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Abstract. In this paper, we characterize some semi-invariant submani-
folds of codimension 3 with almost contact metric structure (¢, £, g) satisfying
£¢V =0 in a nonflat complex space form, where V denotes the Riemannian
connection induced on the submanifold, and £¢ is the operator of the Lie
derivative with respect to the structure vector field €.

0. Introduction

A submanifold M is called a semi-invariant submanifold of a
Kaehlerian manifold M with complex structure if there exists a
differentiable distribution A : p — A, C M, on M such that
A is J-invariant and the complementary orthogonal distribution
AL is totally real and dimAt = 1, where M, denote the tan-
gent space at each point p in M ([2], [14], [16]). In this case,
M admits an induced almost contact metric structure (¢,&,g).
A typical example of a semi-invariant submanifold is real hyper-
surfaces. Furthermore, new examples of nontrivial semi-invariant
submanifolds in a complex projective space CP™ are constructed
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in {7] and [15]. Therefore we may except to generalize some re-
sults which are valid in a real hypersurface to a semi-invariant
submanifold.

For the real hypersurface case, when M is a nonflat complex
space form, many results are known. Two of them, Okumura
([11]) and Montiel-Romero ([9]) characterized real hypersurfaces
of type A; and A, in a complex space form M,,(c),c # 0 by the
property that the shape operator 4 and structure tensor field ¢
commute. Namely , they proved the followings respectively

THEOREM O ([11]). Let M be a connected real hypersurface
of a complex projective space CP™. If M satisfies A = A¢, then
M is locally congruent to one of the following spaces :

(A1) a geodesic hypersphere (that is, a tube of radius r over a
hyperplane CP™~1, where 0 < r < %),

(A2) a tube of radius r over a totally geodesic CP*, (1 < k <
n—2), where 0 <r <m/2.

THEOREM MR ([9]). Let M be a connected real hypersurface
of a complex hyperbolic space CH™. If M satisfies pA = A¢, then
M is locally congruent to one of the following spaces :

(Ag) a Montiel tube,

(A1) a tube of a totally geodesic hyperplane CH* (k = 0 or
n—1),

(Ag) a tube of totally geodesic CH*, (1 <k <n —2).

We denote by V the Levi-Civita connection with respect to
induced Riemannian metric tensor g on M. Then, it is proved in
[3] that another characterization of real hypersurfaces of type A;
and A; In a nonflat complex space form is given. More specifically,
Choe and Lee proved the following

THEOREM CL ([3]). Let M be a connected real hypersurface
of a nonflat complex space form. If M satisfies £V = 0, then M
is of type Ag, A1 or Ay, where £, denotes the operator of the Lie
derivative with respect to the structure vector §.

On the other hand, semi-invariant submanifolds of codimension
3 in a complex projective space CP™*! have been studied in [5],
[6],[7],[18] and so on by using properties of induced almost contact
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metric structure and those of the third fundamental form of the
submanifold.

The main purpose of the present paper is to extend Theorem
CL under certain conditions on a semi-invariant submanifold of
codimension 3 in a nonflat complex space form.

All manifolds in this paper are assumed to be connected and
of class C°°, and the dimension of submanifold is greater than 2.

1. Preliminaries

At first we review fundamental properties on a semi-invariant
submanifold of a complex space form. Let M be a real 2(n + 1)-
dimensional Kaehlerian manifold equipped with parallel almost
complex structure J and a Riemannian metric tensor G' and cov-
ered by a system of coordinate neighborhoods {V;y4}.

Let M be a real (2n-1)-dimensional Riemannian manifold cov-
ered by a system of coordinate neighborhoods {V;z"} and im-
mersed isometrically in M by the immersion ¢ : M — M. We rep-
resent the immersion 4 locally by y4 = y4(z") and B; = (BjA)
are (2n—1)-linealy independent local tangent vectors of M, where
BjA = 9;y4 and 8; = 8/0z7. Where here and in the sequel,
indices A, B,---run over 1,2,--- ;2(n+ 1) and ¢,j,--- run from
1,2,--- to 2n—1. The summation convention will be used with re-
spect to those system of indices. Three mutually orthogonal unit
normals C, D and E may be chosen. Since the immersion 7 is iso-
metric, the induced Riemannian metric tensor g with components
gji on M is given by g;; = G(B;, B;).

Denoting by V; the operator of van der Waerden-Bortolotti
covariant differentiation with respect to g, equations of the Gauss
for M of M is obtained :

(1.1) V;iB; = A;;C + K;;D + L E,

where Aj;i, Kj; and Lj; are components of the second fundamen-
tal forms in the direction C, D and E respectively. Equations of
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Weingarten are also given by

V;iC = —A;"By +1,D + m,E,
(1.2) VjD = —-Kj hBh - lJC + TLjE,
V;E = -L;"By - m;C - n;D,

where A = (A;"), Ag) = (K;*) and A5y = (L;), which are
related by Aj; = A,"gir, Kji = K;"gir and Lj; = L;"g;, respec-
tively, and [;, m; and n; being components of the third funda-
mental forms.

As is well-known, a submanifold M of a Kaehlerian manifold
M is said to be a CR submanifold ([1], [19]) if it is endowed
with a pair of mutually orthogonal complementary differentiable
distribution (A, A') such that for any p € M we have JA, =
M,, JA,* C Mp*, where M," denotes the normal space of M at
p. In particular, M is said to be a semi-invariant submanifold if
dim dimAL = 1, and the unit normal vector in JAL is called a
distinguished normal to the submanifold and denoted this by C
([2], [16]). Then we can write
(1.3)

JB; = ¢"B, +&C, JC=—-¢"B,, JD=-E, JE=D,

where we have put ¢;; = G(JB;, B;),& = G(JB;,C),£" being
associated components of &, ([7]). A tensor field of type (1,1)
with components ¢jh will be denoted by ¢. By properties of the
almost complex structure J, it is, using (1.3), seen that

¢ b = =0 ek, LT =0, ¢ =0,
&E =1, grs®; 0" = gji — &

In the sequel, we denote the normal components of V;C by
V+C. The distinguished normal is said to be parallelin the normal
bundle if we have VLC = 0, that is, l; and m; vanish identically.

Since J is parallel, differentiating (1.3) covariantly along M
and making use of (1.1), (1.2) and (1.3) itself, we find ([18])

(1.4) Vj(ﬁt- h — —Aj,'fh + A]—hfi,
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(1.5) Vi€ = —Ajrd; 7,
(1.6) Kj; = —Ljr¢;" — m;&,,
(L.7) Lj; = Kjr ;" + 1;6;.

REMARK 1. To write our formulas in a convention form, in
what follows we denote by

@ = Arsgrgsa IB = Ar.? 1‘68, h = T’I‘A’ k= TTA(Z)a
h(2) = T,-AZ, K(Z) = TTA(22), L(Z) = T-,-A(32),

and for a function f we denote by V f the gradient vector field of
f-

We notice here that we may assume T, A3y = 0 (see[7]). Thus,
it is, using (1.6) and (1.7), verified that

(18) Kjrgr = _mja Lj'!‘ér - l_]’

(1.9) mE" =k, £ =0
Further, we obtain

(110) ¢jrmr fruccd -—lj, ¢j,-lr = mj -+ kij

(1.11) K;,L,”" + K;ir L;” + lym; +1im; = 0.
Now, we put U = V¢£. Then U is orthogonal to £. Thus we have

(1.12) $irU” = Ajr€" — af;,
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(1.13) U'V€ = A2 — ad; €7

because of (1.5). From (1.12) we get g(U,U) = 8 — a?. Therefore
we easily see that A¢ = af if and only if 8—-a? = 0. Differentiating
(1.12) covariantly and taking account of (1.4) and (1.5), we find
(1.14)

§i(AerU + ak) + ¢5: VU™ = & ViAjr — Ajr Ars¢™ + aArr 8,7,

where we put oy = Via.

The ambient Kaehlerian manifold M is assumed to be of con-
stant holomorphic sectional curvature ¢, which is called a complex
space form and denoted M, ;;(c). Then equations of the Gauss
and Codazzi are given by

(1.15)

c
Rijin = -

(gknGji — Gingri + Gxndji — Pindri — 20k bin)
4
+ ArnAji — AjpAri + KenKji — KjnKgi + LgnLjs — Ljn L,

ViAji — V,Aki — IxKji +1; Ky — mygLj; + m;Ly;
(&
(1.16) = Z(€k¢ji — &iPri — 26 0k;5),
(117) kaji — Viji = l]Akz - lkAji + niji - nijia

(1.18) Viji — Viji = mjAki - mkAj'i —_ TLkKji + anki,

where Ry ;. are covariant components of the Riemann-Christoffel
curvature tensor of M, and those of the Ricci by

(1.19) Vkl] - lek: = Aj,-Kkr - Aerjr + mjing — mgn;,
(1.20) Vkmj — ijk = Aj,-Lkr — Aer]_r + njlk — nklj,

(1.21) Vin; — Ving = K L" — Ky L™ + Uiy, — lymy + ‘;‘(bkj-
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2. Semi-invariant submanifolds satisfying v,V = 0

First of all, we prove

LeEMMA 2.1. Let M be a semi-invariant submanifold of codi-
mension 3 in a complex space form M, ,(c). Then we have

divl = %||A¢ — GAI? ~ hyy + o+ S(n 1)~ 20,

||X|| means the usual norm for any vector field X on M.

Proof. From (1.4) and (1.5), we have
ViV, = hA;l" — A2E — (VA )d™
which together with (1.8), (1.10) and (1.15) implies that
21) EVVei=ha-f+ —g(n ~ 1) = LI" — mem” + k2.

On the other hand, transforming (1.7) by L,* and using (1.6)
and (1.8), we get

(2.2) lez — Kﬂ? = ljlk - mjmk,

which connected with (1.8) and (1.9) gives

(2.3) 1" = m,m" — k%
Thus (2.1) turns out to be
eV, V68 = ha — B+ g(n 1) — 2,0

Since we have divU = (V,;&;)(V*€7) + ¢€7V,V €%, the above equa-
tion implies

|A¢ — $A|)? = 2divU + 2{h(z) — ath — —;—(n — 1)+ 2,1},
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where we have used (1.5). This completes the proof.

In the rest of this paper we shall suppose that M is a real
(2n — 1)-dimensional semi-invariant submanifold of codimension
3 in a complex space form M,,1(c). Suppose that £,V = 0, that

is,
h h
£E{..=O where {
Jt Jt

is the Christoffel symbols formed with g;;. Then we have (cf.[17])
VjV,-E" + Rk]‘ihfk =0.
Thus, if we use (1.4), (1.5), (1.8) and (1.15), then we obtain
c
(V;Air)d" = Z(gjiﬁh — &M + (A€ A — Eh A7
(24) -+ m,-Kj h_ mth,- + lh'Lj,; - liL]-h,
which together with (1.8) and (1.9) yields

(&

(25)  adji— Ayl + 7

(g]’i - €j€i) + k‘Kji —m;m; + ljl,' =0.

If we multiply £7€* to this and sum for j and 4, and take account
of (1.8) and (1.9), then we have 8 = o? and hence A{ = of.
Applying (2.5) by ¢’* and using (2.3), we find

ah — by + -;—(n 1) =200 =0.
From this and Lemma, 2.1, it follows that
(2.6) Adp = ¢A
because of the fact that A¢ = a€. Thus (1.14) is reduced to

£ ViAjr = Ald;" — adie ;" + ok,

from which, taking the skew-symmetric part and using (1.8), (1.16)
and (2.6),

1 s
(Akf - aAkr)‘ﬁf + 5(0%51' — a;€k) = mily — mjil, — Zd’kja
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which together with (1.9) implies that
(2.7) aj =z€; + 2kl;,

where we have put z = 0;£*. Combining the last two equations,
it follows that

c
(Akz — aAgr — ngr)(ﬁjr = mklj - mjlk + k(fklj - £jlk).
| Transforming this by ¢,-j and making use of (1.10), we find
c
_Aki2+aAki+Z(gki_’€k€i) = lpli+mpmi+k(medi+mie) +k2 €,

which connected with (2.5) implies that

(2.8) kK ji + 2Ll; + k(m;& + mi;) + szj&' = 0.

If we take the trace of the last equation, then we obtain [,.I" = 0
and hence !; = 0. Thus, the second equation of (1.10) turns out
to be

(2.9) m; = —kﬁj.

Therefore (2.8) implies that ¥ = 0. Consequently the distin-
guished normal is parallel in the normal bundle. Thus we have

PROPOSITION 2.2. Let M be a semi-invariant submanifold of
codimension 3 in a nonflat complex space form M, 1(c),c # o.
If M satisfies £,V = 0, then we have A¢p = ¢A and that the
distinguished normal is parallel in the normal bundle, where £,
denotes the operator of the Lie derivative with respect to the
structure vector §.

From (1.15) we verify that the Ricci tensor S of M with com-
ponent Sj; is given by

C .
Sji = 7 {2n+1)gji — 36;€:} + hAji — Al - 2K},
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where we have used (1.11) and the fact that the distinguished
normal is parallel in the normal bundle. Thus the scalar curvature
p of M is given by

p= C('ﬂz -1+ h? — h(g) — 2K(2).

If we supose that p — c(n? — 1) — h? + hiz) > 0, then we have
K2y = 0 and hence Agy) = A3y = 0.

Let No(p) = {ne€ M7 |A, =0} and Hy(p) the maximal J-
invariant subspace of No(p). Because we have A(y) = A(3, = 0 and
VLC =0, the orthogonal complement of H, (p) is invariant under
parallel translation with respect to the normal connection. Con-
sequently, by the reduction theorm in [4], [13] and by Proposition
2.2, we have

LEMMA 2.3. Let M be a semi-invariant submanifold of codi-
mension 3 in a nonflat complex space form. If M satisfies £V =0
and the scalar curvature p of M satisfies p——c(nz—l)—-h"’—h(z) >0,
then M is a real hypersurface with A¢ = ¢A in CP™.

According to Theorem O and Theorem MR, we have

THEOREM 2.4. Let M be a connected semi-invariant submani-
fold of codimension 3 in a nonflat complex space form M, 1(c), c #
0. If M satisfies £,V = 0 and that p—c(n?~1)—(t, A)?—t, A% > 0,
then M is locally congruent one of the following spaces : If ¢ > 0,
or if c < 0, then M is the same types as those in Theorem O
and Theorem M R respectively, where £, denotes the operator of
the Lie derivative with respect to the structure vector ¢ and p the
scalar curvature of M.
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