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ON SOME CLASSES OF GENERALIZED
QUASI-EINSTEIN MANIFOLDS

Absos Ali Shaikh and Shyamal Kumar Hui

Abstract. The object of the present paper is to study the generalized
quasi-Einstein manifolds satisfying some conditions. Finally the existence
of such manifolds is ensured by several interesting examples.

1. Introduction

The notion of quasi-Einstein manifolds was introduced by M. C. Chaki and
R. K. Maity [1]. A Riemannian manifold (Mn, g)(n > 2) is said to be quasi-
Einstein manifold if its Ricci tensor S of type (0, 2) is not identically zero and
satisfies the following:

(1.1) S(X, Y ) = αg(X, Y ) + βA(X)A(Y ),

where α, β are scalars of which β 6= 0 and A is a nowhere vanishing 1-form
defined by g(X, ρ) = A(X) for all vector fields X; ρ being a unit vector field,
called the generator of the manifold. An n -dimensional manifold of this kind
is denoted by (QE)n. The scalars α, β are known as the associated scalars.

As a generalization of quasi-Einstein manifold, in [2], U. C. De and G. C.
Ghosh introduced the notion of generalized quasi-Einstein manifold. A Rie-
mannian manifold (Mn, g)(n ≥ 3) is said to be generalized quasi-Einstein man-
ifold if its Ricci tensor S of type (0, 2) is not identically zero and satisfies the
following:

(1.2) S(X, Y ) = αg(X,Y ) + βA(X)A(Y ) + γB(X)B(Y ),

where α, β, γ are scalars of which β 6= 0, γ 6= 0 and A, B are nowhere vanishing
1-forms such that g(X, ρ) = A(X), g(X, µ) = B(X) for all vector fields X. The
unit vectors ρ and µ corresponding to the 1-forms A and B are orthogonal to
each other. Also ρ and µ are known as the generators of the manifold. Such
an n-dimensional manifold is denoted by G(QE)n.
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The present paper deals with G(QE)n satisfying some conditions. The paper
is organized as follows. Section 2 is concerned with the preliminaries. Section 3
is devoted to the study of Ricci-pseudosymmetric G(QE)n. In Sections 4–
7, we investigate the G(QE)n(n > 3) satisfying the conditions C · S = 0,
C̃ · S = 0, W · S = 0 and P · S = 0, where C, C̃, W and P respectively denote
the conformal curvature tensor, concircular curvature tensor, quasi-conformal
curvature tensor and projective curvature tensor. Then it is proved that in each
of the case, either the associated scalars β and γ are equal or the curvature
tensor R satisfies a definite condition.

In Section 8, we study conformally flat Ricci-semisymmetric G(QE)n(n > 3)
and it is shown that if in a conformally flat Ricci-semisymmetric G(QE)n(n >
3), r

n−1 is not an eigenvalue of the Ricci-operator, then either the associated
scalars β and γ are equal or the vector fields ρ and µ corresponding to the
1-forms A and B are co-directional. The last section provides the existence of
proper G(QE)n.

2. Preliminaries

In this section we will obtain some formulas of G(QE)n, which will be re-
quired in the sequel. Let {ei : i = 1, 2, . . . , n} be an orthonormal frame field at
any point of G(QE)n. Then setting X = Y = ei in (1.2) and taking summation
over i, 1 ≤ i ≤ n, we obtain

(2.1) r = nα + β + γ,

where r is the scalar curvature of the manifold.
Also, from (1.2), we have

(2.2) S(ρ, ρ) = α + β,

(2.3) S(µ, µ) = α + γ,

and

(2.4) S(ρ, µ) = 0.

Let Q be the Ricci-operator, i.e., g(QX, Y ) = S(X, Y ) for all X, Y .

3. Ricci-pseudosymmetric G(QE)n

An n-dimensional Riemannian manifold (Mn, g) is called Ricci-pseudosym-
metric [4] if the tensors R · S and Q(g, S) are linearly dependent, where

(3.1) (R(X, Y ) · S)(Z, U) = −S(R(X,Y )Z, U)− S(Z, R(X, Y )U),

(3.2) Q(g, S)(Z, U ;X,Y ) = −S((X ∧g Y )Z, U)− S(Z, (X ∧g Y )U),

and

(3.3) (X ∧g Y )Z = g(Y, Z)X − g(X, Z)Y

for all vector fields X, Y, Z, U of M , R denotes the curvature tensor of M .
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Then (Mn, g) is Ricci-pseudosymmetric if and only if

(3.4) (R(X, Y ) · S)(Z,U) = LSQ(g, S)(Z, U ;X,Y )

holds on Us = {x ∈ M : S 6= r
ng at x}, where LS is some function on US . If

R · S = 0, then Mn is called Ricci-semisymmetric. Every Ricci-semisymmetric
manifold is Ricci-pseudosymmetric but the converse is not true [4].

In [2] De and Ghosh studied a Ricci-semisymmetric G(QE)n. We now con-
sider a Ricci-pseudosymmetric G(QE)n. Then, from (3.1)–(3.4), we can write

S(R(X, Y )Z,U) + S(Z, R(X,Y )U)(3.5)
= LS [g(Y,Z)S(X, U)− g(X, Z)S(Y, U)

+g(Y,U)S(X,Z)− g(X, U)S(Y,Z)].

Using (1.2) in (3.5), we get

β[A(R(X, Y )Z)A(U) + A(Z)A(R(X, Y )U)](3.6)
+γ[B(R(X,Y )Z)B(U) + B(Z)B(R(X, Y )U)]

= LS [β{g(Y, Z)A(X)A(U)− g(X, Z)A(Y )A(U) + g(Y,U)A(X)A(Z)
−g(X, U)A(Y )A(Z)}+ γ{g(Y,Z)B(X)B(U)
−g(X, Z)B(Y )B(U) + g(Y,U)B(X)B(Z)− g(X, U)B(Y )B(Z)}].

Setting Z = ρ and U = µ in (3.6), we get

(3.7) (γ − β)[R(X,Y, ρ, µ)− LS{A(Y )B(X)−A(X)B(Y )}] = 0,

which yields either β = γ or

(3.8) R(X, Y, ρ, µ) = LS{A(Y )B(X)−A(X)B(Y )}.
Hence we can state the following:

Theorem 3.1. In a Ricci-pseudosymmetric G(QE)n(n > 3), either the as-
sociated scalars β and γ are equal or the curvature tensor R of the manifold
satisfies the relation (3.8).

Corollary 3.1. In a Ricci-semisymmetric G(QE)n(n > 3), the associated
scalars β and γ are equal [2].

4. G(QE)n(n > 3) satisfying the condition C · S = 0

The Weyl conformal curvature tensor C of type (1,3) of an n-dimensional
Riemannian manifold (Mn, g)(n > 3) is defined by [3]

C(X, Y )Z = R(X, Y )Z − 1
n− 2

[S(Y, Z)X − S(X, Z)Y(4.1)

+g(Y, Z)QX − g(X, Z)QY ]

+
r

(n− 1)(n− 2)
{g(Y,Z)X − g(X,Z)Y }.
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We now consider a G(QE)n(n > 3) satisfying the condition C · S = 0. Then
we have

(4.2) S(C(X, Y )Z, U) + S(Z, C(X, Y )U) = 0.

Using (1.2) in (4.2), we obtain

β[A(C(X, Y )Z)A(U) + A(Z)A(C(X, Y )U)](4.3)
+γ[B(C(X, Y )Z)B(U) + B(Z)B(C(X, Y )U)] = 0.

Setting Z = ρ and U = µ in (4.3), we get

(4.4) (γ − β)C(X,Y, ρ, µ) = 0.

From (4.4), it follows that either β = γ or

C(X, Y, ρ, µ) = 0,

which further yields

R(X, Y, ρ, µ) =
1

n− 2
[A(QY )B(X)−A(X)B(QY )(4.5)

+A(Y )B(QX)−A(QX)B(Y )]

− r

(n− 1)(n− 2)
{A(Y )B(X)−A(X)B(Y )}.

Hence we can state the following:

Theorem 4.1. If a G(QE)n(n > 3) satisfies the condition C · S = 0, then
either the associated scalars β and γ are equal or the curvature tensor R of the
manifold satisfies the property (4.5).

5. G(QE)n(n > 3) satisfying the condition C̃ · S = 0

The concircular curvature tensor C̃ of type (1,3) of an n-dimensional Rie-
mannian manifold (Mn, g)(n > 3) is defined by [3]

(5.1) C̃(X,Y )Z = R(X, Y )Z − r

n(n− 1)
[g(Y, Z)X − g(X, Z)Y ]

for any vector fields X, Y, Z ∈ χ(M). Let us consider a G(QE)n(n > 3)
satisfying the condition C̃ · S = 0. Then we have

(5.2) S(C̃(X, Y )Z, U) + S(Z, C̃(X, Y )U) = 0.

By virtue of (1.2), it follows from (5.2) that

β[A(C̃(X, Y )Z)A(U) + A(Z)A(C̃(X, Y )U)](5.3)

+γ[B(C̃(X, Y )Z)B(U) + B(Z)B(C̃(X, Y )U)] = 0.

Putting Z = ρ and U = µ in (5.3), we get

(5.4) (γ − β)[R(X,Y, ρ, µ)− r

n(n− 1)
{A(Y )B(X)−A(X)B(Y )}] = 0.

This leads to the following:
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Theorem 5.1. In a G(QE)n(n > 3) with C̃ · S = 0, either the associated
scalars β and γ are equal or the curvature tensor R of the manifold satisfies
the following property

(5.5) R(X, Y, ρ, µ) =
r

n(n− 1)
{A(Y )B(X)−A(X)B(Y )}.

6. G(QE)n(n > 3) satisfying the condition W · S = 0

In 1968, Yano and Sawaki [5] defined and studied a curvature tensor W
of type (1,3) which includes both the conformal curvature tensor C and the
concircular curvature tensor C̃ as special cases and is called quasi-conformal
curvature tensor. The quasi-conformal curvature tensor W of type (1, 3) of a
manifold (Mn, g)(n > 3) is defined by

(6.1) W (X, Y )Z = −(n− 2)bC(X, Y )Z + [a + (n− 2)b]C̃(X, Y )Z,

where a and b are arbitrary constants not simultaneously zero. In particular, if
a = 1, b = 0, then W reduces to the concircular curvature tensor and if a = 1
and b = − 1

(n−2) , then W reduces to the conformal curvature tensor. Using the
expression of the conformal and the concircular curvature tensor in (6.1), the
quasi-conformal curvature tensor W of type (1, 3) can be written as

W (X, Y )Z = aR(X, Y )Z + b[S(Y, Z)X − S(X, Z)Y(6.2)
+g(Y,Z)QX − g(X, Z)QY ]

− r

n

(
a

n− 1
+ 2b

)
{g(Y,Z)X − g(X,Z)Y }.

We now consider a G(QE)n(n > 3) satisfying the condition W · S = 0. Then
we have

(6.3) S(W (X, Y )Z, U) + S(Z, W (X, Y )U) = 0.

In view of (1.2), (6.3) yields

β[A(W (X, Y )Z)A(U) + A(Z)A(W (X, Y )U)](6.4)
+γ[B(W (X, Y )Z)B(U) + B(Z)B(W (X,Y )U)] = 0.

Substituting Z = ρ and U = µ in (6.4), we obtain

(6.5) (γ − β)W (X,Y, ρ, µ) = 0.

From (6.5), it follows that either β = γ or

W (X, Y, ρ, µ) = 0,

which implies that

aR(X, Y, ρ, µ) = −b[A(QY )B(X)−A(QX)B(Y )(6.6)
+A(Y )B(QX)−A(X)B(QY )]

+
r

n

(
a

n− 1
+ 2b

)
{A(Y )B(X)−A(X)B(Y )}.
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Thus we can state the following:

Theorem 6.1. If a G(QE)n(n > 3) satisfies the condition W · S = 0, then
either the associated scalars β and γ are equal or the curvature tensor R of the
manifold satisfies the property (6.6).

7. G(QE)n(n > 3) satisfying the condition P · S = 0

The Weyl projective curvature tensor P of type (1,3) of an n-dimensional
Riemannian manifold (Mn, g)(n > 3) is defined by [3]

(7.1) P (X,Y )Z = R(X,Y )Z − 1
n− 1

[S(Y,Z)X − S(X,Z)Y ]

for any vector fields X, Y , Z ∈ χ(M). Let us take a G(QE)n(n > 3) with
P · S = 0. Then we get

(7.2) S(P (X, Y )Z, U) + S(Z, P (X,Y )U) = 0.

Using (1.2) in (7.2), we get

α[P̃ (X,Y, Z, U) + P̃ (X, Y, U, Z)] + β[A(P (X, Y )Z)A(U)(7.3)
+A(Z)A(P (X, Y )U)] + γ[B(P (X, Y )Z)B(U)
+B(Z)B(P (X, Y )U)] = 0,

where P̃ (X, Y, Z, U) = g(P (X,Y )Z, U). Setting Z = ρ and U = µ in (7.3), we
get

(7.4) (α + γ)P̃ (X, Y, ρ, µ) + (α + β)P̃ (X, Y, µ, ρ) = 0.

In view of (7.1), we have from (7.4) that

(n− 1)(γ − β)R(X, Y, ρ, µ)(7.5)
= (α + γ){A(QY )B(X)−A(QX)B(Y )}

+(α + β){A(X)B(QY )−A(Y )B(QX)},
provided γ − β 6= 0. This leads to the following:

Theorem 7.1. If a G(QE)n(n > 3) satisfies the condition P · S = 0, then the
curvature tensor R of the manifold satisfies the property (7.5), provided β 6= γ.

8. Conformally flat G(QE)n(n > 3) with R(X, Y ) · S = 0

Let us consider a conformally flat G(QE)n(n > 3). Then, from (4.1), we get

R(X, Y )Z =
1

n− 2
[S(Y, Z)X − S(X,Z)Y(8.1)

+g(Y, Z)QX − g(X, Z)QY ]

− r

(n− 1)(n− 2)
{g(Y,Z)X − g(X, Z)Y }.

Since the manifold satisfies R(X, Y ) · S = 0, we get

(8.2) S(R(X, Y )Z, U) + S(Z, R(X, Y )U) = 0.
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Using (8.1) in (8.2), we get

g(Y, Z)S(QX, U)− g(X, Z)S(QY,U)(8.3)
+g(Y, U)S(QX, Z)− g(X, U)S(QY,Z)

=
r

n− 1
[g(Y, Z)S(X,U)− g(X,Z)S(Y, U)

+g(Y, U)S(X, Z)− g(X,U)S(Y, Z)].

Let λ be the eigenvalue of the endomorphism Q corresponding to an eigenvector
X. Then QX = λX, i.e., S(X, U) = λg(X,U) and hence

(8.4) S(QX, U) = λS(X,U).

By virtue of (8.4), it follows from (8.3) that
(

λ− r

n− 1

)
[g(Y, Z)S(X,U)− g(X,Z)S(Y, U)

+g(Y, U)S(X, Z)− g(X, U)S(Y,Z)] = 0,

which yields
(8.5)

g(Y, Z)S(X,U)− g(X,Z)S(Y,U) + g(Y, U)S(X, Z)− g(X, U)S(Y,Z) = 0,

provided λ 6= r
n−1 . Again using (1.2) in (8.5), we get

β[g(Y, Z)A(X)A(U)− g(X, Z)A(Y )A(U) + g(Y,U)A(X)A(Z)(8.6)
−g(X,U)A(Y )A(Z)] + γ[g(Y,Z)B(X)B(U)− g(X, Z)B(Y )B(U)

+g(Y, U)B(X)B(Z)− g(X, U)B(Y )B(Z)] = 0, provided λ 6= r

n− 1
.

Setting Z = ρ and U = µ, we get

(8.7) (β − γ){A(X)B(Y )−A(Y )B(X)} = 0.

From (8.7), we get either β = γ or

A(X)B(Y ) = A(Y )B(X),

that is, the vector fields ρ and µ are co-directional. Thus we can state the
following:

Theorem 8.1. If, in a conformally flat Ricci-semisymmetric G(QE)n(n > 3),
r

n−1 is not an eigenvalue of the Ricci-operator Q, then either the associated
scalars β and γ of the manifold are equal or the vector fields ρ and µ corre-
sponding to the 1-forms A and B respectively are co-directional.

9. Some Examples of G(QE)n

This section deals with several non-trivial examples of G(QE)n.

Example 9.1. We define a Riemannian metric g on R4 by the formula
(9.1)
ds2 = gijdxidxj = (1 + 2p)[(dx1)2 + (dx2)2 + (dx3)2 + (dx4)2], (i, j = 1, 2, 3, 4),
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where p = ex1

k2 and k is a non-zero constant. Then the only non-vanishing
components of the Christoffel symbols, the curvature tensor, the Ricci tensor
and scalar curvature are given by

Γ1
22 = − p

(1 + 2p)
= Γ1

33 = Γ1
44 = −Γ1

11 = −Γ2
12 = −Γ3

13 = −Γ4
14,

R1221 = R1331 = R1441 =
p

(1 + 2p)
, S11 =

3p

(1 + 2p)2
,

S22 = S33 = S44 =
p

(1 + 2p)2
, r =

6p

(1 + 2p)3
6= 0

and the components which can be obtained from these by the symmetry prop-
erties.
Therefore R4 is a Riemannian manifold (M4, g) of non-vanishing scalar curva-
ture. We shall now show that M4 is a G(QE)4, i.e., it satisfies (1.2). Let us
now consider the associated scalars as follows:

(9.2) α =
p

(1 + 2p)3
, β = 3p, γ = − 1

(1 + 2p)2
.

In terms of local coordinate system, let us consider the 1-forms A and B as
follows:

(9.3)

Ai(x) =
{ 1

1+2p for i = 1,

0 otherwise,

Bi(x) =
{ √

p for i = 1,
0 otherwise.

In terms of local coordinate system, the defining condition (1.2) of a G(QE)n

can be written as

(9.4) Sij = αgij + βAiAj + γBiBj , i, j = 1, 2, 3, 4.

By virtue of (9.2) and (9.3), it can be easily shown that (9.4) holds for i, j =
1, 2, 3, 4. Therefore (M4, g) is a G(QE)4, which is not quasi-Einstein. Hence
we can state the following:

Theorem 9.1. Let (M4, g) be a Riemannian manifold endowed with the metric
given in (9.1). Then (M4, g) is a G(QE)4 with non-vanishing scalar curvature
which is not quasi-Einstein.

Example 9.2. We define a Riemannian metric g on R4 by the formula

(9.5) ds2 = e2x1
(dx1)2 + sin2 x1[(dx2)2 + (dx3)2 + (dx4)2],

where 0 < x1 < π
2 but x1 6= π

4 . Then the only non-vanishing components of the
Christoffel symbols, the curvature tensor, the Ricci tensor and scalar curvature
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are

Γ1
11 = 1, Γ2

12 = Γ3
13 = Γ4

14 = cot x1,

Γ1
22 = − sin 2x1

2e2x1 = Γ1
33 = Γ1

44,

R1221 = − sin2 x1(1 + cot x1) = R1331 = R1441,

R2332 =
sin2 x1 cos2 x1

e2x1 = R2442 = R3443,

S22 =
2 cos2 x1 − sin2 x1(1 + cot x1)

e2x1 = S33 = S44,

S11 = −3(1 + cotx1), r =
6(cot2 x1 − cot x1 − 1)

e2x1 6= 0,

provided (cot2 x1− cot x1− 1) 6= 0 and the components which can be obtained
from these by the symmetry properties. Therefore R4 with the considered
metric is a Riemannian manifold (M4, g) of non-vanishing scalar curvature.
We shall now show that this M4 is a G(QE)4, i.e., it satisfies (1.2). Let us now
consider the associated scalars as follows:

(9.6) α =
2 cot2 x1 − cot x1 − 1

e2x1 , β = −(1 + cot x1), γ = −2 cot x1.

In terms of local coordinate system, let us consider the 1-forms A and B as
follows:

(9.7)

Ai(x) =
{ √

2 for i = 1,
0 otherwise,

Bi(x) =
{ √

cot x1 for i = 1,
0 otherwise.

In terms of local coordinate system, the defining condition (1.2) of a G(QE)n

can be written as (9.4). By virtue of (9.6) and (9.7), it can be easily shown
that (9.4) holds for i, j = 1, 2, 3, 4. Therefore (M4, g) is a G(QE)4, which is
not quasi-Einstein. Hence we can state the following:

Theorem 9.2. Let (M4, g) be a Riemannian manifold endowed with the metric
given in (9.5). Then (M4, g) is a G(QE)4 with non-vanishing scalar curvature
which is not quasi-Einstein.
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