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SOME RESULTS ON (LCS),-MANIFOLDS

ABSOS ALI SHAIKH

ABSTRACT. The object of the present paper is to study (LCS)p-mani-
folds. Several interesting results on a (LCS)p-manifold are obtained.
Also the generalized Ricci recurrent (LC'S)y,-manifolds are studied. The
existence of such a manifold is ensured by several non-trivial new exam-
ples.

1. Introduction

Recently the present author [6] introduced the notion of Lorentzian concir-
cular structure manifolds (briefly (LC'S),-manifolds) with an example. The
present paper deals with a study of various types of (LCS),-manifolds. Af-
ter preliminaries, in Section 3 we study the fundamental results of (LCS),-
manifolds and proved that in such a manifold the Ricci operator commutes with
the structure tensor ¢. Section 4 is devoted to the study of conformally flat
(LCS),-manifolds and it is proved that such a (LC'S),-manifold is n-Einstein
as well as a manifold of quasi constant curvature. The notion of generalized
Ricci recurrent manifold was introduced by De, Guha, and Kamilya [2] in 1995.
Section 5 is concerned with generalized Ricci recurrent (LC'S),,-manifolds and
in the last section we investigate the existence of such a manifold and found
various new examples of both in even and odd dimensions.

2. (LCS),-manifolds

An n-dimensional Lorentzian manifold M is a smooth connected paracom-
pact Hausdorff manifold with a Lorentzian metric g, that is, M admits a smooth
symmetric tensor field g of type (0, 2) such that for each point p € M, the
tensor g, : TpyM x T,M — R is a non-degenerate inner product of signature
(—,+,...,+), where T, M denotes the tangent vector space of M at p and R is
the real number space. A non-zero vector v € T, M is said to be timelike (resp.,
non-spacelike, null, spacelike) if it satisfies g,(v,v) < 0 (resp., < 0, = 0, > 0)
[5]. The category to which a given vector falls is called its causal character.
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Definition 2.1. In a Lorentzian manifold (M, g) a vector field P defined by
9(X, P) = A(X)
for any X € x(M) is said to be a concircular vector field if
(VxA)(Y) = a{g(X,Y) + w(X)A(Y)},
where « is a non-zero scalar and w is a closed 1-form.

Let M™ be a Lorentzian manifold admitting a unit timelike concircular vec-
tor field &, called the characteristic vector field of the manifold. Then we have

Since £ is a unit concircular vector field, it follows that there exists a non-zero
1-form 7 such that for

(2.2) 9(X, &) = n(X),
the equation of the following form holds
(2.3) (Vxn)(Y) = o{g(X,Y) +n(X)n(Y)} (a#0)

for all vector fields X, Y, where V denotes the operator of covariant differentia-
tion with respect to the Lorentzian metric g and « is a non-zero scalar function
satisfies

(2.4) Vxa = (Xa) = da(X) = pn(X),

p being a certain scalar function given by p = —(£«). If we put
1

then from (2.3) and (2.5) we have

(2.6) X = X +n(X)¢,

from which it follows that ¢ is a symmetric (1, 1) tensor and called the structure
tensor of the manifold. Thus the Lorentzian manifold M™ together with the
unit timelike concircular vector field &, its associated 1-form n and (1, 1) tensor
field ¢ is said to be a Lorentzian concircular structure manifold (briefly (LC'S),,-
manifold) [6]. Especially, if we take o = 1, then we can obtain the LP-Sasakian
structure of Matsumoto [4]. In a (LC'S),-manifold, the following relations hold
[6]:

g.;zi) =—1, b)¢£ =0, ¢) n(¢X) =0, d) g(¢X,dY)=g(X,Y)+n(X)n(Y),
(2.8) N(R(X,Y)Z) = (a® = p)lg(Y, Z)n(X) — g(X, Z)n(Y)],

(2.9) S(X,€) = (n—1)(a® = p)n(X),

(2.10) R(X,Y)E = (o = p)[n(Y)X —n(X)Y],

(2.11) (Vx¢)(Y) = af{g(X, Y)E + 2n(X)n(Y)E +n(Y) X}
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for all vector fields X, Y, Z, where R, S denote respectively the curvature tensor
and the Ricci tensor of the manifold.

3. Fundamental results of (LCS),-manifolds

Proposition 3.1. A (LCS),-manifold of constant curvature is a manifold of
constant curvature (a? — p).

Proof. If a (LCS),-manifold is of constant curvature k, say, then we have
R(X,Y)Z = Klg(Y, Z)X — g(X, Z)Y],
which yields by setting Z = £ that
R(X,Y)§ = k[n(Y)X —n(X)Y].

This implies by virtue of (2.10) that k = (a® — p). Hence the proposition is
proved. (I

Lemma 3.1. In a (LCS),-manifold, the following relation holds:
(3.1) (Xp) = dp(X) = Bn(X)
for any vector field X and ( is a certain scalar function.
Proof. From (2.4), it follows that
V(da)(Y,X)=Vx(da)(Y)=XYa)— (VxY)a)
which implies that
(3.2) V(da)(X,Y) = (da)(Y, X).
Also
V(da)(Y, X) = ¥ (da(X)) — da(Vy X),
which implies by virtue of (2.3) and (2.4) that
V(da)(Y, X) = (Yp)n(X) + palg(X,Y) +n(X)n(Y)).
This implies by virtue of (2.2) that
(Xp)n(Y) = (Yp)n(X),
which yields
(Xp) = Bn(X),

where 8 = —(&p) is a scalar function. Hence the result holds. O

Lemma 3.2. Let M™(¢,&,n,9) be a (LCS),-manifold. Then for any X,Y,Z
on M™, the following relation holds:

(3:3) R(X,Y)¢Z — ¢R(X,Y)Z = (o = p)[{g(Y. Z)n(X) — (X, Z)n(Y)}¢
+0(Z2){n(X)Y —n(Y)X}].

Proof. From (2.3)-(2.7), (2.11) and the Ricci identity we can easily get
(3.3). O
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Lemma 3.3. Let (M™,g) be a (LCS),,-manifold. Then
(34)  g(oR(¢X,0Y)Z.oW) = g(R(X,Y)Z,W) + (o — p)[{g(Y. W)n(Z)
= 9(Y, Z)n(W)in(X) + {g(X, W)n(Z)
—9(X, Z)n(W)}n(Y)]
for any vector field X, Y, Z, W on M™.
Proof. Using (2.6), (2.8) and n(¢X) = 0, we can calculate
9(OR(6X,9Y)Z,0W) = g(R(¢X,9Y)Z, W) = g(R(Z,W)$X, $Y)
= g(9R(Z, W)X, 9Y) + (a® — p)[g(W, oY )(X)n(Z)
= 9(Z, oY )n(X)n(W)].
The relation (3.4) follows from this and
g(R(Z,W)X,Y) =g(R(X,Y)Z,W). 0

Lemma 3.4. Let (M",g) be a (LCS),-manifold. Then for any X,Y,Z on
M™, the following relation holds:

(35)  g(R(¢X,dY)¢Z, W) = g(R(X,Y)Z, W) + (a® — p)[{g(Y, W)n(Z)
—g(Y, Z)n(W)in(X) + {g(X, W)n(Z)
—9(X, Z)n(W)in(Y)].

Proof. Replacing X, Y by ¢X, Y respectively in (3.3) and taking the inner
product on both sides by ¢W we get

(3.6) 9(R(¢X,9Y)0Z,oW) = g(oR(¢ X, Y ) Z, oW).
Using (3.4) in (3.6) we obtain (3.5). O

Theorem 3.1. Let (M™,g) be a (LCS),-manifold. Then the Ricci operator
Q commutes with ¢.

Proof. To prove the result, we shall show that
(3.7) Qe = 9Q.
From (3.2), it follows that
(38)  OR(6X,4Y)6Z = R(X,Y)Z + (a® — p)n(X){n(2)Y — g(Y, Z)¢}
+n(Y){n(2)X — g(X, Z2)&}].
We now consider the following two cases:
(i) dimM =n=odd =2m + 1,
(ii)) dim M =n = even = 2m + 2.
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Case (i): If n = 2m + 1, let {e;, pe;, &}, @ = 1,2,...,m be an orthonormal
frame at any point of the manifold. Then putting Y = Z = ¢; in (3.8) and
taking summation over ¢ and using n(e;) = 0, we get

m m
(3.9 261¢R(¢X pei)pe; = Zel R(X,e;)e; — m(a® — p)n(X)E,
i=1
where ¢; = g(e;, €;).
Again setting Y = Z = ¢e; in (3.8) and taking summation over ¢ and then
using no ¢ =0 and (2.1) we get

m

(3.10) Ze@R(qﬁX e;)e; = ZGZ R(X, ¢e;)pe; — m(a? — p)n(X)E.

i=1 i=1
Adding (3.9) and (3.10) and using the definition of the Ricci operator, we obtain
H(QOX — R(X,€)¢) = QX — R(X, )¢ — 2m(a” — p)n(X)E.
Using (2.10) and ¢¢ = 0 in the above relation we have
PQOX = QX —2m(a” — p)n(X)E.

Operating both sides by ¢ and using (2.1), symmetry of @, ¢£ = 0 and (2.9)
we get (3.7).

Case (ii): If n = 2m + 2, let {e;, ¢e;}, i =1,2,...,m + 1 be an orthonormal
frame such that each e; is orthogonal to &, i.e., n(e;) = 0. Then putting
Y = Z =e; in (3.8) and taking summation over ¢ and using n(e;) = 0, we get

m+1 m—41
(3.11) Z €, OR(PX, de;)pe; = Z aR(X,e)e; — (m+1)(a? — p)n(X)E,
i=1

where ¢; = g(e;, €;).
Again replacing Y and Z by ¢e; in (3.8) and taking summation over i and
then using n(e;) = 0 and (2.1), it follows that

m—+1 m—+1
(3.12) Z €dR(0X, ei)e; Z eiR(X, dei)pe; — (m+1)(a® — p)n(X)E.
=1 =

Adding (3.11) and (3.12) and then proceeding similarly as in Case (i) we can
easily obtain (3.7). This proves the theorem. O

Proposition 3.2. In a (LCS),-manifold the relation
(3.13) S(6X,6Y) = (n— 1)(a® - p)g(X,Y) + S(X,Y)
holds.

Proof. The proposition follows from Theorem 3.1. (]
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4. Conformally flat (LCS),-manifolds
This section deals with conformally flat (LCS),, (n > 4) manifolds.

Definition 4.1. A (LCS),-manifold is said to be n-Einstein if its Ricci tensor
S of type (0, 2) is of the form

S(X,Y) = ag(X,Y) + bn(X)n(Y),
where a, b are the smooth functions over the manifold such that b is non-zero.

Theorem 4.1. A conformally flat (LCS),, (n > 4) manifold is an n-Einstein
manifold.

Proof. If a (LCS),, (n > 4) manifold is conformally flat, then its curvature
tensor is given by

(4.1) R(X,Y)Z = %[S(Y, 2)X = S(X, 2)Y + ¢(Y, 2)QX — ¢(X, Z)QY]

- m[g(ya 2)X —g(X, 2)Y].
Setting Z = ¢ in (4.1) and then using (2.9) and (2.10) we obtain
(4.2) (a® = p)ln(Y)X —n(X)Y] = — i 510 = D(e® = p){n(¥)X —n(X)Y}

+n(Y)QX — n(X)QY]

r
— (V)X —n(X)Y].
g X ()]
Again replacing Y by £ in (4.2) we obtain by virtue of (2.9) that
N D I AN
(43) QX = |15 (o= p)|X — [ —n(a® = p)|n(X)¢
which can also be written as

(44) S(X.Y) = |— = (a* = )] g(X.Y) = | = = n(a® = p) |n(X)n(Y)

which implies that the manifold is n-Einstein. (]
Corollary 4.1. A (LCS)3 manifold is an n-FEinstein manifold.

Proof. Since in a 3-dimensional Lorentzian manifold, the Weyl conformal cur-
vature tensor vanishes, it follows that (4.1) holds for n = 3 and hence it can be
easily shown that a (LCS)s manifold is always an n-Einstein manifold. O

Definition 4.2. A Riemannian manifold (M™, g) (n > 4) is said to be of quasi-

constant curvature if it is conformally flat and its curvature tensor R of type
(0, 4) has the following form:

(45) R(Xv Y, Z, W) = a[g(Y7 Z)g(X’ W) - g(Xa Z)g(Yv W)]
+blg(X, W)A(Y)A(Z) — g(Y,W)A(X)A(Z)
+9(Y, Z)A(X)A(W) — g(X, Z)A(Y)A(W)],
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where A is a 1-form and a, b are scalars of which b # 0.

This notion of quasi-constant curvature was introduced by Chen and Yano
[1].

Theorem 4.2. A conformally flat (LCS), (n > 4) manifold is of quasi-
constant curvature.

Proof. By virtue of (4.3) and (4.4), the relation (4.1) takes the form
(4.6) R(X,Y,Z,W) = alg(Y, Z)g(X, W) — g(X, Z)g(Y, W]
+0lg(X, W)n(Y)n(Z) — g(Y. W)n(X)n(Z)
+9(Y, Z2)n(X)n(W) — g(X, Z)n(Y )n(W)],
where a = ﬁ[ (a2 —p)] and b = L[ (a? — p)] are smooth
functions. Here b 75 0 as for b = 0, (4.4) yields that the manifold is Einstein,

but the manifold under consideration is n-Einstein. Hence comparing (4.5) and
(4.6), the theorem is proved. O

1

5. Generalized Ricci recurrent (LC'S),-manifold

Definition 5.1. A (LCS),-manifold is said to be generalized Ricci recurrent
[2] if its Ricci tensor S of type (0, 2) satisfies the condition

(5.1) (Vx)(Y, 2) = AX)S(Y, Z2) + B(X)g(Y, 2),

where A and B are two non-zero l-forms such that A(X) = ¢(X,P) and
B(X) =g(X,L), P and L being associated vector fields of the 1-form A and
B, respectively.

Theorem 5.1. In a generalized Ricci recurrent (LCS),, (n > 4) manifold, the
1-form A and B are related by

(5:2) B(X) = (n—1)[2ap - f)n(X) — (a® = p) A(X)].

Proof. In a generalized Ricci recurrent (LC'S),-manifold, we have the relation
(5.1). Setting Z = & in (5.1) we have
(5.3) (VxS)(Y.€) = [(a® = p) A(X) + B(X)In(Y).
Again

(Vx9)(Y,8) = VxS(Y,¢) — S(VxY,§) = S(Y, VxE)
which yields by virtue of (2.3), (2.4), (2.9), and (3.1) that
(5.4)
(Vx8)(Y,€) = (n = D)[(2ap — B)n(X)n(Y) + a(a® - p)g(X,Y)] - aS(X,Y).
From (5.3) and (5.4), it follows that
(5.5) aS(X,Y) = (n—1)[(2ap - B)n(X)n(Y) + ala® - p)g(X,Y)

— (a® = p)A(X)n(Y)] = B(X)n(Y).

Replacing Y by £ in (5.5) we obtain (5.2). This proves the theorem. O
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Theorem 5.2. A generalized Ricci recurrent (LCS),-manifold is Einstein if
and only if B = 2ap.

Proof. In a generalized Ricci recurrent (LC'S),,-manifold we have the relation
(5.5). Hence setting Y = ¢Y in (5.5) and then using (2.7) we have

(5.6) S(X,Y) = (n—1)(a® - p)g(X,Y).

If the manifold under consideration is Einstein, then (5.6) implies a? — p =

constant and hence 2ap— 3 = 0. Conversely, if 2ap— 3 = 0, then Vx(a?—p) =
0. Consequently o — p = constant. (I

Theorem 5.3. In an Finstein generalized Ricci recurrent (LCS),,-manifold the
associated 1-forms are linearly dependent and the vector fields of the associated
1-forms are of opposite direction for a® — p > 0.

Proof. In a generalized Ricci recurrent (LC'S),,-manifold we have the relation
(5.5). If such a manifold is Einstein, then o —p is constant and hence 2ap—f =
0. Consequently (5.2) reduces to

(5.7) B(X)+ kA(X) =0,
where k = (n — 1)(a? — p) = constant. This proves the theorem. O

Theorem 5.4. A generalized Ricci recurrent (LCS),, (n > 4) manifold is Ricci
symmetric if and only if B = 2ap.

Proof. In a generalized Ricci recurrent (LC'S),,-manifold we have the relation
(5.6) from which it follows that
(5.8) (Vx9)(Y,Z) = (n—1)(2ap — B)n(X)g(Y, 2).

If in a generalized Ricci recurrent (LCS),-manifold o — p is constant, then
the relation (5.7) holds. Hence using (5.7) in (5.1) we get

(5.9) (VxS)(Y,Z) = ACX)IS(Y, Z) — hg(Y, 2)].

This implies by virtue of (5.6) that

(5.10) (VxS)(Y,Z)=0.

Conversely, if (5.10) holds, then (5.8) implies that 2ap — 8 = 0 and hence
a? — p = constant. This proves the theorem. O

Definition 5.2. The Ricci tensor of a generalized Ricci recurrent (LC'S),,-
manifold is said to be n-parallel if it satisfies

(5.11) (Vz9)(¢X,0Y) =0
for all vector fields X, Y and Z on M.

The notion of Ricci n-parallelity was first introduced by M. Kon [3] for the
Sasakian manifolds.

Theorem 5.5. The Ricci tensor of a generalized Ricci recurrent (LCS),, (n >
4) manifold is n-parallel if and only if the manifold is Einstein.
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Proof. The Ricci tensor of a generalized Ricci recurrent (LCS),,-manifold is
n-parallel if and only if the following relation holds [6]
(5.12) (Vz29)(X,Y) = oS(Y, Z)n(X) + 5(X, Z)n(Y)]

= (n=D)[2ap = B)n(X)n(Y)n(Z)

+a(o® = p){g(X, Z)n(Y) + g(Y. Z)n(X)}].
Again in a generalized Ricci recurrent (LC'S),,-manifold, the relations (5.5) and
(5.6) hold. Therefore in view of (5.6), (5.8) and (5.12) we obtain 2ap—8 = 0 and
hence a? — p = constant. Consequently (5.6) implies that the manifold under
consideration is Einstein. Conversely, if 2ap — 8 = 0, then Vx(a? — p) = 0.
Thus if a generalized Ricci recurrent (LCS),-manifold is Einstein, then we
have a? — p = constant and hence the relation (5.10) holds, which implies that

(Vz9)(0X,¢Y) =0

for all X, Y and Z on M. Therefore the Ricci tensor of the manifold under
consideration is n-parallel. Thus the theorem is proved. O

6. Examples of (LCS),-manifolds

Example 6.1. We consider the 3-dimensional manifold M = {(z,y, z) € R},
where (x,y, ) are the standard coordinates in R®. Let {ej,ea,e3} be linearly
independent global frame on M given by

z(a 8) 728 7228
el =e + , ey =e€e " — e =e

oz Yoy dy’ 9z
Let g be the Lorentzian metric defined by g(e1,e3) = g(ea,e3) = g(e1,ea) =0,
gler,e1) = glea,ea) = 1, g(es,es) = —1. Let n be the 1-form defined by

n(U) = g(U, e3) for any U € x(M). Let ¢ be the (1, 1) tensor field defined by
ge1 = e1, pes = eg, ¢pes = 0. Then using the linearity of ¢ and g we have
nies) = =1, ¢*U = U + n(U)es and g(oU, pW) = g(U, W) + n(U)n(W) for
any U, W € x(M). Thus for e3 = &, (¢,£,1, g) defines a Lorentzian paracontact
structure on M.

Let V be the Levi-Civita connection with respect to the Lorentzian metric
g and R be the curvature tensor of g. Then we have

le1,€2) = —e %€y, [e1,e3] = e ey, [eg, 3] = e e

Taking e3 = £ and using Koszul formula for the Lorentzian metric g, we can
easily calculate

—2z —2z
Ve,e3 =¢ ey, Ve,e2 =0, Ve,e1 = e ““e3,
V =2z v . —2z _ -z v =2z
ex€3 = € €2, e€2 = € €3 —€ "€q, ex€1 = € €2,
V63€3 = 07 V63€2 = 0, Vegel =0.

From the above it can be easily seen that (¢,£,n,¢) is a (LCS)3 structure on
M. Consequently M3(¢,£,m,g) is a (LCS)s-manifold with a = e=2% # 0 such
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that (Xa) = pn(X), where p = 2e~4*. Using the above relations, we can easily
calculate the non-vanishing components of the curvature tensor as follows:

R(es, e3)es = e 4%e,y, R(e1,e3)es = e *e;,  Rlep,es)es = e %6 — e Fey,

R(eg,e3)es = e *7ez, R(er,ez)er = e *Pes,  Rler,ex)er = —e Feate ey

and the components which can be obtained from these by the symmetry prop-
erties from which, we can easily calculate the non-vanishing components of the
Ricci tensor S as follows:

S(er,e1) =27 —e 2 S(eg,en) =2 —e %, S(es,e3) = 2717
Since {e1, e2,€e3} is a frame field for (LCS)z-manifold, any vector field X, Y €
X (M) can be written as

X =aje; +bies +cres
and

Y = azer + baea + caes,
where a;,b;,c; € RT (= the set of positive real numbers), i = 1,2, 3, such that
c1Co # ayas + biby. Hence

S(X, Y) == 2(&1@2 + b1b2 + 6162)674z — (a1a2 + b1b2)672z
and
g(X,Y) = ajas + b1b2 — C1C2.

By virtue of the above we have the following:
(Ve, S)(X,Y) = (arca + azer) (e — de™5%),
(VE2S)(X, Y) = (blcg + bgcl)(€_4z — 46_62)

and
(Ve S)(X,Y) =0.
We shall show that this (LCS)s-manifold is a generalized Ricci recurrent, i.e.,
it satisfies the relation (5.1). Let us now consider the 1-forms
(a2 4 azer)
2(ajag + bibs + cic2)’
(bica + bacy)
2(atas + bibs + cic)’
Aes) =0,
e~ 2%(ayca + azer)[(arag + bi1ba)(1 — 8e™4%) — 8cycae 4]
2(arag + bibs + c1ca)(aras + biby — c1¢2)
e~ 2%(byca + bacr)[(a1as + b1ba) (1 — 8e™4%) — 8¢y coe™47]
B 2(ajaz + bibs + c1e2)(aras + brba — c1c2)
B(es) =0

Aler) =

Ale2) =

)

Y
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at any point # € M. In our M3, (5.1) reduces with these 1-forms to the
following equations:

() (Ve S)(X,Y) = A(e1)S(X,Y) + Ble)g(X.Y),
(i) (VeuS)(X,Y) = A(e2)S(X,Y) + Blea)g(X.Y),
(i) (Voo S)(X,Y) = A(es)S(X,Y) + Bleg)g(X,Y).

This shows that the manifold under consideration is a generalized Ricci re-
current (LC'S)s-manifold which is neither Ricci-symmetric nor Ricci-recurrent.
Hence we can state the following:

Theorem 6.1. There exists a generalized Ricci recurrent (LCS)s-manifold
which is neither Ricci-symmetric nor Ricci-recurrent.

Example 6.2. We consider the 4-dimensional manifold M = {(z1, 22,23, 24) €
R*|z4 # 0}, where (z1,22,73,74) are the standard coordinates in R*. Let
{e1,€2,e3,e4} be linearly independent global frame on M given by

_ i_|_ ﬁ — i — i_Fi _( )3£
= Bxl xQ@xQ ’62_x48x2’€3_x4 6:102 8x3 164 = e 81'4'

We define ¢,€,7m,9 by de1 = e1, dea = ea, pes = es, e = 0, & = (24)° 52,
n(X) = g(X,eq) for any X € x(M), g(e1,e1) = g(ez,e2) = g(es,e3) = 1,
gleq,e4) = —1, g(e;,e;) =0fori #j,4,5=1,2,3,4.

Let V be the Levi-Civita connection with respect to the Lorentzian metric
g. Then we have

le1, 2] = —zae, [e1,e4] = *(964)2617 le2, e4] = *(1’4)262, le3, eq] = *(364)263-

Taking e4 = ¢ and using Koszul formula for the Lorentzian metric g, we can
easily calculate

Ve1€4 = *(504)261, Ve261 = T4€2, velel = *(5174)264, Ve2€4 = *(I4)2€2,

Veseq = —($4)263, Veses = —($4)2€4. Ve €2 = —(a:4)264 — T4€7.

From the above it can be easily seen that (¢,&, 7, g) is an (LCS)4 structure on
M. Consequently M*(¢,¢&,n,g) is an (LCS)4-manifold with o = —(z4)% # 0
such that (Xa) = pn(X), where p = 2(x4)%.

Using the above relations, we can easily calculate the non-vanishing compo-
nents of the curvature tensor as follows:

R(e1,eq)er = (z4)es, Rles,eq)es = (z4)es, Rles,eq)es = (z4)%es,
R(ey,e3)es = (z4)er, R(er,es3)er = —(x4)%es, R(ea,e3)es = —(24)%es,
R(e1,eq)eq = (x4)e1, Rlea,eq)eqs = (x4)en, Rler,ea)es = [(x4)* — (24)%]e1,
R(ea,e3)es = (x4)*ea, R(es,eq)es = (x4)tes, R(er,ez)er = —[(x4)* — (24)%]ez
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and the components which can be obtained from these by the symmetry prop-
erties from which, we can easily calculate the non-vanishing components of the
Ricci tensor S as follows:

S(er,er) = 3(9€4)4 - (964)27 S(es,e3) = 3(564)4,
5(62, 62) = 3(.1‘4)4 — (.T4)2, 5(64, 64) = 3(904)4.

Since {e1,e2,e3,€e4} is a frame field for (LCS)4-manifold, any vector field
X,Y € x(M) can be written as

X = aier + b1€2 + ci1e3 + d164
and
Y = aseq + boeg + coes3 + doey,

where a;, b;, ¢;,d; € RT (= the set of positive real numbers), i = 1,2, 3,4, such
that didy # aias + b1bs + c1co. Hence

S(X, Y) = 3(@10,2 + blbg +cico + dldg)($4)4 — (a1a2 + blbg)($4)2
and
g(X, Y) = aias + bi1by + c1co0 — dids.

By virtue of the above we have the following;:

(Ve S)(X,Y) = (24)"(a1d2 + a2d1)[6(z4)? — 1],
(VEZS)( Y) = (z4)*(b1da + bady)[6(z4)” — 1],
(Ve 9)(X,Y) = 3(cld2 + cody)(24)%, and
(Ve S)HXY) =

We shall now show that this (LC'S)4-manifold is a generalized Ricci recurrent,
i.e., it satisfies the relation (5.1). Let us now consider the 1-forms

(a1d2 + a2dr)

Aler) = —
(61) 3(@1&2 +b1b2—|—6102+d1d2)’
Ales) = = (bids + bod)
2 3((11(12 —|—blb2—|—6102—|—d1d2)7
(24)*(c1da + cody)
A - . Ales) =0,
(es) (aras + b1by + creo + dido) (ca)
B(e ) _ (334)2(a1d2 + agdl)[(alag + blbg){18($4)4 — 1} + 18(6102 + dldg)($2)4]
! 3(a1a2 + bibs + c1e9 + dldg)(alag + b1by + c1e0 — dldg) ’
B(e ) (.%'4) (b1d2 + del)[(alag + blbg){18($4)4 — 1} + 18(0162 + dldg)($4)4]
2 3(&1&2 + b1bs + 100 + dldg)(a1a2 + b1by + c1co — dldg) ’
4e1d d b1b
Bles) = (w4)*(c1da + cady)(araz + bibo) Bles) = 0

(aras + biba + cic2 + didz)(araz + biby + ci1co — dids)’
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at any point # € M. In our M*%, (5.1) reduces with these 1-forms to the
following equations:

(i) (Ve S)(X,Y) = A(er)S(X, Y
(i) (V.aS)(X.Y) = A(e2)S(X, Y
(it}) (Ve,S)(X,Y) =
(iv) (Ve,S)(X,Y) = A(eq)S(X,Y) 4+ Bles)g(X,Y).

This shows that the manifold under consideration is a generalized Ricci re-

current (LC'S)4-manifold which is neither Ricci-symmetric nor Ricci-recurrent.
This leads to the following:

Theorem 6.2. There exists a generalized Ricci recurrent (LCS)y-manifold
which is neither Ricci-symmetric nor Ricci-recurrent.
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