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(-PARALLEL STRUCTURE JACOBI OPERATORS OF
REAL HYPERSURFACES IN A NONFLAT COMPLEX
SPACE FORM

NaMm-Gin Kim* aAnDp U-Hang K1

Abstract. Let M be a real hypersurface with almost contact met-
ric structure (¢, €,7,9) in a nonflat complex space form M,(c). In
this paper, we prove that if the structure Jacobi operator R; is
&-parallel and the Ricci tensor S commutes with the structure op-
erator ¢, then a real hypersurface in M, (c) is a Hopf hypersurface.

Further, we characterize such Hopf hypersurface in M,(c).

0. Introduction

An n-dimensional complex space form M, (c) is a Kahler manifold of
constant holomorphic sectional curvature c. As is well known, complete
and simply connected complex space form is isometric to a complex
projective space P,C, a complex Kuclidean space C,, or a complex hy-
perbolic space H,,C according as ¢ > 0,c=0 or ¢ < 0.

Let M be a real hypersurface of My, (c). Then M has an almost contact
metric structure (¢, &,7,g) induced from the complex structure J and
the Kahler metric of M, (c). The characteristic vector £ is said to be
principal if A6 = aé, where A is the shape operator in the direction of
the unit normal N and a = n (A¢£) . A real hypersurface is said to a Hopf

hypersurface if the characteristic vector £ of M is principal.
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Typical examples of Hopf hypersurfaces in P,C are homogeneous
ones, namely those real hypersurfaces are given as orbits under sub-
group of the projective unitary group PU(n+1). Takagi [14] completely
classified such hypersurfaces as six model spaces which are said to be
Ay, Ay, B, C, D and E.

On the other hand, real hypersurfaces in H,,C have been investigated
by Berndt [1], Montiel and Romero [9] and so on. Berndt [1] classified
Hopf hypersurfaces in a complex hyperbolic space whose all principal
curvatures are constant as four model spaces which are said to be Ay,
Ay, Ay and B,

Let M be areal hypersurface of type A; or As in a complex projective
space P, C, or type Ay, A1 or As in a complex hyperbolic space H,C.
Then M is said to be type A for simplicity. For example, Okumura
[10](resp. Montiel and Romero [9]) showed that a real hypersurface in
P,C(resp. H,C) is locally congruent to one of real hypersurfaces of
type A if and only if the structure operator ¢ commutes with the shape
operator A.

We donote by V, & and R¢ be the Riemannian connection, the Ricci
tensor and the structure Jacobi operator with respect to the chracter-
istic vector & of a real hypersurface M in My (c) respectively (for detail
see section 1). Then the classification of M with the commutativity
condition S¢ = ¢5 is still open and very important problem.

Recently, in [11] the authors proved that there exist no real hypersur-
faces in P,C, n > 3 with parallel structure Jacobi operator VR, = 0.

In a continuing work [13] they consider a weaker condition, called
D-parallelness, that is Vi R¢ = 0 for any vector field V orthogonal to &.
But, it was proved further that there exist no real hypersurfaces in P,,C,
n > 3 with D-paralle! structure Jacobi operator. In this situation, it is
naturally leads us to consider another weaker condition &-parallelness,
that is V¢R, = 0. Along this direction we introduce a theorem due to

[5] as follows:
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Theorem CK ([5]). Let M be a connected real hypersurface of
M, (c), c # 0 whose shape operator A commutes Rg, that is R¢A = ARg.
Then M satisfies VeRe = 0 if and only if M is locally congruent to one
of the following:

(1) In case that My (c) = P,C with n(AE) # 0,

(A1) a geodesic hypersphere of radius v, where 0 < r < 7/2 and
T # 7/4,

(Ag) a tube of radius r over a totally goedesic PrC (1 < k < n—2),
where 0 <1 < /2

and r # /4.
(2) In case that Mp(c) = H,C
(Ag) a horosphere;
(A1) a geodesic hypersphere or a tube over complex hyperbolic hy-
perplane H,,_1C;
(Ag) a tube over a totally goedesic HyC (1 <k <n~2).
In this paper, we study a real hypersurface in a nonflat complex space
form M, (c) which satisfies V¢ R, = 0 and at the same time S¢ = ¢S,

The main purpose of the present paper is to prove

Theorem . Let M be a real hypersurface in a nonflat complezx space
form which satisfies V¢Re = 0 and at the same time ¢S = S¢. Then
M is o Hopf hypersurface. Further, M is locally congruent to one of the
following hypersurfaces:

(1) In case that My(c) = P,C

(A1) atube of radius r over a hyperplane Py, _1C, where 0 < r < F,

(A2) a tube of radius r over a totally geodesic PxC (1 < k < n-—2),
where 0 <r < I,

(T) a tube of radius § over a certain complex submanifold in P,C,

(2) In case My(c) = H,C |

(Ao) a horosphere in H,,C, i.e., a Montiel tube,
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(A1) @ geodesic hypersphere, or a tube of a hyperplane H,,_1C,
(Ag) a tube over a totally geodesic HC (1 <k <n —2).

All manifolds in the present paper are assumed to be connected and

of class C*° and the real hypersurfaces are supposed to be orientable.

1. Preliminaries

In this section elemental factors of a real hypersurface are recalled.
Let M be a real hypersurface immersed in a complex space form M,(c),
and N be a unit normal vector field of M. By V we denote the Levi-
Civita connection with respect to the Fubini-Study metric tensor g of
Mp(c). Then the Gauss and Weingarten formulas are given respectively
by

VyX =VyX +g(AY, X)N, VxN=—-AX

for any vector fields X and ¥V on M, where g denoted the Riemannian
metric tensor of M induced from g, and A is the shape operator of M

in My(c). For any vector field X tangent to M, we put
JX =X +n(X)N, JN==¢,

where J is the almost complex structure of A,(c). Then we may see

that M induces an almost contact metric structure (¢, &, 7, g) that is,
PN ==X +n(X)E g(@X,¢Y) =g(X,Y) —n(X)n(Y),

n(§) =1 ¢¢=0, n(X)=g(X)

for any vector fields X and Y on M.
Since J is parallel, we verify from the Gauss and Weingarten formulas

the following:

(1.1) Vxé = ¢pAX,
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(1.2) (Vx9)Y =n(Y)AX — g(AX,Y)¢.

Since the ambient manifold is of constant holomorphic sectional cur-
vature ¢, we have the following Gauss and Codazzi equations respec-

tively:

(1.3)
R(X,Y)Z = 2{g(Y, 2)X = g(X, 2)Y +g(¢Y, Z)¢X — g(¢X, Z)Y

(14) (VxA)Y = (VyA) X = Z{n(X)¢Y = (V) $X ~ 29 (¢X,¥)€)

for any vector fields X, Y and Z on M, where R denotes Riemannian
curvature tensor of M.

In what follows, to write our formulas in convention forms, we denote
by a = n(AE),B=n(A%),p? = f—a®, h=Tr A, and V f the gradient
vector field of a function f defined on M. In the following, we use the
same terminology and notation as above unless otherwise stated. We

shall denote the Ricci tensor of type (1,1) by S. Then it follows from
(1.3) that

(1.5) S = %{(2n+1)]—3n®£}+hA—A2,

where [ is an identity map, which implies

(1.6) S¢ = %(n—— 1)¢ + hAE — A%

If we put U = V¢&, then U is orthogonal to the structure vector field
. Using (1.1) we see that

(1.7) U = —A¢ + af,
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which shows that g(U,U) = 8 — a® By definition of U and (1.1) we
verify that

(1.8) 9 (Vx&U) = g (A%, X) — ag(A¢, X).

Now, differentiating (1.7) covariantly along M and making use of
(1.1) and (1.2) we find

(1.9) n(X)g(AU +Va,Y) + g (¢X,VyU)

=g((VyA) X, §) — g (ApAX,Y) + ag(ApX,Y),

which together with (1.4) gives

(1.10) (VeA)E = 24U + Va.

From (1.9) we also have
(1.11) VeU = 3 AU + 0 A¢ — BE + ¢Va,
where we have used (1.1) and (1.8).

If A —n(A£)E # 0, we can put

(1.12) A€ = af + uW,

where W is a unit vector field orthogonal to £&. Then from (1.7) it is
clear that U = pu¢W and hence g(U,U) = u?, and W is also orthogonal
to U. Using (1.1) we see that

(1.13) ng(VxW,¢) = g(AU, X).

From Gauss equation (1.3) we know that the structure Jacobi oper-

ator R is given by
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(L14)  ReX = R(X,€)¢ = Z{(X —n(X)8) + aAX —1(AX) A¢

for any vector field X on M.

In what follows we assume that p #% 0 on M, that is, £ is not a
principal curvature vector field and we put Q@ = {p € M | p(p) # 0}.
Suppose that €} is not empty. Then € is an open subset of M, and from

now on we discuss our arguments on 2.

2. &-parallel structure Jacobi operator

Let M be a real hypersurface in a complex space form My (c), ¢ # 0
satisfying Ve Re = 0, which means that the structure Jacobi operator is
&-parallel.

Differentiating (1.14) covariantly, we find

9(VxRe)Y, Z) = = ¢{n(Z)9(Vx&Y) +0(Y)g(VxE, Z) + (Xa)g(AY, Z)}
+ ag((VxA)Y, Z) — g(AL, Z){g(Vx A),Y) — g(ApAY, X)}
— g(AE, Y {g(Vx A)E, Z) — g(ApAZ, X)}.

Putting X = ¢ in this and using (1.1) and (1.10), we get

9(VeRe)Y, Z) = —g{u(YIn(Z) + w(Zn(Y)} + (Ea)g(AY, Z)
+ ag((VeA)Y, Z) — g(A&, Z){39(AU,Y) + Yo}

where u is a 1-form by u(X) = ¢g(U, X) for any vector field X.
From the last equation and V¢R¢ = 0 we see that

(2.1) a(VeA)X+(€a)AX = —%{u(X)ern(X)U}Jrn(AX){BAU-I—Va}

+ {39(AU, X) + Xa} A€,

Putting X = £ in this and using (1.10) we obtain
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(2.2) QAU + giU =0.

which tells us that o # 0 on .
Putting X = aU in (2.1) and making use of (2.2), we find

(23)  QA(VeAU — Z(6)U = Zan’ + {a(Ua) - Teu’}Ac.

Because of (2.2), the equation (1.11) is reduced to

3
(2.4) Vel = JoplV + a? AE — af + adpVa.

Differentiating (2.2) covariantly along 2, we find

(25) (Xa)AU + a(Vx AU + aA(VxU) + E‘VXU =0,

If we replace X = af in this equation and take account of (2.2) and

(2.3), we can obtain
3
za/ﬁf +{a(Ua) = Jeu?}A¢ + o?A(VeU) + zang =0.

which together with (2.4) implies that
(2.6)
3 1
aApVa+ EWQ +(Ua)Af + p(e®+ F AW —pé ~ 5(#2 - ;Ci)W} =0,

where we have used (1.12).
Using (1.4) and (1.7), we verify from (2.5) that

(27) S{(Ya)u(X) - (Xa)u(Y)} + selu{n(X)u(¥) = n(¥ yw(X)}

+ aM{g(AVXU,Y) - g(AVyU, X)} + Sodu(X, ¥) =0,
where w is a 1-form defind by w(X) = g(W, X), and the exterior deriv-

ative du of 1-form u is given by
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1
du(X,Y) = 3{Yu(X) - Xu(Y) - u((X, Y])}.
If we replace X by U in (2.7), then obtain
(2.8) z(ﬁva — (Ua)U) + 2AVU + zaVUU =0,

because U and W are mutually orthogonal.
Combining (1.9) to (2.1) and using the Codazzi equation (1.4) and
(2.2), we obtain
29V xU = ~a?(X )¢ + $au(X)§ — a(fa)AX — Sa’pX
+ g(AL, X)(aVa = 3cU) + (a(Xa) — 2eu(X))AL
+ $(u(X)¢ +n(X)U) — a®AgAX + P ApAX.
Applying this by ¢ and making use of (1.8) and (1.12), we have
(29)  a?VxU +a%g(AW, X)¢ — ag(A¢, X)¢Va
= a(a)pAX + §a* (X — n(X)€) + Fepug(AE, X)W + a(Xa)U
=3eu(X)U + P AX = Saun(X)W ~ a®n(X) AL — a’9APAX.
Putting X = U in (2.9) and taking account of (1.7), (1.12) and (2.2),

we verify that
3
(2.10)  2VyU = —gu(ga)w + {a(Ua) - S}V + zuaquW.

Substituting (2.10) into (2.8) and taking account of (2.2), we verify
that
(2.11)

ap?Va — a(Ua)U = p(fa)(cAW + %W) — ap{aAPAW + Z—iqﬁAW}.

Using (2.2), the equation (2.1) can be rewritten as

(212) 02(VeA)X = ~a(€a)AX + zcl-a{u(X)§+n(X)U}

+{a(Xa) — 2eu(X)}AE + (aVa — 3cU)g(AL, X).

3. Real hypersurfaces satisfying S¢ = ¢S
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Let M be a real hypersurface in My(c), ¢ # 0 satisfying S¢ = ¢5.
Then from (1.5) we have

(3.1) A%¢ — pA® = h(Ag — 9 A),

which enables us to obtain ¢(A%¢ — hA¢) = 0. Because of properties of

the almost contact metric structure, it follows from this that
(3.2) A% = hAs + (B — ha)&.

From (1.12) and (3.2), we see that

(3.3) AW = pé+ (h— o)W
and hence
(3.4) AW = hAW + (B — ha)W

because of y # 0.

Now, differentiating (3.3) covariantly along €1, we find
(3.5) (VxAWHAVxW = (Xp)l+uVxé+X(h—a)W+(h—a)VxW.
If we take a inner product with W in the last equation, then we find
(3.6) g(Vx AW, W) = —=29(AU, X) + Xh - X

since W is a unit vector field orthogonal to . We also obtain by applying
¢ to this, '

pg(Vx AW, &) = (h = 20)(AU, X) + p(X ),

where we have used (1.8) and (3.2), which together with (1.4) implies
that

(3.7) W(Ve AW = (h— 20) AU — EU + U,
Replacing X by £ in (3.5) and making use of (3.7), we find

(3.8)  (h—20)AU — Z;U + uV 4 p{AVW ~ (h — a)VeW)

= p(ép)é + pPU + u(€h — Ea)W.
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On the other hand, from the fact that ¢U = —uW we see that
g(AU, X)§ — ¢V xU = (X)W + pVx W.

If we replace X by £ in this and take account of (1.11) and (1.12),
then we get

(3.9) pVeW = 3AU — aU 4+ Va — (fa)é — (Ep)W.
Combining this to (3.8), we verify that

(3.10)  3A%U - 2hAU + AVa + %Vﬁ ~hVa+ (ah— - E)U

= 2(Wa)é + u(ENW — (h - 20)(¢a)é
which shows that
(3.11) £8 =2a(éa) + 2u(Wa).
From (3.6) and (3.7) it is seen that
(3.12) , Wy =¢Eh—Ea.
Differentiating (3.2) covariantly and using (1.1), we find
(Vx A)AE + A(Vx A)E + A*9AX — hAGAX

— (Xh)AS + h(Vx A)E + X(B - ha)¢ + (8~ ha)$AX,
which together with the Codazzi equation (1.4) yields
Hu¥n(X) —u(X)n(¥)} + §(h — a)g(8Y, X) — g(A%$AX,Y)

+ g(A2BAY, X) + 2hg($AX, AY) — (B — ha) {g($AY, X) — g(AX,Y)}

= g(AY, (VxA)§) — g(AX, (Vy A)&) + (Y h)n(AX) — (Xh)n(AY)

+ Y8 — ha)n(X) — X(B — ha)n(Y).

Replacing X by uW to the both sides of the last equation and using

(1.4), (1.10), (3.3), (3.4) and (3.7), we obtain (for detail, see [6])

(3.13) (3a— 2h)A2U +2(h? + B — 2ha + %)AUJr (h—a)(f— ha— g—)U

= pAVu+ (ah = B)Va — 2(h — a)VB + pu?Vh
- p(Wh)AL — pW (B — ha)t.
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4. Real hypersurfaces satisfying VR = 0 and 5S¢ = ¢S5

We will continue our arguments under the assumptions V¢ R = 0
and at the same time S¢ = ¢S on real hypersurfaces in My (c), ¢ # 0.
Then (2.6) and (2.11) turns out respectively to be

(4.1) aApVa + 243‘7(1 + (Ua) AL + éu(aQ + Zc)(ha + = — W =0,

(4.2) apVao = g(UOz)U + ap(a)é + (ha — o + Z:)(foz)W

i

by virtue of (2.2) and (2.3). If we take a inner product (4.1) and (4.2)

with W and make use of (3.3), then we have respectively

(4.3) (8~ ha— ){aU0) ~ 1 (e? + 50)} =0,
(4.4) pe(Wa) = (ha —a® + Zj)foz.

Now, taking a inner product o?U to (3.1) and using (2.2) and (3.4),
we find
(4.5) olo = 2(5 -0+ z))
where we have put
(4.6) o=p0—ha

Combining (4.3) to the last two equations, we verify that
(4.7) a(Ua) = u2(a® + Z).

Using (4.4) and (4.7), the equation (4.2) turns out to be
(4.8) aVa = a(fa)é + a(Wa)W + (o + %c)U’.

Putting X = uW in (2.12) and taking account of (2.2) and (3.7)

a{%aVﬁ - BVal + E(Bﬁ —20° — ho)U = —pa(fa) AW + pa(Wa) A€,
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where we have used p? = 8 — a2, or using (1.12), (3.3), (4.4) and (4.6),

(4.9) o2V - fVa® + 3(2,1,2 +0)U = (ga){5 A€ — 2a0¢),
which together with (4.7) gives
(4.10) éa(Uﬁ) = {Ba+ %(h+2a)}p2

On the other hand, we have from (2.12)
a*(€h) = —ah(€a) + 2a9(A¢, Va),

which together with (1.12) and (4.4) yields

(4.11) a2(€h) = (ha + ;—)éa.
From (3.11) and (4.4) we also have
(4.12) Saleh) = (ha+ e

Combining the last two equations, and using (4.6), we see that
(4.13) o =0.

If we differentiate (4.5), then we have

4
which together with (4.5), (4.8) and (4.9) implies that
2

(4.14) o*(0*+5)Vo = S{alo—IWat u(E)}W + S (-2~ 5)U.

(0® + E)VU = 2\76 — 200V,

Thus, it follows that
2

415 26? + Yo =S (o — p? - D).
(4.15) (o + Vo= (o —p” = Su
Because of (4.7) and (4.10), it is seen that
c
(4.16) ap(Up) = {a® + 7(h = a)}p?,

which tells us that

C C
og(uAVp, U) = —cop + 7 (h - a).
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If we take a inner product o?U to (3.13) and making use of (2.2),
(4.5), (4.7), (4.10) and the last equation, we find

(4.17) a(UR) = Ba(h — o) + g(zﬁ —a?).

First of all we prove

Lemma 1. {a =0 and Wa =0 on ).
Proof. From (4.6) we obtain
o?(Uo) = o?(UB) — ha(Ua) — o> (UR).
Substituting (4.7), (4.10) and (4.17) into this, we get
c c c
249 2 N2 . N 4

where we have used (4.5) and u? = 2 — . From this and (4.15) we see
that

o2 (Uo) =

2, C\yra.2 By 2 € 4y _ S 2 &
(0" + 1@+ "+ B(f o+ 7) ~ o'} = 5(0 - p" - 3),

or, using (4.5),

c
:
Differentiating this and taking account of (4.12), we find

(4307 + e+ ()2 + = =0.

[NR

5
{28 + 6a% + 1€ ota=0.

From the last two equations, it is, using (4.13), verified that {a = 0.
From this and (4.4) it follows that Wa = 0. This completes the proof.

The proof of Main Theorem.
According to Lemma 1, (4.8) and (4.9) are reduced respectively to

1 ‘ s
(4.18) SVa? = (o’ + ZqU,
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(4.19) ng—awv@+gmﬂ+@U=o
Combining the last two equations, it follows that
(4.20) aVﬁ:rBﬂaﬁ-g@a%—M}U

Differentiating (4.18) covariantly and taking the skew-symmetric parts
obtained, we find (e + 3¢)du(X,Y) = 0 for any vector fields X and Y.

From this we verify that
(4.21) du(X,Y) =0.
In fact, if not, then we obtain a? + %c = 0 on this subset. So we have

(4.22) Va =0, 2ﬁ+a+—;-:0

on the set by virtue of (4.5). Further, (4.19) is reformed as 3Vj3 =
2(2u% 4+ 0)U on the set, which tells us that 2% + o = 0. From this and
the second equation of (4.22), it is seen that o+ ¢ = 0, a contradiction.
Thus, (4.21) is accomplished everywhere on .

From (4.21) we have ¢(VU, X) + g(Vx&,U) = 0, which together
with (1.1), (1.8), (1.11), (1.12), (2.2) and (3.3) implies that h = «.
Accordingly (4.5) and (4.20) turn out respectivvely to

(4.23) o’ p? = z(oz2 + 2),
(4.24) %vg:(ﬁ+§@m

which together with (4.18) gives
(4.25) V= uU.

Differentiating (4.23) along €, and using (4.18) and (4.25), we obtain
a? +3p2 - £ =0, which together with (4.23) gives o + %aQ + %CQ =0
and hence Va = 0. This together with (4.18) yields o? + %c =0, a

contradiction. Therefore we conclude that ) = ¢. Accordingly we see
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that the subset © in M on which A¢ — n(A&)¢ # 0 is an empty set.
Namely, in My,(c), ¢ # 0, every real hypersurface satisfying V¢ Re =
0 and S¢ = ¢S is a Hopf hypersurface. Hence we have U = 0 and
furthermore, the function « is constant on M ([7]).

Thus, (2.1) is led to aV¢A = 0, which together (1.4) and (1.9) implies
that a(Ad — @A) = 0. Here, we note that the case a = 0 corresponds to
the case of tube of radius § in P, C (See [2]).

But, in the case of H,,C it is known that « never vanishes for Hopf
hypersurfaces (cf [1]). Owing to Okumura’s work for P,,C or Montiel and
Romero’s work for H,,C mentioned in Introduction, we have completed

the proof main theorem.
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