• Title/Summary/Keyword: Ricci-flat

Search Result 29, Processing Time 0.026 seconds

EVOLUTION AND MONOTONICITY FOR A CLASS OF QUANTITIES ALONG THE RICCI-BOURGUIGNON FLOW

  • Daneshvar, Farzad;Razavi, Asadollah
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.6
    • /
    • pp.1441-1461
    • /
    • 2019
  • In this paper we consider the monotonicity of the lowest constant ${\lambda}_a^b(g)$ under the Ricci-Bourguignon flow and the normalized Ricci-Bourguignon flow such that the equation $$-{\Delta}u+au\;{\log}\;u+bRu={\lambda}_a^b(g)u$$ with ${\int}_{M}u^2dV=1$, has positive solutions, where a and b are two real constants. We also construct various monotonic quantities under the Ricci-Bourguignon flow and the normalized Ricci-Bourguignon flow. Moreover, we prove that a compact steady breather which evolves under the Ricci-Bourguignon flow should be Ricci-flat.

SEMI-RIEMANNIAN SUBMANIFOLDS OF A SEMI-RIEMANNIAN MANIFOLD WITH A SEMI-SYMMETRIC NON-METRIC CONNECTION

  • Yucesan, Ahmet;Yasar, Erol
    • Communications of the Korean Mathematical Society
    • /
    • v.27 no.4
    • /
    • pp.781-793
    • /
    • 2012
  • We study some properties of a semi-Riemannian submanifold of a semi-Riemannian manifold with a semi-symmetric non-metric connection. Then, we prove that the Ricci tensor of a semi-Riemannian submanifold of a semi-Riemannian space form admitting a semi-symmetric non-metric connection is symmetric but is not parallel. Last, we give the conditions under which a totally umbilical semi-Riemannian submanifold with a semi-symmetric non-metric connection is projectively flat.

RIEMANNIAN SUBMERSIONS WHOSE TOTAL MANIFOLD ADMITS h-ALMOST RICCI-YAMABE SOLITON

  • Mehraj Ahmad Lone;Towseef Ali Wani
    • Communications of the Korean Mathematical Society
    • /
    • v.39 no.2
    • /
    • pp.479-492
    • /
    • 2024
  • In this paper, we study Riemannian submersions whose total manifold admits h-almost Ricci-Yamabe soliton. We characterize the fibers of the submersion and see under what conditions the fibers form h-almost Ricci-Yamabe soliton. Moreover, we find the necessary condition for the base manifold to be an h-almost Ricci-Yamabe soliton and Einstein manifold. Later, we compute scalar curvature of the total manifold and using this we find the necessary condition for h-almost Yamabe solition to be shrinking, expanding and steady. At the end, we give a non-trivial example.

GRADIENT RICCI SOLITONS WITH HALF HARMONIC WEYL CURVATURE AND TWO RICCI EIGENVALUES

  • Kang, Yutae;Kim, Jongsu
    • Communications of the Korean Mathematical Society
    • /
    • v.37 no.2
    • /
    • pp.585-594
    • /
    • 2022
  • In this article we classify four dimensional gradient Ricci solitons (M, g, f) with half harmonic Weyl curvature and at most two distinct Ricci-eigenvalues at each point. Indeed, we showed that, in a neighborhood V of each point in some open dense subset of M, (V, g) is isometric to one of the following: (i) an Einstein manifold. (ii) a domain in the Riemannian product (ℝ2, g0) × (N, ${\tilde{g}}$), where g0 is the flat metric on ℝ2 and (N, ${\tilde{g}}$) is a two dimensional Riemannian manifold of constant curvature λ ≠ 0. (iii) a domain in ℝ × W with the warped product metric $ds^2+h(s)^2{\tilde{g}}$, where ${\tilde{g}}$ is a constant curved metric on a three dimensional manifold W.

On Generalized Ricci Recurrent Spacetimes

  • Dey, Chiranjib
    • Kyungpook Mathematical Journal
    • /
    • v.60 no.3
    • /
    • pp.571-584
    • /
    • 2020
  • The object of the present paper is to characterize generalized Ricci recurrent (GR4) spacetimes. Among others things, it is proved that a conformally flat GR4 spacetime is a perfect fluid spacetime. We also prove that a GR4 spacetime with a Codazzi type Ricci tensor is a generalized Robertson Walker spacetime with Einstein fiber. We further show that in a GR4 spacetime with constant scalar curvature the energy momentum tensor is semisymmetric. Further, we obtain several corollaries. Finally, we cite some examples which are sufficient to demonstrate that the GR4 spacetime is non-empty and a GR4 spacetime is not a trivial case.

ξ-PARALLEL STRUCTURE JACOBI OPERATORS OF REAL HYPERSURFACES IN A NONFLAT COMPLEX SPACE FORM

  • KIM, NAM-GIL;KI, U-HANG
    • Honam Mathematical Journal
    • /
    • v.28 no.4
    • /
    • pp.573-589
    • /
    • 2006
  • Let M be a real hypersurface with almost contact metric structure $({\phi},{\xi},{\eta},g)$ in a non flat complex space form $M_n(c)$. In this paper, we prove that if the structure Jacobi operator $R_{\xi}$ is ${\xi}$-parallel and the Ricci tensor S commutes with the structure operator $\phi$, then a real hypersurface in $M_n(c)$ is a Hopf hypersurface. Further, we characterize such Hopf hypersurface in $M_n(c)$.

  • PDF

SOME RESULTS ON (LCS)n-MANIFOLDS

  • Shaikh, Absos Ali
    • Journal of the Korean Mathematical Society
    • /
    • v.46 no.3
    • /
    • pp.449-461
    • /
    • 2009
  • The object of the present paper is to study $(LCS)_n$-manifolds. Several interesting results on a $(LCS)_n$-manifold are obtained. Also the generalized Ricci recurrent $(LCS)_n$-manifolds are studied. The existence of such a manifold is ensured by several non-trivial new examples.

On Quasi-Conformally Recurrent Manifolds with Harmonic Quasi-Conformal Curvature Tensor

  • Shaikh, Absos Ali;Roy, Indranil
    • Kyungpook Mathematical Journal
    • /
    • v.51 no.1
    • /
    • pp.109-124
    • /
    • 2011
  • The main objective of the paper is to provide a full classification of quasi-conformally recurrent Riemannian manifolds with harmonic quasi-conformal curvature tensor. Among others it is shown that a quasi-conformally recurrent manifold with harmonic quasi-conformal curvature tensor is any one of the following: (i) quasi-conformally symmetric, (ii) conformally flat, (iii) manifold of constant curvature, (iv) vanishing scalar curvature, (v) Ricci recurrent.

SOME RIGIDITY CHARACTERIZATIONS OF EINSTEIN METRICS AS CRITICAL POINTS FOR QUADRATIC CURVATURE FUNCTIONALS

  • Huang, Guangyue;Ma, Bingqing;Yang, Jie
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.6
    • /
    • pp.1367-1382
    • /
    • 2020
  • We study rigidity results for the Einstein metrics as the critical points of a family of known quadratic curvature functionals involving the scalar curvature, the Ricci curvature and the Riemannian curvature tensor, characterized by some pointwise inequalities involving the Weyl curvature and the traceless Ricci curvature. Moreover, we also provide a few rigidity results for locally conformally flat critical metrics.