi|j|k − Vi|k|j − VmR m
k ji − 2RmjiVpC

p
mk + VmR

m
j ik + 2RmikVpC

p
mj

− 2ψjgik − ψigjk − ψkgij − τjiyk − τjkyi + 2V pCiksR
s
jp

− ysV r|s(Pikjr + Pkijr) + 2ψigjk + ψjgik + ψkgij + τijyj + τijyk

− 2V pCkjsR
s
ip − ysV r|s(Pjkir + Pkjir)

= Vi|j|k + Vi|j|k + VmR
m
i kj + 2RmkjVpC

p
mi − VmR

m
k ji − 2RmjiVpC

p
mk

+ VmR
m
j ik + 2RmikVpC

p
mj − 2ψjgik − ψigjk − ψkgij − τjiyk − τjkyi

+ 2V pCiksR
s
jp − ysV r|s(Pikjr + Pkijr) + 2ψigjk + ψjgik + ψkgij

+ τijyj + τijyk − 2V pCkjsR
s
ip − ysV r|s(Pjkir + Pkjir)

= 2Vi|j|k − ψjgik + ψigjk + τikyj − τjkyi
+ Vm(R m

i kj −R m
k ji +R m

j ik) + 2V l(ClmiR
m
kj − ClmkRmji + ClmjR

m
ik)

+ 2V p(CiksR
s
jp − CkjsRsip) + ysV r|s(Pikjr + Pkijr − Pjkir − Pkjir).
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Plugging it back into (37) yields that

2(ψkgij + ψjgik + τjkyi)(47)

= 2Vi|j|k + Vm(R m
i kj −R m

k ji +R m
j ik)

+ 2V l(ClmiR
m
kj − ClmkRmji + ClmjR

m
ik)

+ 2V p(CiksR
s
jp − CkjsRsip + CijsR

s
kp)

+ ysV r|s(Pikjr + Pkijr − Pjkir − Pkjir + Pjikr + Pijkr)

= 2Vi|j|k +A+ B + C +D.

By (7), we can compute that

A = Vm(R m
i kj −R m

k ji +R m
j ik)(48)

= −2V mRkmji

= −2V mRjikm + 2V m(CkmsR
s
ji − CjisRskm + CkisR

s
mj + CmjsR

s
ki

+ CimsR
s
jk + CjksR

s
im).

From (12), it reduces that

D = ysV r|s(Pikjr + Pkijr − Pjkir − Pkjir)(49)

= 2ysV r|sPjikr.

Plugging (48) and (49) into (47) yields (36). �

5. Vanishing theorem of projective vector fields

In this section, we present the vanishing theorem of projective fields on
Finsler manifolds. Firstly, we need the definition of the degenerate elliptic
operator 4SD in Finsler geometry [10].

Definition 5.1 ([10]). A degenerate elliptic operator4SD is defined as the sec-
ond order derivative about the Chern connection contracting with a symmetric

semi-positive definite matrix aij = yiyj

F 2 , i.e.,

(50) 4SD :=
ykyl

F 2
(∇ δ

δxk
∇ δ

δxj
−∇∇ δ

δxk

δ

δxj
),

where ∇ means the horizontal covariant derivative with respect to the Chern
connection.

The descriptions of strongly projective vector field are enough to prove van-
ishing theorems of projective vector field.

Lemma 5.2. A Finsler projective vector field V satisfies that

(51) Vi|0|0 + V mRim = 2ψ(y)yi.
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Proof. Let V be a projective vector field on (M,F ). Then V satisfies that
(33) which is equal to yjykLV̂ Γijk = Pyi. Since (Gi)yjyk = Γijk + ypP i

p jk and
LV̂ yp = 0, a projective vector field satisfies that

(52) ykLV̂ Γijk = ψjy
i + Pδij ,

where ψj = ∂P
∂yj . According to (41), (52) is equal to

(53) yj(Vi|j|k − V pRjikp + ysV r|sPjikr − y
jψjgik − ψkyi) = 0,

or

(54) yk(Vi|j|k − V pRjikp + ysV r|sPjikr − y
jψjgik − ψkyi) = 0.

Interchanging i, j in (54) and adding the two equations, one can obtain that

yk[Vi|j|k + Vj|i|k + 2V pCijsR
s
kp + 2ysV r|s(Cijr|k − 2ypP l

k prCijl)(55)

− 2ψkgij − ψigjk − ψjgik] = 0.

Applying Lemma 4.4 to (56) yields that

yk[Vi|j|k + Vj|k|i +R m
j ikVm + 2RmkiVpC

p
jm + 2V pCijsR

s
kp(56)

+ 2ysV r|s(Cijr|k − 2ypP l
k prCijl)− 2ψkgij − ψigjk − ψjgik] = 0.

Contracting (56) with yj yields

(57) Vi|0|0 + V0|0|i + V mRim = 3ψ(y)yi + F 2ψi.

On the other hand, contracting (53) with yi, we find that

(58) V0|0|k − yjψjyk − ψkF 2 = 0.

Plugging (58) back into (57) yields (51). �

We now prove the following theorem by using the flag curvature, which can
be considered as the generalization of Tian’s result in [14]. This work has also
been contained in [1]. However, the method we utilized is different and more
general.

Theorem 5.3 ([14]). Let (M,F ) be a compact Finsler manifold with non-
positive flag curvature. Suppose V is a projective vector field on M . Then

Ry(V, V ) = 0, and ∇V (y) = λ(x, y)y,

where λ(x, y) is a scalar function on TM . Moreover, there is no nontrivial
(nonzero) projective vector field on compact Finsler manifold M with negative
flag curvature.

Proof. Taking derivatives with respect to the Chern connection of |V |2 shows

Dk|V |2 = 2Vi|kV
i, and DlDk|V |2 = 2Vi|kV

i
|l + 2V iVi|k|l.

One can obtain from Lemma 5.2 that

4SD|V |2 = 2|∇V (
y

F
)|2 +

2V i

F 2
Vi|0|0(59)
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= 2|∇V (
y

F
)|2 − 2V i

F 2

(
V mRim − 2ψ(y)yi

)
= 2|∇V (

y

F
)|2 + 4ψ(

y

F
)
V0
F
− 2Ry(V, V ).

On the other hand, taking derivatives with respect to the Chern connection
of V 2

0 shows

DkV
2
0 = 2V0Vi|ky

i, and DlDk(V 2
0 ) = 2Vj|lVi|ky

iyj + 2V0y
iVi|k|l.

According to Lemma 5.2, it provides that

(60) 4SD(
V0
F

)2 = 2(Vi|j
yi

F

yj

F
)2 + 4

V0
F
ψ(

y

F
).

Combing (59) and (60), we get

(61) 4SD
(
|V |2 − (

V0
F

)2
)

= 2

(
|∇V (

y

F
)|2 − (Vi|j

yi

F

yj

F
)2
)
− 2Ry(V, V ).

By the Cauchy-Schwartz inequality, one can find

(62) |V |2 − (
V0
F

)2 ≥ 0, and |∇V (
y

F
)|2 − (Vi|j

yi

F

yj

F
)2 ≥ 0.

When the flag curvature Ry is negative, the right hand side of (61) is strictly
positive, unless the flag curvature Ry vanishes along V , that is Ry(V, V ) = 0.

Since the manifold is compact, at the maximum point of |V |2 − (V0

F )2, the left
hand is non-positive, which implies Ry(V, V ) = 0, i.e., V = 0 is a trivial vector
field.

When the flag curvature Ry is non-positive, then 4SD
(
|V |2 − (V0

F )2
)
≥ 0.

By the strong maximum principle of the degenerate elliptic operator [7, 10],
|V |2 − (V0

F )2 is a constant on the manifold. Plugging it back into (61) shows
that

|∇V (
y

F
)|2 − (Vi|j

yi

F

yj

F
)2 = 0, and Ry(V, V ) = 0.

The former equation holds if and only if the two vectors are linearly dependent,
that is ∇V ( yF ) = λ(x, y) yF for some scaler λ(x, y). Both ∇V (y) = λ(x, y)y and
Ry(V, V ) = 0 are the conclusions of Theorem 1.1 in [14]. �

One of the conclusion in Theorem 5.3 is ∇V (y) = λ(x, y)y for some scalar
function λ(x, y) on TM . We recall that a vector on Riemannian manifold
(M, g,∇) is said to be parallel if ∇V = 0 with respect to the Levi-Civita
connection. So we give the following definition.

Definition 5.4. A vector field V on a Finsler manifold (M,F ) is called almost
parallel if ∇V (y) = λ(x, y)y for some scalar function λ(x, y) on TM . In our
theorem, ∇ denotes the Chern connection.

Using the terminology in Definition 2.1, we can further get Theorem 1.2
which reduces to Theorem 3.2 when the manifolds are Riemannian.



14 B. SHEN

Proof of Theorem 1.2. Taking integral of both sides in (61) on the sphere bun-
dle SM yields that

0 =

∫
SM

4SD
(
|V |2 − (

V0
F

)2
)
dω(63)

= 2

∫
SM

(
|∇V (

y

F
)|2 − (Vi|j

yi

F

yj

F
)2
)
dω − 2

∫
SM

Ry(V, V )dω,

where dω is the volume form on SM , which can induce the Holmes-Thompson
volume form on M . The left hand side of (63) is equal to zero by the self-adjoint
property of the 4SD [10]. (63) is equal to

0 =

∫
SM

4SD
(
|V |2 − (

V0
F

)2
)
dω(64)

= 2

∫
SM

(
|∇V (

y

F
)|2 − (Vi|j

yi

F

yj

F
)2
)
dω

− 2

∫
M

[∫
SxM

Ry(V, V )

√
detgij√
detaij

dν

]√
detaijdx

= 2ϑ− 2

∫
M

R̃icci(V, V )
√

detaijdx,

where ϑ =
∫
SM

(|∇V ( yF )|2 − (Vi|j
yi

F
yj

F )2)dω is non-negative.

If the mean Ricci curvature is negative, i.e., for any V 6= 0, R̃icci(V, V ) < 0,
then (64) becomes

(65)

0 =

∫
SM

4SD
(
|V |2 − (

V0
F

)2
)
dω

= 2ϑ− 2

∫
M

R̃icci(V, V )
√

detaijdx > 0.

It implies

(66)

∫
M

R̃icci(V, V )
√

detaijdx = 0, i.e., R̃icci(V, V ) = 0,

hence V = 0 is a trivial vector field. When the mean Ricci curvature is non-
positive, then (64) becomes

(67)

0 =

∫
SM

4SD
(
|V |2 − (

V0
F

)2
)
dω

= 2ϑ− 2

∫
M

R̃icci(V, V )
√

detaijdx ≥ 0.

It implies that

(68) R̃icci(V, V ) = 0, and ϑ = 0,
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which means

(69) |∇V (
y

F
)|2 = (Vi|j

yi

F

yj

F
)2.

By the equality condition of the Cauchy-Schwartz inequality, we obtain again
that

Vi|j
yi

F
= λ(x, y)

yi

F
,

equivalently, it is
∇V (y) = λ(x, y)y,

where λ(x, y) is a scalar function on TM . �

Remark 5.5. Theorem 1.2 implies Theorem 3.2, and Theorem 3.2 contains the

Killing vanishing result in [15]. Therefore, the mean Ricci curvature R̃icci,
which reduces to the Ricci curvature in Riemann geometry, is a suitable con-
dition in the research of vanishing properties in Finsler geometry,
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