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EVOLUTION AND MONOTONICITY FOR A CLASS OF

QUANTITIES ALONG THE RICCI-BOURGUIGNON FLOW

Farzad Daneshvar and Asadollah Razavi

Abstract. In this paper we consider the monotonicity of the lowest con-

stant λba(g) under the Ricci-Bourguignon flow and the normalized Ricci-
Bourguignon flow such that the equation

−∆u+ au log u+ bRu = λba(g)u

with
∫
M u2 dV = 1, has positive solutions, where a and b are two real con-

stants. We also construct various monotonic quantities under the Ricci-

Bourguignon flow and the normalized Ricci-Bourguignon flow. Moreover,

we prove that a compact steady breather which evolves under the Ricci-
Bourguignon flow should be Ricci-flat.

1. Introduction

Geometric flows are essential tools in the study of Riemannian manifolds and
play important role in mathematics and physics. On the other hand, eigenval-
ues are also very important tools in the study of geometry and topology of
Riemannian manifolds. That is why one can find so many mathematicians
who have worked on the eigenvalues of geometric operators along geometric
flows. In this paper we apply the Ricci-Bourguignon flow which is a general-
ization of the Ricci flow. To be familiar with this flow, suppose (M, g(t)) is
a smooth closed Riemannian manifold of dimension n ≥ 2 which is evolving
under the following second order quasilinear parabolic PDE

(1)
∂g(t)

∂t
= −2Ricg(t) + 2ρRg(t)g(t),

where Ricg(t) is the Ricci tensor, Rg(t) is the scalar curvature of the manifold
and ρ is a real constant. Depending on the choice of ρ, the Ricci-Bourguignon
flow may turn to certain celebrated geometric flows. Namely, for ρ = 1

2 this flow

will turn to the Einstein flow, for ρ = 1
2(n−1) it will turn to the Schouten flow

and for ρ = 0 it will turn to the famous Ricci flow. If ρ < 1
2(n−1) , then every
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initial compact Riemannian manifold (M, g0) has a unique smooth solution g(t)
solving the flow equation (1) with g(0) = g0 (see [5, Theorem 3.1.2]).

Perelman [9] introduced the functional

F(g, f) =

∫
M

(|∇f |2 +R)e−f dV,

and showed the F-functional is nondecreasing under the Ricci flow coupled to a
backward heat-type equation. Since the functional F is nondecreasing, it turns
out that the lowest eigenvalue of the operator −4∆ +R is nondecreasing along
the Ricci flow. Cao [1] showed that on manifolds with nonnegative curvature
operator, the eigenvalues of the operator −∆ + R

2 are nondecreasing along the
Ricci flow. Afterwards, Li [8] obtained the same monotonicity for the first
eigenvalue of the operator −∆ + R

2 without any curvature assumption. Later,

Cao [2] considered a general operator −∆ + bR, where b ≥ 1
4 , and proved that

the first eigenvalue of this operator is nondecreasing along the Ricci flow on
manifolds without curvature assumption.

Recently Chen [3] et al. did analogous work to what aforementioned. They
studied the monotonicity of eigenvalues of operator −∆ + bR, where b is a
constant, along the Ricci-Bourguignon flow and derived the monotonicity of
the lowest eigenvalue of −∆ + bR. Wang [11] demonstrated the monotonicity
of the lowest eigenvalue of the Schrödinger operator

(1− (n− 1)ρ)2

1− 2(n− 1)ρ
R− 4∆,

where ρ is the same as in (1), along the Ricci-Bourguignon flow and ruled out
the nontrivial steady breathers. Huang and Li [7] investigated the monotonic-
ity of the lowest constant λba(g) along the Ricci flow such that the following
nonlinear equation has positive solutions:

(2) −∆u+ au log u+ bRu = λba(g)u

with

(3)

∫
M

u2 dV = 1,

where a and b are real constants. In fact, they extended the equation

(4) −∆u+ bRu = λb(g)u

with
∫
M
u2 dV = 1, to the equation (2) and generalized some results of Cao

[2] and Li [8] as well. Motivated by them, in this paper we will study the
monotonicity of the lowest constant λba(g) along the Ricci-Bourguignon flow
such that the nonlinear equation (2) with (3) has positive solutions. In the
following, we write RB-flow rather Ricci-Bourguignon flow for abbreviation.

The following theorem will be proved in Section 2:
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Theorem 1.1. Let g(t), t ∈ [0, T ), be a solution to the RB-flow on a closed
manifold Mn and let λba(g) be the lowest constant such that the nonlinear equa-
tion (2) with (3) has positive solutions. Under assumptions ρ ≤ 0, b ≥ 1

4 ,

R(0) ≥ na and |∇f |2 ≥ ∆f, the quantity

λba(t) +
na2(1− nρ)2

8
t

is strictly increasing along the RB-flow in [0, T ). Here f = −2 log φ.

In the case of evolving an initially locally symmetric manifold, we will prove
the following:

Theorem 1.2. Suppose g(t), t ∈ [0, T ), is a solution to the RB-flow on a
closed manifold Mn. Moreover suppose (M, g0) is locally symmetric. Let λba(g)
be the lowest constant such that the nonlinear equation (2) with (3) has positive
solutions. Then under assumptions ρ ≤ 0, b ≥ 1

4 and R(0) ≥ na the quantity

λba(t) +
na2(1− nρ)2

8
t

is strictly increasing along the RB-flow in [0, T ).

Define the symmetric tensor S = Ric− ρRg and let S = trS = (1−nρ)R be
its trace. The normalized RB-flow is

(5)
∂g(t)

∂t
= −2S +

2

n
sg(t),

where

(6) s =

∫
M
S dV∫

M
dV

= (1− nρ)

∫
M
R dV∫

M
dV

= (1− nρ)r

and r is the average scalar curvature. In Section 3, we focus on the normalized
RB-flow and we will prove the following theorem:

Theorem 1.3. Let g(t), t ∈ [0, T ), be a solution to the normalized RB-flow
on a compact surface M2 and let λba(g) be the lowest constant such that the
nonlinear equation (2) with (3) has positive solutions. Under assumptions ρ ≤
0, b = 1

2 and R(0) ≥ 2a, the quantity

λba(t) +
a2(1− 2ρ)2

4
t+

sa

2
t+ s

∫ t

0

λb(s)ds

is strictly increasing along the normalized RB-flow in [0, T ). Here λb is the
lowest eigenvalue of (4).

We also prove the following result when an initial homogeneous manifold is
evolving along the RB-flow:

Theorem 1.4. Suppose g(t), t ∈ [0, T ), is a solution to the normalized RB-
flow on a closed manifold Mn. Moreover suppose (M, g0) is homogeneous. Let
λba(g) be the lowest constant such that the nonlinear equation (2) with (3) has
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positive solutions. Then under assumptions ρ ≤ 0, b ≥ 1
4 and R(0) ≥ na, the

quantity

λba(t) +
na2(1− nρ)2

8
t+

sa

2
t+

2s

n

∫ t

0

λb(s)ds

is strictly increasing along the normalized RB-flow in [0, T ), where λb is the
lowest eigenvalue of (4).

2. Monotonicity of λb
a(g) along the RB-flow

We define the lowest constant λba(g) which satisfies (2) with (3) as

λba(g) = inf

{
Gba(g, u) :

∫
M

u2dV = 1, u > 0, u ∈ C∞(M)

}
,

in which

Gba(g, u) =

∫
M

(|∇u|2 + au2 log u+ bRu2)dV.

Generally it is not clear for us that the constant λba(g) and the corresponding
function u(x, t) are differentiable in t along the RB-flow. So we can not use the
differentiability property for λba(g) and u(x, t). But we can use a common trick
to resolve this problem. Namely, we may proceed similar to Chen et al.’s work
[3] to bypass the differentiability of λba(g). For this purpose, we show that on a
compact manifold M , the constant λba(g) exists and it is a continuous function
along the Ricci-Bourguignon flow on [0, T ).

Now we first show that for any compact Riemanniam manifold (M, g), the
constant λba(g) exists. To see that, we should prove the set

(7)

{
Gba(g, u) :

∫
M

u2dV = 1, u > 0, u ∈ C∞(M)

}
is bounded from below. We may write{

Gba(g, u) :

∫
M

u2dV = 1, u > 0, u ∈ C∞(M)

}
⊆
{∫

M

(|∇u|2 + bRu2)dV :

∫
M

u2dV = 1, u > 0, u ∈ C∞(M)

}
+

{∫
M

au2 log u dV :

∫
M

u2dV = 1, u > 0, u ∈ C∞(M)

}
.

By [3] we know that when M is compact, the set

(8)

{∫
M

(|∇u|2 + bRu2)dV :

∫
M

u2dV = 1, u > 0, u ∈ C∞(M)

}
takes its infimum and hence is bounded from below. On the other hand, since
at2 log t takes its minimum at t = 1√

e
, where e is the Euler’s number, one can



EVOLUTION AND MONOTONICITY FOR A CLASS OF QUANTITIES 1445

easily get the lower bound of the set

(9)

{∫
M

au2 log u dV :

∫
M

u2dV = 1, u > 0, u ∈ C∞(M)

}
for a > 0.

Since the sets (8) and (9) are bounded from below, we can conclude that
the set (7) is bounded from below and consequently λba(g) exists.

Following the techniques of [3], we will show that λ := λba is a continuous
function along the Ricci-Bourguignon flow.

Lemma 2.1. If g1 and g2 are two metrics on M satisfying

(1 + ε)−1g1 ≤ g2 ≤ (1 + ε)g1 and R(g1)− ε ≤ R(g2) ≤ R(g1) + ε,

then

λ(g2)− λ(g1)

≤
(
(1 + ε)

n
2 +1 − (1 + ε)−

n
2

)
(1 + ε)

n
2 (λ(g1)−min(bRg1 + a logw))

+ ((1 + δ)|b|max |Rg2 −Rg1 |+ 2δmax |bRg1 + a logw|) (1 + ε)
n
2 ,

where δ → 0 as ε → 0. In particular, λ = λba is a continuous function with
respect to the C2-topology.

Proof. One can prove this using arguments similar to Lemma 5.24 in [4]. �

All over this paper we denote

∂gij
∂t

= hij ,

where h is a symmetric 2-tensor. The following lemma is required throughout
the paper.

Lemma 2.2 (L. Cremaschi [5]). Suppose g(t) is a solution to the RB-flow.
Let R and dV denote the scalar curvature and volume element of metric g(t)
respectively. Then the following evolution equations hold:

∂R

∂t
= (1− 2 (n− 1) ρ) ∆R+ 2|Ric|2 − 2ρR2,

∂dV

∂t
= (nρ− 1)R dV.

Again, suppose that λba(g) is the lowest constant such that (2) with (3)
has positive solution u(x, t). Now we are going to apply a trick in order to
bypass time derivatives of the constant λba(g) and the corresponding function
u(x, t). According to [6, Theorem 7.2], for any t0 ∈ [0, T ), there exists a smooth
function φ(t) > 0 satisfying ∫

M

φ(t)2dV = 1
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and φ(t0) = u(t0). Let

µ(t) =

∫
M

(
−φ(t)∆φ(t) + aφ(t)2 log φ(t) + bRφ(t)2

)
dV.

Then µ(t) is a smooth function by definition. And at time t0, we conclude that
λba(t0) = µ(t0).

Here we state an essential lemma:

Lemma 2.3. Let g(t), t ∈ [0, T ), be a solution to the RB-flow on a closed
manifold Mn and let λba(g) be the lowest constant such that the nonlinear equa-
tion (2) with (3) has positive solutions. Suppose that u(t0) is the corresponding
solution to λba(t0). Then we have

d

dt

(
µ(t)+

na2(1−nρ)2

8
t

)∣∣
t=t0

=
1

2

∫
M

∣∣∣∣Rij +∇i∇jf +
a

2
(1− nρ)gij

∣∣∣∣2e−f dV

+

(
2b− 1

2

)∫
M

|Rij |2e−f dV

− 2ρb

∫
M

R2e−f dV(10)

+
ρ

2

∫
M

|∇f |2(na−R)e−f dV

+

(
n

2
− 2(n− 1)b

)
ρ

∫
M

∆Re−f dV,

where f = −2 log φ.

Proof. By definition we know

(11) µ(t) =

∫
M

(
|∇φ|2 + aφ2 log φ+ bRφ2

)
dV.

Using Lemma 2.2 we have

d

dt
µ(t)

∣∣
t=t0

=

∫
M

(
(2Rij − 2ρRgij)

(
∇iφ∇jφ

)
+ 2gij∇iφt∇jφ+ 2aφφt log φ

+ aφφt + bRtφ
2 + 2bRφφt

)
dV

+

∫
M

(
|∇φ|2 + aφ2 log φ+ bRφ2

)
(nρ− 1)R dV.(12)

Applying

2

∫
M

Rij∇iφ∇jφdV =

∫
M

(
(−∇iR∇iφ)φ− 2Rij(∇i∇jφ)φ

)
dV

and

−
∫
M

|∇φ|2R dV =

∫
M

(
R∆φ+∇iR∇iφ

)
φ dV
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into (12), we have

d

dt
µ(t)

∣∣
t=t0

=

∫
M

[
− 2Rij(∇i∇jφ)φ− 2ρR|∇φ|2 + bRtφ

2 + aφφt

+ 2φt (−∆φ+ aφ log φ+ bRφ)

+Rφ (−∆φ+aφ log φ+bRφ) (nρ−1)−nρ(∇iR∇iφ)φ
]

dV

=

∫
M

[
−2Rij(∇i∇jφ)φ− 2ρR|∇φ|2 + bRtφ

2 +
a

2
(φ2)t

]
dV(13)

+ µ(t0)

(∫
M

φ2 dV

)
t

∣∣
t=t0
−
∫
M

nρ(∇iR∇iφ)φ dV

=

∫
M

[
−2Rij(∇i∇jφ)φ− 2ρR|∇φ|2 + bRtφ

2 +
a

2
(φ2)t

]
dV

−
∫
M

nρ(∇iR∇iφ)φ dV,

where the last equality is obtained by∫
M

(φ2)t + (nρ− 1)Rφ2 dV = 0

from (3). According to Lemma 2.2, we have ∂R
∂t = (1− 2 (n− 1) ρ) ∆R +

2|Ric|2 − 2ρR2. So, (13) leads to the following

d

dt
µ(t)

∣∣
t=t0

=

∫
M

[
− 2Rij(∇i∇jφ)φ− 2ρR|∇φ|2

+ bφ2
(
(1− 2 (n− 1) ρ) ∆R+ 2|Rij |2 − 2ρR2

)
+
a

2
(1− nρ)Rφ2

]
dV −

∫
M

nρ(∇iR∇iφ)φdV

=

∫
M

[
− 2Rij(∇i∇jφ)φ− 2ρR|∇φ|2(14)

+
(

(1− 2 (n− 1) ρ) bR∆φ2 + 2bφ2|Rij |2

− 2ρbφ2R2
)

+
a

2
(1− nρ)Rφ2

]
dV −

∫
M

nρ(∇iR∇iφ)φ dV.

Under a transformation f = −2 log φ which is equivalent to φ2 = e−f , we get

(15) ∇i∇jφ =

(
−1

2
∇i∇jf +

1

4
∇if∇jf

)
e−

f
2

and

(16)

∫
M

(∇iR∇iφ)φ dV = −1

2

∫
M

R∆e−f dV.
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Hence, (14) can be written as

d

dt
µ(t)

∣∣
t=t0

=

∫
M

[
Rij(∇i∇jf)− 1

2
Rij∇if∇jf −

ρ

2
R|∇f |2

− (1− 2 (n− 1) ρ) bR∆f + (1− 2 (n− 1) ρ) bR|∇f |2

+ 2b|Rij |2 − 2ρbR2 +
a

2
(1− nρ)R

]
e−f dV

+
nρ

2

∫
M

R∆e−f dV.

(17)

Applying the second Bianchi identity 2∇lRlj = ∇jR, we attain

− b (1−2 (n−1) ρ)

∫
M

R∆fe−f dV(18)

= (1−2 (n−1) ρ)

∫
M

(b∇iR∇if − bR|∇f |2)e−f dV

= (1−2 (n−1) ρ)

∫
M

(
− 2bRij∇i∇jf+2bRij∇if∇jf−bR|∇f |2

)
e−f dV.

Thus, inserting (18) into (17) yields

d

dt
µ(t)

∣∣
t=t0

= (1− 2b (1− 2 (n− 1) ρ))

∫
M

Rij(∇i∇jf)e−f dV

+

(
2b (1− 2 (n− 1) ρ)− 1

2

)∫
M

Rij(∇if∇jf)e−f dV

+ 2b

∫
M

|Rij |2e−f dV +

∫
M

(
−2ρbR2 +

a

2
(1− nρ)R

)
e−f dV(19)

+
nρ

2

∫
M

R∆e−f dV − ρ

2

∫
M

R|∇f |2e−f dV.

Integrating by parts, we achieve

(20)

∫
M

Rij(∇i∇jf)e−f dV =

∫
M

Rij(∇if∇jf)e−f dV − 1

2

∫
M

R∆e−f dV

and ∫
M

Rij(∇i∇jf)e−f dV +

∫
M

|∇i∇jf |2e−f dV

=
1

2

∫
M

∆|∇f |2e−f dV −
∫
M

(∇i∆f)(∇if)e−f dV − 1

2

∫
M

R∆e−f dV(21)

= −
∫
M

[
∆f − 1

2
|∇f |2 +

1

2
R

]
∆e−f dV

= (2b− 1

2
)

∫
M

R∆e−f dV − a
∫
M

|∇f |2e−f dV,
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where the last equality deduced from the fact that

(22) 2µ(t0) =

(
∆f − 1

2
|∇f |2 − af + 2bR

)
(t0).

According to (20) and (21), we get∫
M

|∇i∇jf |2e−f dV = 2b

∫
M

R∆e−f dV −
∫
M

Rij(∇if∇jf)e−f dV

− a
∫
M

|∇f |2e−f dV.(23)

Using (20) and (23), we obtain

d

dt
µ(t)

∣∣
t=t0

= (1− 2b (1− 2 (n− 1) ρ))

∫
M

Rij(∇i∇jf)e−f dV

+

(
2b (1− 2 (n− 1) ρ)− 1

2

)∫
M

Rij(∇if∇jf)e−f dV

+ 2b

∫
M

|Rij |2e−f dV +

∫
M

(
−2ρbR2 +

a

2
(1− nρ)R

)
e−f dV

+
nρ

2

∫
M

R∆e−f dV − ρ

2

∫
M

R|∇f |2e−f dV

=

∫
M

Rij(∇i∇jf)e−f dV − 1

2

∫
M

Rij(∇if∇jf)e−f dV(24)

+ b (1− 2 (n− 1) ρ)

∫
M

R∆e−f dV + 2b

∫
M

|Rij |2e−f dV

+

∫
M

(
−2ρbR2 +

a

2
(1− nρ)R

)
e−f dV +

nρ

2

∫
M

R∆e−f dV

− ρ

2

∫
M

R|∇f |2e−f dV

=

∫
M

Rij(∇i∇jf)e−f dV + 2b

∫
M

|Rij |2e−f dV

+

∫
M

(
−2ρbR2+

a

2
(1−nρ)R

)
e−f dV+

1

2

∫
M

|∇i∇jf |2e−f dV

+
a

2

∫
M

(∆f)e−f dV +
(n

2
− 2(n− 1)b

)
ρ

∫
M

R∆e−f dV

− ρ

2

∫
M

R|∇f |2e−f dV

=

∫
M

Rij(∇i∇jf)e−f dV+2b

∫
M

|Rij |2e−f dV−2ρb

∫
M

R2e−f dV

+
a

2
(1− nρ)

∫
M

Re−f dV +
1

2

∫
M

|∇i∇jf |2e−f dV

+
a

2
(1− nρ)

∫
M

(∆f)e−f dV +
a

2
nρ

∫
M

(∆f)e−f dV
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+
nρ

2

∫
M

R∆e−f dV − 2(n− 1)bρ

∫
M

R∆e−f dV

− ρ

2

∫
M

R|∇f |2e−f dV

=
1

2

∫
M

∣∣∣∣Rij +∇i∇jf +
a

2
(1− nρ)gij

∣∣∣∣2e−f dV

+

(
2b− 1

2

)∫
M

|Rij |2e−f dV − 2ρb

∫
M

R2e−f dV

+
ρ

2

∫
M

|∇f |2(na−R)e−f dV

+
(n

2
− 2(n− 1)b

)
ρ

∫
M

∆Re−f dV − na2(1− nρ)2

8
.

�

Theorem 2.4. Let g(t), t ∈ [0, T ), be a solution to the RB-flow on a closed
manifold Mn and let λba(g) be the lowest constant such that the nonlinear equa-
tion (2) with (3) has positive solutions. Under assumptions ρ ≤ 0, b ≥ 1

4 ,

R(0) ≥ na and |∇f |2 ≥ ∆f, the quantity

λba(t) +
na2(1− nρ)2

8
t

is strictly increasing along the RB-flow in [0, T ). Here f = −2 log φ, where the
function φ has been introduced before.

Proof. Using divergence theorem, we have

(25) 0 =

∫
M

∆e−f dV =

∫
M

(|∇f |2 −∆f)e−f dV.

Since by hypothesis |∇f |2 −∆f ≥ 0, we obtain from (25)

(26) |∇f |2 = ∆f.

Integrating by parts and using (26), yields∫
M

∆Re−f dV =

∫
M

R∆e−f dV =

∫
M

R(|∇f |2 −∆f)e−f dV = 0.

On the other hand, by assumption we have R(0) ≥ na. Thus, according to
Lemma 2.3 and Lemma 2.6 in [3], we conclude that either maxR(t) > na
or g(t) = g(0) for every t ∈ (0, T ). Suppose that maxR(t) > na, because
otherwise the proof is trivial. Therefore, considering ρ ≤ 0, b ≥ 1

4 and |∇f |2 ≥
∆f, Lemma 2.3 yields

d

dt

(
µ(t) +

na2(1− nρ)2

8
t

)∣∣
t=t0

> 0.
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By definition, µ(t) is a smooth function in variable t. Therefore there exists a
sufficiently small δ > 0 such that in the interval (t0 − δ, t0 + δ),

d

dt

(
µ(t) +

na2(1− nρ)2

8
t

)
> 0.

Thus

µ(t0) +
na2(1− nρ)2

8
t0 > µ(t1) +

na2(1− nρ)2

8
t1

for any t1 ∈ (t0 − δ, t0 + δ) and t1 < t0.
We note that

µ(t0) = λba(t0) and µ(t1) ≥ λba(t1).

This implies that

λba(t0) +
na2(1− nρ)2

8
t0 > λba(t1) +

na2(1− nρ)2

8
t1

for any t0 > t1. Since according to Lemma 2.1 the quantity λba(t) + na2(1−nρ)2
8 t

is continuous and since t0 ∈ [0, T ) is arbitrary, we can conclude that λba(t) +
na2(1−nρ)2

8 t is strictly increasing in [0, T ). �

Corollary 2.5. Suppose g(t), t ∈ [0, T ), is a solution to the RB-flow on a
closed manifold Mn. Under assumptions ρ ≤ 0, b = n

4(n−1) and R(0) ≥ na,

the quantity

λba +
na2(1− nρ)2

8
t

is strictly increasing along the RB-flow.

Now, we claim that a locally symmetric manifold remains the same along
the RB-flow. To prove this, we first need the following.

Proposition 2.6 (L. Cremaschi [5]). During the Ricci-Bourguignon flow of
a Riemannian manifold (Mn, g(t)), the Riemann tensor satisfies the following
evolution equation.

∂

∂t
Rijkl = ∆Rijkl + 2(Bijkl −Bijlk −Biljk +Bikjl)

− gpq(RpjklRqi +RipklRqj +RijplRqk +RijkpRql)

− ρ(∇i∇kRgjl −∇i∇lRgjk −∇j∇kRgil +∇j∇lRgik)

+ 2ρRRijkl,

where the tensor B is defined as Bijkl = gpqgrsRipjrRkqls.

Remark 2.7. Recall that for a tensor field A of arbitrary type, we have the
following formula for commuting the covariant derivative and the Laplacian:

(27) ∇(∆A)−∆(∇A) = ∇Rm ∗A+ Rm ∗ ∇A,
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and for a t-dependent tensor field A = A(t) we have

(28)
∂

∂t
∇A−∇ ∂

∂t
A = A ∗ ∇h.

Substituting A with Riemann curvature tensor Rm in (27) and (28), along with
the fact that h = 2(Ric− ρRg), we get

(29) ∇(∆Rm) = ∆(∇Rm) + Rm ∗ ∇Rm

and

(30) ∇ ∂

∂t
Rm =

∂

∂t
∇Rm + Rm ∗ ∇Rm + ρg ∗ Rm ∗ ∇Rm.

Writing Proposition 2.6 in ∗-notation, yields

(31)
∂

∂t
Rm = ∆Rm + Rm ∗ Rm + ρg ∗ ∇2Rm.

Finally, taking covariant derivative of (31) and using (29) together with (30),
we have

(32)
∂

∂t
∇Rm = ∆∇Rm + Rm ∗ ∇Rm + ρg ∗ ∇3Rm + ρg ∗ Rm ∗ ∇Rm.

Now we are able to prove our claim.

Proposition 2.8. Suppose g(t), t ∈ [0, T ), is a solution to the RB-flow on a
closed manifold Mn. If (M, g(t)) is locally symmetric at the initial time t = 0,
then it remains locally symmetric for all times t ∈ [0, T ).

Proof. Consider the original ODE which according to (32), ∇Rmg(t) is its an-
swer. On the other hand, zero is an answer for this ODE too. Therefore, by
the uniqueness of the solution of an ODE, we conclude that ∇Rmg(t) ≡ 0 for
all t ∈ [0, T ). �

Lemma 2.3 along with the above fact, gives:

Corollary 2.9. Suppose g(t), t ∈ [0, T ), is a solution to the RB-flow on a
closed manifold Mn with g(0) = g0. Moreover suppose (M, g0) is locally sym-
metric. Then under assumptions ρ ≤ 0, b ≥ 1

4 and R(0) ≥ na, the quantity

λba +
na2(1− nρ)2

8
t

is strictly increasing along the RB-flow.

Proof. By hypothesis, (M, g0) is locally symmetric. Hence due to Proposition
2.8, we get

∇Rm(t) ≡ 0

for t ∈ [0, T ). Accordingly,

(33) ∇R(t) = tr∇Rmg(t) = 0.



EVOLUTION AND MONOTONICITY FOR A CLASS OF QUANTITIES 1453

Integrating by parts and using (33), we obtain

(34)

∫
M

∆Re−f dV =

∫
M

R∆e−f dV = −
∫
M

〈
∇R ,∇e−f

〉
dV = 0.

Employing Lemma 2.3 along with the expression (34) and proceeding similar
to the proof of Theorem 2.4, we can conclude the proof of the corollary. �

Our next aim is to show that isometries are preserved along the RB-flow.
By Theorem 3.1.2 in [5] we know that for ρ < 1

2(n−1) any initial compact

Riemannian manifold (Mg0) has a unique smooth solution (M, g(t)) solving
the flow equation (1). Thus we have the following proposition.

Proposition 2.10. Suppose (M, g(t)), t ∈ [0, T ), is a compact solution to the
RB-flow with g(0) = g0 and ρ < 1

2(n−1) . If φ : (M, g0) −→ (M, g0) is an

isometry, then it will remain an isometry along the RB-flow for all t ∈ [0, T ).

Proof. Since g(t), t ∈ [0, T ), is a solution to the RB-flow, we have

∂g(t)

∂t
= −2Ricg(t) + 2ρRg(t)g(t).

Accordingly, for t ∈ [0, T ) we attain

∂

∂t
φ∗g(t) = −2Ricφ∗g(t) + 2ρRφ∗g(t)φ

∗g(t),

which shows that φ∗g(t) is a solution to the RB-flow with φ∗g(0) = g0 as well.
Hence, by uniqueness of the solutions to the RB-flow, we get φ∗g(t) = g(t), for
all t ∈ [0, T ). �

Hereunder, using the above fact, we show that the homogeneity is preserved
along the RB-flow.

Proposition 2.11. Suppose g(t), t ∈ [0, T ), is a solution to the RB-flow on a
closed manifold Mn with ρ < 1

2(n−1) . If (M, g(t)) is homogeneous at the initial

time t = 0, then it remains homogeneous for all times t ∈ [0, T ).

Proof. Since (M, g0) is homogeneous, its isometry group Iso(M, g0), acts tran-
sitively. Now let φ : (M, g0) −→ (M, g0) be an isometry. Proposition 2.10
shows that φ : (M, g(t)) −→ (M, g(t)), t ∈ [0, T ), is an isometry as well. Con-
sequently φ ∈ Iso(M, g(t)) and thus Iso(M, g0) ⊂ Iso(M, g(t)) for t ∈ [0, T ).
So, if x, y ∈ M are arbitrary, then there exists a member of Iso(M, g0) and
hence a member of Iso(M, g(t)) such that φ(x) = y. Therefore Iso(M, g(t)),
t ∈ [0, T ), also acts transitively and thus (M, g(t)), t ∈ [0, T ), is homogeneous
too. �

Corollary 2.12. Suppose g(t), t ∈ [0, T ), is a solution to the RB-flow on a
closed manifold Mn. Moreover suppose (M, g0) is homogeneous. Then under
assumptions ρ ≤ 0, b ≥ 1

4 and R(0) ≥ na, the quantity

λba(g) +
na2(1− nρ)2

8
t
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is strictly increasing along the RB-flow.

Proof. Since (M, g0) is homogeneous, thus by virtue of Proposition 2.11,
(M, g(t)) must be homogeneous along the RB-flow. On the other hand, we
know that a homogeneous manifold has constant scalar curvature. Therefore,

∆Rg(t) ≡ 0

for t ∈ [0, T ). Hence, by Lemma 2.3 we can conclude the proof. �

We now recall the definitions of a breather.

Definition. A metric g(t) evolving under the RB-flow flow is called an breath-
er, if there exist some t1 < t2 and α > 0 such that αg(t1) and g(t2) differ only
by a diffeomorphism. A breather is called steady, shrinking or expanding if
α = 1, α < 1 or α > 1, respectively.

Theorem 2.13. On a closed manifold Mn, a steady breather g(t) evolving by
the RB-flow is Ricci-flat when ρ ≤ 0.

Proof. We proceed as in [11] to prove the theorem. Let

Fb(g, f) =

∫
M

(|∇f |2 + bR)e−f dV

and

Fba(g, f) =

∫
M

(|∇f |2 − af
2

+ bR)e−f dV.

So, we can write

(35) Fba(g, f) = Fb(g, f)−
∫
M

a
f

2
e−f dV.

We define

λ̃ba(g) = inf

{
Fba(g, f) :

∫
M

e−fdV = 1, f ∈ C∞(M)

}
.

By [11, Theorem 3.1] and (35) we get

d

dt
Fba(g, f)

= 2b

∫
M

|Ric+
1− (n− 1)ρ

b
Hess(f)|2e−f dV

− 2ρb

n

∫
M

|Rg +
n

2b
Hess(f)|2e−f dV

+

[
2(1− 2(n− 1)ρ)− 2(1− (n− 1)ρ)2

b
+
nρ

2b

] ∫
M

|Hess(f)|2e−f dV(36)

− a

2

∫
M

[
(nρ− 1)R− (1− 2(n− 1)ρ)

+ f(1− 2(n− 1)ρ)
]
(∆f − |∇f |2)e−f dV,
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where f evolves by

∂f

∂t
= (nρ− 1)R− (1− 2(n− 1)ρ)(∆f − |∇f |2).

If we assume that |∇f |2 ≥ ∆f , then using divergence theorem we have

0 =

∫
M

∆e−f dV =

∫
M

(|∇f |2 −∆f)e−f dV.

Thus we obtain

(37) |∇f |2 = ∆f.

So, considering |∇f |2 ≥ ∆f , (36) yields

d

dt
Fba(g, f)

= 2b

∫
M

|Ric+
1− (n− 1)ρ

b
Hess(f)|2e−f dV(38)

− 2ρb

n

∫
M

|Rg +
n

2b
Hess(f)|2e−f dV

+

[
2(1− 2(n− 1)ρ)− 2(1− (n− 1)ρ)2

b
+
nρ

b

] ∫
M

|Hess(f)|2e−f dV

=
d

dt
Fb(g, f).

Under assumptions ρ ≤ 0, b ≥ 4(1−(n−1)ρ)2−nρ
4(1−2(n−1)ρ) > 0 and using Corollary 3.3

in [11], one can conclude that Fb(g, f) and so by (38), the functional Fba(g, f)
is nondecreasing with respect to variable t. Moreover, by (38) along with
Corollary 3.3 in [11], we conclude that Fba(g, f) is strictly monotone unless
the metric is Ricci-flat. Now suppose that g(t) is a breather. Therefore, by
definition of a breather, there exist some t1 < t2 such that g(t1) and g(t2)

differ only by a diffeomorphism. Thus λ̃ba(t1) = λ̃ba(t2). Let f̃(t2) be the

corresponding function to λ̃ba(t2). we have

λ̃ba(t2) = Fba(g(t2), f̃(t2))

≥ Fba(g(t1), f̃(t1))

≥ inf Fba(g(t1), f)

= λ̃ba(t1).

As mentioned before, Fb(g, f) is strictly monotone unless the metric is Ricci-

flat. So the equality λ̃ba(t1) = λ̃ba(t2) shows that g(t) is Ricci-flat. �

Remark 2.14. A similar result was obtained by Wang (see [11, Corollary 2.8]).
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3. Monotonicity of λb
a(g) along the normalized RB-flow

In this section we first state the following lemma which provides the evolution
formula for the scalar curvature and volume element along the normalized RB-
flow.

Lemma 3.1. Suppose g(t) is a solution to the normalized RB-flow. Let R and
dV denote the scalar curvature and volume element of metric g(t) respectively.
Then the following evolution equations hold:

∂R

∂t
= 2|Ric|2 + (1 + 2ρ (1− n)) ∆R− 2ρR2 − 2

n
sR,

∂dV

∂t
= −(1− nρ)(R− r) dV,

where s is as introduced in Section 1.

Proof. Due to Proposition 2.3.12 in [10], the volume element evolves as ∂dV
∂t =

1
2 trhdV. Since along the normalized RB-flow, h = −2Ric + 2ρRg + 2

nsg, we
obtain

∂dV

∂t
=

1

2
tr

(
−2Ric+ 2ρRg +

2

n
sg

)
dV = − (1− nρ) (R− r) dV.

In order to find the evolution equation for the scalar curvature R along the nor-
malized RB-flow, we note that by Proposition 2.3.9 in [10], the scalar curvature
R evolves as ∂R

∂t = −
〈
Ric , h

〉
+ δ2h−∆(trh), Thus

∂R

∂t
=−

〈
Ric ,−2Ric+ 2ρRg +

2

n
sg
〉

+ δ2
(
−2Ric+ 2ρRg +

2

n
sg

)
+ 2 (1− nρ) ∆(R− r),

(39)

where for a tensor T, δ(T) = −tr12∇T is the divergence operator. On the one
hand, by the contracted second Bianchi identity we have δ2(Ric) = 1

2∆R. On

the other hand, a direct computation shows that δ2(Rg) = ∆R. Hence, by (39)
we attain

∂R

∂t
= 2|Ric|2 + (1 + 2ρ (1− n)) ∆R− 2ρR2 − 2

n
sR. �

We will need to the following lemma:

Lemma 3.2. Let g(t), t ∈ [0, T ), be a solution to the normalized RB-flow
on a closed manifold Mn and let λba(g) be the lowest constant such that the
nonlinear equation (2) with (3) has positive solutions. Suppose that u(t0) is
the corresponding solution to λba(t0). Then we have

d

dt

(
µ(t) +

na2(1− nρ)2

8
t+

sa

2
t+

2s

n

∫ t

0

λb(s) ds

)∣∣
t=t0

=
1

2

∫
M

∣∣∣∣Rij +∇i∇jf +
a

2
(1− nρ)gij

∣∣∣∣2e−f dV(40)
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+

(
2b− 1

2

)∫
M

|Rij |2e−f dV

− 2ρb

∫
M

R2e−f dV +
ρ

2

∫
M

|∇f |2(na−R)e−f dV

+

(
n

2
− 2(n− 1)b

)
ρ

∫
M

∆Re−f dV.

Here f = −2 log φ, where the function φ has been introduced before. And λb is
the lowest eigenvalue of (4).

Proof. Let the metric g(t) evolve under the normalized RB-flow. According to
the Lemma 3.1 we have ∂dV

∂t = −(1− nρ)(R− r) dV. By a direct computation
we also have,

∂

∂t
|∇φ|2 =

(
2Rij − 2ρRgij − 2

n
sgij

)
(∇iφ∇jφ) + 2gij∇iφt∇jφ.

Thus, by virtue of (11) we get

d

dt
µ(t)

∣∣
t=t0

=

∫
M

[
2Rij(∇iφ∇jφ)− 2ρR|∇φ|2 − 2

n
s|∇φ|2 + 2∇iφt∇iφ

+ 2aφφt log φ+ aφφt + bRtφ
2 + 2bRφφt

]
dV(41)

−
∫
M

(
|∇φ|2 + aφ2 log φ+ bRφ2

)
((1− nρ)(R− r)) dV.

Applying

2

∫
M

Rij∇iφ∇jφdV =

∫
M

(
(−∇iR∇iφ)φ− 2Rij(∇i∇jφ)φ

)
dV

and

−
∫
M

|∇φ|2 (R− r) dV =

∫
M

[
(R− r) ∆φ+∇iR∇iφ

]
φ dV

into (41), we obtain

d

dt
µ(t)

∣∣
t=t0

=

∫
M

[
− 2Rij(∇i∇jφ)φ−∇iR(∇iφ)φ− 2ρR|∇φ|2 − 2

n
s|∇φ|2

+ bRtφ
2 + aφφt + 2φt (−∆φ+ aφ log φ+ bRφ)

− (1− nρ)(R− r)φ (−∆φ+ aφ log φ+ bRφ)

+ (1− nρ)(∇iR∇iφ)φ
]

dV

=

∫
M

[
− 2Rij(∇i∇jφ)φ− 2ρR|∇φ|2 − 2

n
s|∇φ|2 + bRtφ

2(42)

+
a

2
(φ2)t

]
dV + µ(t0)

(∫
M

φ2 dV

)
t

∣∣
t=t0

− nρ
∫
M

∇iR(∇iφ)φ dV
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=

∫
M

[
− 2Rij(∇i∇jφ)φ− 2ρR|∇φ|2 − 2

n
s|∇φ|2 + bRtφ

2

+
a

2
(1− nρ)(R− r)φ2

]
dV − nρ

∫
M

∇iR(∇iφ)φdV,

where the last equality is obtained by∫
M

(
(φ2)t − (1− nρ)(R− r)φ2

)
dV = 0

from (3). By Lemma 3.1 we have, ∂R∂t = 2|Ric|2+(1 + 2ρ (1− n)) ∆R−2ρR2−
2
nsR. Thus from (42), we get

d

dt
µ(t)

∣∣
t=t0

=

∫
M

[
− 2Rij(∇i∇jφ)φ− 2ρR|∇φ|2 − 2s

n
|∇φ|2 + bRtφ

2

+
a

2
(1− nρ)(R− r)φ2

]
dV − nρ

∫
M

∇iR(∇iφ)φdV

=

∫
M

[
− 2Rij(∇i∇jφ)φ− 2ρR|∇φ|2 − 2s

n
|∇φ|2(43)

+ bφ2
(

(1 + 2ρ (1− n)) ∆R+ 2|Rij |2 − 2ρR2 − 2

n
sR

)
+
a

2
(1− nρ)(R− r)φ2

]
dV − nρ

∫
M

∇iR(∇iφ)φdV

=

∫
M

[
− 2Rij(∇i∇jφ)φ− 2ρR|∇φ|2 + (1− 2(n− 1)ρ) bR∆φ2

+ 2bφ2|Rij |2 − 2ρbφ2R2 +
a

2
(1− nρ)(R− r)φ2

]
dV

− 2s

n

∫
M

(
|∇φ|2 + bRφ2

)
dV − nρ

∫
M

∇iR(∇iφ)φdV.

By hypothesis we know that f = −2 log φ which is equivalent to φ2 = e−f .
Keeping this in mind, according to (15) and (16), we can write (43) as follows:

d

dt
µ(t)

∣∣
t=t0

=

∫
M

[
Rij(∇i∇jf)− 1

2
Rij∇if∇jf −

ρ

2
R|∇f |2

+ (1− 2(n− 1)ρ) bR|∇f |2 − (1− 2(n− 1)ρ) bR∆f + 2b|Rij |2

− 2ρbR2 +
a

2
(1− nρ)(R− r)

]
e−f dV(44)

− 2s

n

∫
M

(
1

4
|∇f |2 + bR

)
e−f dV +

nρ

2

∫
M

R∆e−f dV.

Doing a similar computation such as Lemma 2.3, we achieve

d

dt
µ(t)

∣∣
t=t0

=
1

2

∫
M

∣∣∣∣Rij +∇i∇jf +
a

2
(1− nρ)gij

∣∣∣∣2e−f dV
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+

(
2b− 1

2

)∫
M

|Rij |2e−f dV − na2(1− nρ)2

8

− 2s

n

∫
M

(
1

4
∆f + bR

)
e−f dV − 2ρb

∫
M

R2e−f dV

− a

2
(1− nρ)r +

ρ

2

∫
M

|∇f |2(na−R)e−f dV

+

(
n

2
− 2(n− 1)b

)
ρ

∫
M

R∆e−f dV,

which according to (4) and (6) gives

d

dt

(
µ(t) +

na2(1− nρ)2

8
t+

sa

2
t+

2s

n

∫ t

0

λb(s) ds

)∣∣
t=t0

=
1

2

∫
M

∣∣∣∣Rij +∇i∇jf +
a

2
(1− nρ)gij

∣∣∣∣2e−f dV

+

(
2b− 1

2

)∫
M

|Rij |2e−f dV − 2ρb

∫
M

R2e−f dV

+
ρ

2

∫
M

|∇f |2(na−R)e−f dV

+

(
n

2
− 2(n− 1)b

)
ρ

∫
M

R∆e−f dV.

Therefore, the proof is complete. �

Remark 3.3. In dimension n = 2, the scalar curvature determines the full
curvature tensor. In fact, in two dimension the scalar curvature is twice the
Gaussian curvature. By Gauss-Bonnet theorem, for a closed Manifold M2, we
have ∫

M

K dV = 2πχ(M),

where K is the Gaussian curvature and χ(M) is the Euler characteristic of M .
According to the above argument we get

r =

∫
M

2K dV∫
M

dV
=

4πχ(M)

A
,

where A is the area of M2. Thus r and consequently s = (1−nρ)r are constant.
Then due to Lemma 3.2, we achieve the following monotonicity theorem.

Theorem 3.4. Let g(t), t ∈ [0, T ), be a solution to the normalized RB-flow on a
compact surface M2 and let λba(g) be the lowest constant such that the nonlinear
equation (2) with (3) has positive solutions. Under assumptions ρ ≤ 0, b = 1

2
and R(0) ≥ 2a, the quantity

λba(t) +
a2(1− 2ρ)2

4
t+

sa

2
t+ s

∫ t

0

λb(s)ds
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is strictly increasing along the normalized RB-flow in [0, T ). Here λb is the
lowest eigenvalue of (4).

Remark 3.5. The normalized RB-flow and unnormalized RB-flow are essen-
tially the same flows. They only differ by a reparametrization of time and
scaling factor in space. So it is reasonable to anticipate that some features of
the RB-flow, such isometry preserving or homogeneity preserving hold for the
normalized RB-flow as well. Thus we are able to state and prove the analogous
of Proposition 2.10 and Proposition 2.11 along the normalized RB-flow. We
do not prove them here, because of the similarity of the proofs to the case of
unnormalized RB-flow.

Proposition 3.6. Suppose (M, g(t)), t ∈ [0, T ), is a compact solution to the
normalized RB-flow with g(0) = g0 and ρ < 1

2(n−1) . If φ : (M, g0) −→ (M, g0)

is an isometry, then it will remain an isometry along the normalized RB-flow
for all t ∈ [0, T ).

The subsequent fact shows that the homogeneity is preserved along the RB-
flow.

Proposition 3.7. Suppose g(t), t ∈ [0, T ), is a solution to the normalized RB-
flow on a closed manifold Mn with ρ < 1

2(n−1) . If (M, g(t)) is homogeneous at

initial time t = 0, then it remains homogeneous for all times t ∈ [0, T ).

The following fact is a direct consequence of Lemma 3.2 and Proposition 3.7.

Theorem 3.8. Suppose g(t), t ∈ [0, T ), is a solution to the normalized RB-
flow on a closed manifold Mn. Moreover suppose (M, g0) is homogeneous. Let
λba(g) be the lowest constant such that the nonlinear equation (2) with (3) has
positive solutions. Then under assumptions ρ ≤ 0, b ≥ 1

4 and R(0) ≥ na, the
quantity

λba(t) +
na2(1− nρ)2

8
t+

sa

2
t+

2s

n

∫ t

0

λb(s)ds

is strictly increasing along the normalized RB-flow in [0, T ), where λb is the
lowest eigenvalue of (4).
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