HARMONIC TRANSFORMATIONS OF THE HYPERBOLIC PLANE

Joon-Sik Park*

Abstract

Let (H, g) denote the upper half plane in R^{2} with the Riemannian metric $g:=\left((d x)^{2}+(d y)^{2}\right) / y^{2}$. First of all we get a necessary and sufficient condition for a diffeomorphism ϕ of (H, g) to be a harmonic map. And, we obtain the fact that if a diffeomorphism ϕ of (H, g) is a harmonic function, then the following facts are equivalent: (1) ϕ is a harmonic map; (2) ϕ is an affine transformation; (3) ϕ is an isometry (motion).

1. Introduction

Let H be the hyperbolic plane. Considering the points of H as all complex numbers with positive imaginary parts, we can view a diffeomorphism ϕ of H to be a complex-valued function defined on the upper half-plane H, and set $z^{\prime}=\phi(z)$. If $\phi(z)$ is an analytic function of z, then ϕ is said to be a holomorphic transformation of H. Let $\operatorname{Hol}(H)$ (resp. Iso(H)) be the group of all holomorphic transformations (resp. all motions (isometries)) of H. As is known in the theory of complex variables, the group $\operatorname{Hol}(H)$ coincides with the group of all linear fractional transformations ([1, p. 182])

$$
z(\in H) \longmapsto(a z+b) /(c z+d) \in H, \text { where }\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in S L_{2}(R)
$$

On the other hand, $\theta: z \longmapsto-\bar{z}$ is a diffeomorphism of H such that $\theta \in I s o(H)$ and $\theta^{2}=I$. Then, the following relation between $\operatorname{Iso}(H)$ and $\operatorname{Hol}(H)$ is well known.

[^0]Theorem 1.1. The group $\operatorname{Hol}(H)$ is a normal subgroup of Iso(H) of index 2, and $\operatorname{Iso}(H)=\operatorname{Hol}(H)+\theta H o l(H)$ holds.

Let (M, g) be a Riemannian manifold, $\operatorname{Iso}(M)$ (resp. $\operatorname{Aff}(M))$ the group of all isometries (resp. affine transformations) of (M, g). Then, $I s o(M) \subset \operatorname{Aff}(M)$. Moreover, if $\phi:(M, g) \longrightarrow(M, g)$ is an affine map, then ϕ is a harmonic map, but the converse dose not hold, in general.

In this paper, we obtain a necessary and sufficient condition for a diffeomorphism ϕ of the Poincaré upper plane (hyperbolic plane) H to be a harmonic map (cf. Proposition 2.2). And then, we get the following main result (cf. Theorem 2.3).

Theorem 1.2. Let ϕ be a diffeomorphism of H. Assume ϕ is a harmonic function. Then, the following statements are equivalent
(i) ϕ is a harmonic map.
(ii) ϕ is an affine transformation.
(iii) ϕ is an isometry.

Here, we have the following question (cf. Remark 2.4):
Does there exist a harmonic transformation of (H, g) which is not isometric?

2. Harmonic transformations of the hyperbolic plane

Let $(M, g),(N, h)$ be two Riemannian manifolds. Let $\phi: M \longrightarrow N$ be a smooth map. Let $E:=\phi^{-1} T N$ be the induced bundle by ϕ over M of the tangent bundle $T N$ of N. We denote by $\Gamma(E)$, the space of all sections V of E. We denote by $\nabla,{ }^{N} \nabla$ the Levi-Civita connections of $(M, g),(N, h)$, respectively. Then we give the induced connection $\tilde{\nabla}$ on E by

$$
\begin{equation*}
\left(\tilde{\nabla}_{X} V\right)_{x}:=\left.\frac{d}{d t}^{N} P_{\phi(\gamma(t))}{ }^{-1} V_{\gamma(t)}\right|_{t=0}, \quad X \in \Gamma(T M), V \in \Gamma(E), \tag{2.1}
\end{equation*}
$$

where $x \in M, \gamma(t)$ is a curve through x at $t=0$ whose tangent vector at x is X_{x}, and ${ }^{N} P_{\phi(\gamma(t))}: T_{\phi(x)} N \longrightarrow T_{\phi(\gamma(t))} N$ is the parallel displacement along a curve $\phi(\gamma(s)), 0 \leq s \leq t$, given by the Levi-Civita connection ${ }^{N} \nabla$ of (N, h).

If the tension field $\tau(\phi)$ of a smooth map ϕ of an m-dimensional Riemannian manifold (M, g) into another Riemannian manifold (N, h) vanishes on M, then ϕ is said to be a harmonic map (cf. [2,9]) of (M, g) into (N, h), where

$$
\begin{equation*}
\tau(\phi):=\sum_{i=1}^{m}\left(\tilde{\nabla}_{e_{i}} \phi_{*} e_{i}-\phi_{*} \nabla_{e_{i}} e_{i}\right), \tag{2.2}
\end{equation*}
$$

for $\left\{e_{i}\right\}_{i=1}^{m}$ an (locally defined) orthonormal frame on (M, g).
In general, the Riemannian connection ∇ for the Riemannian metric g on a Riemannian manifold (M, g) is given by

$$
\begin{align*}
2 g\left(\nabla_{X} Y, Z\right) & =X g(Y, Z)+Y g(Z, X)-Z g(X, Y) \tag{2.3}\\
& -g(X,[Y, Z])+g(Y,[Z, X])+g(Z,[X, Y])
\end{align*}
$$

for $X, Y, Z \in \mathfrak{X}(M)$ (cf. [3]).
Let H denote the set of all points in the (x, y)-plane with positive y coordinates, and call it the upper half plane. Let $p=\left(x_{o}, y_{o}\right) \in H$, and let the components of $u, u^{\prime}\left(\in T_{p} H\right)$ be $(\xi, \eta),\left(\xi^{\prime}, \eta^{\prime}\right)$, respectively. We define a Riemannian metric g on H by letting

$$
\begin{equation*}
g_{p}\left(u, u^{\prime}\right)=\left(\xi \xi^{\prime}+\eta \eta^{\prime}\right) / y_{o}^{2} \tag{2.4}
\end{equation*}
$$

If we consider H to be the set of all complex numbers z with positive imaginary part $I(z)$, then we can write the Riemannian metric g on H as $d z d \bar{z} / I(Z)^{2}$. The Riemannian manifold (H, g) is called the hyperbolic plane (Poincaré upper plane). Here

$$
\begin{equation*}
\left\{y \frac{\partial}{\partial x}=: e_{1}, y \frac{\partial}{\partial y}=: e_{2}\right\} \tag{2.5}
\end{equation*}
$$

is an (globally defined) orthonormal frame on (H, g). From $(2,3)$ and $(2,5)$, we get

$$
\begin{equation*}
\nabla_{e_{1}} e_{1}=e_{2}, \quad \nabla_{e_{1}} e_{2}=-e_{1}, \quad \nabla_{e_{2}} e_{1}=\nabla_{e_{2}} e_{2}=0 \tag{2.6}
\end{equation*}
$$

$$
\nabla_{\frac{\partial}{\partial x}} \frac{\partial}{\partial x}=-\nabla_{\frac{\partial}{\partial y}} \frac{\partial}{\partial y}=(1 / y) \frac{\partial}{\partial y}, \quad \nabla_{\frac{\partial}{\partial x}} \frac{\partial}{\partial y}=\nabla_{\frac{\partial}{\partial y}} \frac{\partial}{\partial x}=(-1 / y) \frac{\partial}{\partial x}
$$

where ∇ is the Levi-Civita connection for the metric g on (H, g). Let ϕ be a diffeomorphism of (H, g) which is denoted by

$$
\begin{equation*}
\phi(x, y)=(u(x, y), v(x, y)) \in H, \quad((x, y) \in H) \tag{2.7}
\end{equation*}
$$

From (2.5) and (2.7), we obtain

$$
\left\{\begin{array}{l}
\phi_{*} e_{1}=y\left(u_{x}\left(\frac{\partial}{\partial x}\right)_{(u, v)}+v_{x}\left(\frac{\partial}{\partial y}\right)_{(u, v)}\right) \tag{2.8}\\
\phi_{*} e_{2}=y\left(u_{y}\left(\frac{\partial}{\partial x}\right)_{(u, v)}+v_{y}\left(\frac{\partial}{\partial y}\right)_{(u, v)}\right)
\end{array}\right.
$$

where ϕ_{*} is the differential map of ϕ, and $(u, v):=(u(x, y), v(x, y)) \in H$ $((x, y) \in H)$. And, from (2.6) and (2.8), we have

$$
\left\{\begin{array}{c}
\phi_{*}\left(\nabla_{e_{2}} e_{1}\right)=\phi_{*}\left(\nabla_{e_{2}} e_{2}\right)=0 \tag{2.9}\\
\phi_{*}\left(\nabla_{e_{1}} e_{1}\right)=y\left(u_{y}\left(\frac{\partial}{\partial x}\right)_{(u, v)}+v_{y}\left(\frac{\partial}{\partial y}\right)_{(u, v)}\right) \\
\phi_{*}\left(\nabla_{e_{1}} e_{2}\right)=-y\left(u_{x}\left(\frac{\partial}{\partial x}\right)_{(u, v)}+v_{x}\left(\frac{\partial}{\partial y}\right)_{(u, v)}\right)
\end{array}\right.
$$

By virtue of (2.1), (2.5), (2.6) and (2.8), we get

$$
\begin{aligned}
& \tilde{\nabla}_{e_{1}} \phi_{*} e_{1}=y^{2}\left(u_{x x}\right.\left.-\frac{2 u_{x} v_{x}}{v}\right)(\partial / \partial x)_{(u, v)} \\
&+y^{2}\left\{v_{x x}+\frac{\left(u_{x}^{2}-v_{x}^{2}\right)}{v}\right\}(\partial / \partial y)_{(u, v)} \\
& \tilde{\nabla}_{e_{1}} \phi_{*} e_{2}=y^{2}\left\{u_{x y}\right.\left.-\frac{\left(u_{x} v_{y}+u_{y} v_{x}\right)}{v}\right\}(\partial / \partial x)_{(u, v)} \\
&+y^{2}\left\{v_{x y}+\frac{\left(u_{x} u_{y}-v_{x} v_{y}\right)}{v}\right\}(\partial / \partial y)_{(u, v)} \\
&\left.\tilde{\nabla}_{e_{2} \phi_{*} e_{1}=y\left\{u_{x}\right.}+y u_{x y}-\frac{y\left(u_{x} v_{y}+u_{y} v_{x}\right)}{v}\right\}(\partial / \partial x)_{(u, v)} \\
&+y\left\{v_{x}+y v_{x y}+\frac{y\left(u_{x} u_{y}-v_{x} v_{y}\right)}{v}\right\}(\partial / \partial y)_{(u, v)} \\
& \tilde{\nabla}_{e_{2} \phi_{*} e_{2}=}=y\left\{u_{y}+y u_{y y}-\frac{2 y u_{y} v_{y}}{v}\right\}(\partial / \partial x)_{(u, v)} \\
&+y\left\{v_{y}+y v_{y y}+\frac{y\left(u_{y}^{2}-v_{y}^{2}\right)}{v}\right\}(\partial / \partial y)_{(u, v)}
\end{aligned}
$$

Thus, from (2.9) and (2.10), we get
Proposition 2.1. Let ϕ be a diffeomorphism of (H, g). Then, ϕ is an affine transformation if and only if

$$
\begin{align*}
& u_{x x}-\frac{2 u_{x} v_{x}}{v}=-\left(u_{y y}-\frac{2 u_{y} v_{y}}{v}\right)=\frac{u_{y}}{y} \\
& v_{x x}+\frac{\left(u_{x}^{2}-v_{x}^{2}\right)}{v}=-\left(v_{y y}+\frac{u_{y}^{2}-v_{y}^{2}}{v}\right)=\frac{v_{y}}{y} \tag{2.11}\\
& u_{x y}-\frac{\left(u_{x} v_{y}+u_{y} v_{x}\right)}{v}=\frac{-u_{x}}{y} \\
& v_{x y}+\frac{\left(u_{x} u_{y}-v_{x} v_{y}\right)}{v}=\frac{-v_{x}}{y}
\end{align*}
$$

By the help of (2.2), (2.9) and (2.10), we get

Proposition 2.2. Let ϕ be a diffeomorphism of (H, g). Then, a necessary and sufficient condition for the map ϕ to be a harmonic map is

$$
\begin{align*}
& u_{x x}+u_{y y}-\frac{2\left(u_{x} v_{x}+u_{y} v_{y}\right)}{v}=0 \quad \text { and } \\
& v_{x x}+v_{y y}+\frac{\left(u_{x}^{2}+u_{y}^{2}-v_{x}^{2}-v_{y}^{2}\right)}{v}=0 \tag{2.12}
\end{align*}
$$

Now, assume real functions u and v in a diffeomorphism ϕ of (H, g) such that $\phi(x, y)=(u(x, y), v(x, y)) \in H$ are harmonic functions, that is,

$$
\begin{equation*}
\triangle_{g} u=\triangle_{g} v=0 \tag{2.13}
\end{equation*}
$$

where $\triangle_{g}:=\sum_{i=1}^{2}\left(e_{i}^{2}-\nabla_{e_{i}} e_{i}\right)$ is the Laplacian operator on (H, g). A map ϕ satisfying (2.13) is said to be a harmonic function. Then, from (2.5), (2.6) and (2.13), we have

$$
\begin{equation*}
\triangle_{g} u=y^{2}\left(u_{x x}+u_{y y}\right)=0, \quad \triangle_{g} v=y^{2}\left(v_{x x}+v_{y y}\right)=0 \tag{2.14}
\end{equation*}
$$

If $\phi:(H, g) \longrightarrow(H, g)$ is a diffeomorphism, then we get at each point $p \in H$

$$
\begin{equation*}
u_{x} v_{y}-u_{y} v_{x} \neq 0 \tag{2.15}
\end{equation*}
$$

From (2.15) and Proposition 2.2, we get the fact that a necessary and sufficient condition for a harmonic function ϕ, which is a diffeomorphism of (H, g), to be a harmonic map is

$$
\begin{equation*}
u_{x} v_{x}+u_{y} v_{y}=0 \quad \text { and } \quad u_{x}^{2}+u_{y}^{2}=v_{x}^{2}+v_{y}^{2} \tag{2.16}
\end{equation*}
$$

For a diffeomorphism ϕ of $(H, g),(2.16)$ holds if and only if

$$
\left(\begin{array}{ll}
u_{x} & u_{y} \tag{2.17}\\
v_{x} & v_{y}
\end{array}\right)^{-1}=\left(u_{x}^{2}+u_{y}^{2}\right)^{-1}\left(\begin{array}{cc}
u_{x} & v_{x} \\
u_{y} & v_{y}
\end{array}\right)
$$

holds. By the help of (2.16) and (2.17), we obtain the fact that a necessary and sufficient condition for a harmonic function ϕ, being a diffeomorphism of (H, g), to be a harmonic map is
(2.18) $u_{x}= \pm v_{y}$ and $u_{y}=\mp v_{x} \quad$ (double signs in the same order).

By virtue of Theorem 1.1 and (2.18), we obtain the following
Theorem 2.3. Let ϕ be a diffeomorphism of (H, g). Assume the map ϕ is a harmonic function. Then, the following statements are equivalent:
(1) the $\operatorname{map} \phi$ is a harmonic map.
(2) ϕ is an affine transformation of (H, g).
(3) ϕ is an isometry (motion) of (H, g).

Remark 2.4. We would like to know whether or not there exists a diffeomorphism ϕ of (H, G) which is not isometric, but satisfies the condition (2.12) appeared in the Proposition 2.2. In other words, the question is as follows:

Does there exist a harmonic transformation of (H, g) which is not isometric?

References

[1] H. Cartan, Elementary Theory of Analytic Functions of One or Several Complex Variables, Addison-Wesley, Reading, Massachusetts, 1963.
[2] J. Eells and L. Lemaire, Selected Topics in Harmonic Maps, CBMS Regional Conf., 1981
[3] S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces, Academic Press, New York, 1978.
[4] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vol. 1, 1963; Vol.2, 1969, John Wiley and Sons, New York.
[5] J.-S. Park, Stability of the identity map of $\mathrm{SU}(3) / \mathrm{T}(\mathrm{k}, \mathrm{l})$, Tokyo J. Math. 17 (1994), 281-289.
[6] J.-S. Park and W. T. Oh, The Abbena-Thurston manifold as a critical point, Can. Math. Bull. 39 (1996), 352-359.
[7] J.-S. Park, Critical homogeneous metrics on the Heisenberg manifold, Inter. Inform. Sci. 11 (2005), 31-34.
[8] J.-S. Park, The conjugate connection of a Yang-Mills connection, Kyushu J. Math. 62 (2008), 217-220.
[9] H. Urakawa, Calculus of Variations and Harmonic Maps, Amer. Math. Soc., Providence, Rhode Island, 1993.
*
Department of Mathematics
Pusan University of Foreign Studies
Pusan 55-1, Republic of Korea
E-mail: iohpark@pufs.ac.kr

[^0]: Received September 04, 2009; Accepted November 19, 2009.
 2000 Mathematics Subject Classification: Primary 53C07, 53C25.
 Key words and phrases: harmonic map, Poincaré upper plane (hyperbolic plane).

