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TOPOLOGICAL ASPECTS OF THE THREE
DIMENSIONAL CRITICAL POINT EQUATION

JEONGWOOK CHANG

Abstract. Let (M™,g) be a compact oriented Riemannian man-
ifold. It has been conjectured that every solution of the equation
zg = Dgdf — Agfg — fry is an Einstein metric. In this article, we
deal with the 3 dimensional case of the equation. In dimension 3, if
the conjecture fails, there should be a stable minimal hypersurface
in (M 3 g). We study some necessary conditions to guarantee that

a stable minimal hypersurface exists in M3,

1. Introduction

It is an important problem in differential geometry to find a canoni-
cal Riemannian metric on a given manifold. A metric of constant Ricci
curvature has been considered as one of the canonical metrics by differ-
ential geometers. But it is still unsolved whether there exists a metric of
constant Ricci curvature on a given manifold. One of the approaches to
get a metric of constant Ricci curvature on a compact, oriented manifold
M™ is the following.

Let M be the set of Riemannian metrics on M™ with volume 1. We

look into the total scalar curvature functional S : M; — R given by
S(g) = / sqdvoly,
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where s, is scalar curvature function of g. Also, it is well known that any
compact manifold carries many metrics with constant scalar curvature.
Let = = {g € My]|s, is constant}. A standard variational technique
tells us that the metric g is critical of S restricted to Z if and only if,

for some function f on M™,
(1.1) 29 = Dgydf —Agfg— fry

holds, where 4 is the Ricci tensor and z; = r, — (5,/n)g is the traceless
Ricci tensor. We call the equation (1.1) the critical point equation.
Note that f = 0 leads an Einstein metric trivially. Now the following

conjecture arises naturally.

Conjecture 1.1. If there is a non-zero function f satisfying (1.1),

then the metric g is Finstein.

Now we assume that (1.1) has a non-zero solution on M3 throughout
this article. We refer to [1] for details on Conjecture 1.1. As a remark,
M. Obata showed that the metric g in Conjecture 1.1 should be iso-
metric to the standard sphere S™(See [6]). But unfortunately, it is even
not known whether the metric is homeomorphic to S or not. Related
with this topological observation, we are interested in the stable minimal
hypersurfaces in a three dimensional manifold M3. Since the existence
of stable minimal hypersurfaces in M3 corresponds to the existence of
non-zero elements of Ho(M3,Z), the existence of stable minimal hyper-
surfaces would be a topological obstruction for M* to have an Einstein

metric. Now, let ¢ be a function on M3 satisfying the following equation.
(1.2) 0= Dydp — Agpg — pryg

In [4], S. Hwang proved that every compact stable minimal hypersurface
in M3 should be contained in the set ' = ¢~1(0) for some non-zero
function ¢ satisfying (1.2). Note that such a set I' is totally geodesic
submanifold of M3(See [2]).
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In this article, we study some properties of a compact stable minimal
hypersurface ¥ in M3. To do this, we observe a function f satisfying
(1.1) and a function ¢ satisfying (1.2) on ¥ simultaneously. And we find
f , another solution function of (1.1) obtained from f and ¢. We hope
that this analysis would help the efforts towards proving the nonexis-

tence of possible compact stable minimal hypersurfaces in M3.

2. Relation between solutions of (1.1) and (1.2)

The consideration of the two equations (1.1) and (1.2) at the same
time gives us a lot of advantages to studying Conjecture 1.1. The fol-

lowing Theorem 2.1 is one of the examples. Let
S =Uj %,

I'=u)_,T;,

where X; and I'; are connected components of ¥ and I' respectively.
Since ¥ C I', we can arrange the indices satisfying ¥; C T; for 1 < ¢ <
I<J.

Theorem 2.1. ¥ #T.

Proof. First, note that ¢ is an eigenfunction of A since Ap=—(s4/2)¢.
Hence I is the nodal set(the boundary of the nodal domain) of ¢, and
it is well known that ¢ has no critical points in I'(See [2]), i.e., |dp| # 0.
Furthermore, |dy| is constant on each component I'; of I because, for
& eTTy, (1.2) gives

£dp, dp) = 2(Dedp, dp) = —s4p(¢, dp) + 2ryp(€,dp) = 0.

So we can conclude that for some positive constant c;,

d = ¢;.
ISOIFi ci
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Let Mo , = {z € M3|p(z) < 0}. Then the boundary of Mo , is T". The
following equation can be easﬂy deduced from the facts Ap = —(s4/2)¢
and Af = —(s¢/2)f.

(2.1) /M fAp = /Mo,w‘pAf

And Green’s formula with a unit normal vector field dy/|dp| on I gives

the following two equations.

(2.2) /MO

ey [ ear=[odgh- [ wea=-[ @

By combining (2.1), (2.2), and (2.3), we can get

/Ffldwl 0.

Now suppose ¥ =TI'. Then X; = T'; and from the above calculation, we

rae= [ flel - [ . de)

' e

have
(2.4) OZ/Ffld@I:Z/and@I=ZCi/Fif=ZCi/Eif<0-

The last inequality comes from the fact that 3 should be contained
in the set {z € M3|f(z) < —1}(See [4]). So the inequality (2.4) is a

contradiction, and it completes the proof. O

Just for simplicity, we assume that I' is connected until the end of
Corollary 3.1. Let f be a solution of (1.1) and ¢ be a solution of (1.2).
It was proved that (dy,dy) and (df,dy) are constant along I'(See [4]).

Hence we have the following.

(2.5) <|df Aoy

df]’ o]’ ~ 1df]
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where C is a constant. From this equation, we know that |df| times the

cosine of the angle between df and dy is constant on I'. Now let

(df,d)|
(dip, do)| 1 ’

Since (dip, dp) and (df,dp) arc constant on T', it can be easily checked

(26) Fot-

that df is tangent to I'. So, we can get the following Lemma.

Lemma 2.1. For a solution y of (1.2), there exists a solution f of
(1.1) such that (df,dg) =0 onT.

Though looking concise, Lemma 2.1 hides two cases which are geo-
metrically opposite each other. Obviously, the equation (d f ,dp) =0
holds when (1) df = 0, or (2) df # 0 and df L dp. Now if we look at
(2.6) again with the condition that df is parallel to dyp, then Lemma 2.1
imples df = 0. Furthermore, in this case, the left hand side of (2.5) is
constant, so |df| is also constant. From this observation, though looking
more complicated, it is useful that Lemma 2.1 is re-told geometrically

as the following.

Lemma 2.2. For a solution f of (1.1) and a solution ¢ of (1.2), on
L,
(1) df is parallel to dy, or
(2) df is not parallel to dy, and in this case we can get another solution

f of (1.1) such that df # 0 and df L dy.

Proof. Let f be any non-zero solution of (1.1) and suppose that df
is not parallel to dyp on I'. Then df cannot be described as k dy for any

constant k, hence

(df, dp)| do £0.

A =dr- (d, dp)

r

And the property of d f L dy can be easily checked, it completes the
proof. O
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Remark 2.1. The condition that df and dy are parallel to each other

actually means that

a _ de
4] = Fagp 0

But it can be easily checked that if ¢ is a solution of (1.2), then so

(2.7)

is —p. So we can use the term ‘parallel’ only if two vectors have the
same direction, i.e., we can take only the + sign in (2.7) without loss of

generality. If |df| = 0, we just regard f as f.

3. Properties of X

In this section, we deal with the only case of df is parallel to dp on T'.
We know that |df| is constant on I" as explained in the previous section.
Furthermore, since df/|df| = dyp/|dp| on T from our assumption, we
get df =0 on I from Lemma 2.1. Now we compute Ddf, the Hessian
matrix of f, on I'. Since f is also a solution function of (1.1), f satisfies

the following equation.

(3.1) Zg = ngf - Agfg - ng

Let {X1, X3,Y} be an orthonormal frame on I' such that X;’s are tan-
gent to I'. So Y should be a unit normal vector field on I'. On the other

hand, df /|df| = dy/|dg| is also a unit normal vector field on I'. Hence
we can take df /|df| =Y.

Lemma 3.1. Ap=0onT.

Proof. On T, ¢ satisfies (1.2) with ¢ = 0. By taking the trace of the
both sides of (1.2), we have 0 = Ap — 3Ayp, i.e., Ap = 0. O

Theorem 3.1. On T,

0
Ddf=1| o
0

o o O
o
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Proof. The following two equations are directly derived from the

property of |df| = 0 on T'.

(Dx,df,X;) =0
(Dx,df,Y) =0

The following is just the equation (3.1) in the case of 3 dimension.

(3.2) (1+ f)zy = Ddf + %g

(From (3.2), we have the following equations.

(3.3) (1 + f)z(Xs, X3) = (Dx.df, X;) + %
(34) (1+ Pz(Y,Y) = (Dydf,Y) + _éi

Since ), 2(X;, Xi) + 2(Y,Y) = 0, By adding the equations (3.3) and
(3.4), we get

Corollary 3.1. T consists of local minimum points of f.

Proof. Since ¥ C T, by Theorem 3.1, Dd f is also given by the fol-

lowing on ¥.

00 0
Ddf=]00 0
0 0 =3

But we know that ¥ should be contained in the set {z € M3|f(z) <
—1}(See [4]). So, _—329—f > 0, hence Ddf is non-negative. We already
pointed that df = 0 on ¥. So we can conclude that every point p € ¥

is a local minimum point of f. a
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Now we consider the general case that ¥ consists of the connected
components ¥;’s and I consists of the connected components I';’s. Sup-
pose that df is parallel to dp on I', and let

(3.5) fi=f- (40,
' P T gy,

It is easily checked that f; is a solution of the equation (1.1) and |d fil=0
on I; for all 1 < 5 < J. Since all of the calculations of this section are
local arguments, we can easily formulated the followings. And the proofs

of them are actually done above.

Theorem 3.2. Let I' = U;I’;. On Ty,

00 0
pDdfj=|l 00 o |,
00 =l

where f] is obtained from the same manner as (3.5)

Corollary 3.2. Let ¥ = U,;%;. Forall1 <1i <1, ¥; consists of local

minimum points of f;.

Remark 3.1 Finally we shortly remark that, for a component %; of
¥, there exists a solution of the equation (1.1) such that X; should
be contained in a level set of the solution function. In fact, since %;
consists of local minimum points of fi, it is easily checked that ¥; C
{z € M3| fi(z) = —a;} for some constant a; > 1.
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