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RIEMANNIAN SUBMERSIONS WHOSE TOTAL MANIFOLD

ADMITS h-ALMOST RICCI-YAMABE SOLITON

Mehraj Ahmad Lone and Towseef Ali Wani

Abstract. In this paper, we study Riemannian submersions whose to-

tal manifold admits h-almost Ricci-Yamabe soliton. We characterize the
fibers of the submersion and see under what conditions the fibers form

h-almost Ricci-Yamabe soliton. Moreover, we find the necessary condi-
tion for the base manifold to be an h-almost Ricci-Yamabe soliton and

Einstein manifold. Later, we compute scalar curvature of the total man-

ifold and using this we find the necessary condition for h-almost Yamabe
solition to be shrinking, expanding and steady. At the end, we give a

non-trivial example.

1. Introduction

In the twentieth century, the Poincare conjecture was one of the famous
unsolved problems of modern mathematics. Poincare asked whether a simply-
connected closed 3-manifold is always a 3-sphere S3. After years of topo-
logical difficulties, William Thurston produced encouraging results in 1970s.
Thurston’s geometrization conjecture claims that every closed 3-manifold may
be divided into pieces, and each piece admits one of the 8-geometric structures.
This provides a connection between the geometry and topology of 3-manifolds,
similar in concept to the case of surfaces. The Poincare conjecture in particular
was a special example of Thurston’s geometrization conjecture.

Inspired by Eells and Sampson’s work [5] on the harmonic map flow, Hamil-
ton [10] introduced the concept of Ricci flow in 1982. The Ricci flow is an
evolution equation for metric on a Riemannian manifold given by

∂g(t)

∂t
= −2Ric,

where g = g(t) is the Riemannian metric and Ric denotes the Ricci tensor. A
self-similar solution of the Ricci flow [10], which moves only by one parameter
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family of diffeomorphism and scaling is called a Ricci soliton [11]. The Ricci
soliton is given by

1

2
LV g +Ric− λg = 0,

where LV is the Lie derivative, g is the Riemannian metric, V is the vector
field and λ is a scalar. The Ricci soliton is denoted by (g, V, λ) and is said to be
shrinking, steady and expanding according to whether λ is positive, zero and
negative, respectively.

In 1988, Hamilton introduced the notion of Yamabe flow on a smooth mani-
fold. This geometric flow was used as a tool for constructing metrics of constant
scalar curvature in a given conformal class of a Riemannian metric. The Yam-
abe flow on a smooth manifold (M, g) is defined as an evolution equation of a
Riemannian metric g = g(t) as

∂g(t)

∂t
= −τg(t),

where τ denotes the scalar curvature of the manifold. It should be noted that
in two dimensional case, the Ricci and Yamabe solitons coincide. However, in
higher dimensions, Yamabe flow and Ricci flow does not agree as the former
preserves the conformal class of the metric while as the latter does not. Like
Ricci soliton, Yamabe soliton is self similar solution of Yamabe flow which
moves by a one-parameter family diffeomorphism and scaling and is given by

1

2
LV g + (λ− τ)g = 0.

As a generalization of Ricci and Yamabe flow, Güler and Crâşmăreanu [8]
introduced the concept of Ricci-Yamabe flow given by

∂g(t)

∂t
= −2αRic + βτg.

Ricci-Yamabe solitons are defined by the equation

(1.1)
1

2
LV g + αRic + (λ− β

2
τ)g = 0,

where λ, α, β ∈ R. If λ is a smooth function, then equation (1.1) is called
almost Ricci-Yamabe soliton.

Gomes et al. [7] extended the concept of almost Ricci soliton to h-almost
Ricci solitons on a complete Riemannian manifold by

h

2
LV g +Ric + λg = 0,

where h : M −→ R is a smooth function. In particular, Ricci soliton is 1-almost
Ricci soliton for λ ∈ R. Zeng [20] introduced the concept of h-almost Yamabe
soliton and obtained some rigidity results. Ghahremani-Gol [6] investigated
h-almost Ricci solitons further and obtained some structure equations and an
integral formula for the compact h-almost Ricci solitons. In [3], Cunha and
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Siddiqi studied gradient h-almost Yamabe solitons. Recently, De et al. [4] ex-
tended the concept of Ricci-Yamabe solitons to h-almost Ricci-Yamabe solitons
on a complete Riemannian manifold by

(1.2)
h

2
LV g + αRic + (λ− β

2
τ)g = 0,

where h : M −→ R is a smooth function.
An h-almost Ricci-Yamabe soliton is

(i) h-almost Ricci soliton for α = 1 and β = 1,
(ii) h-almost Yamabe soliton for α = 0 and β = 1,
(iii) h-almost Einstein soliton for α = 1 and β = −1.

On the other hand Riemannian submersions are very important tools in Rie-
mannian geometry. In addition to having a vital role in Riemannian geom-
etry, Riemannian submersions are very relevant to many fields of theoretical
physics, including Yang-Mills theory [2], Kaluza-Klein theory [1], supergrav-
ity, and string theories. Riemannian submersions are also useful in explaining
extensions of important aspects of theoretical particle physics in the presence
of non-Abelian gauge theories. An evidence of this phenomena was given by
Watson [17] who studied the relations between Riemannian submersions and
instantons, the latter of which are critical functionals of the Yang-Mills ac-
tion. Other applications in physics where Riemannian submersions are widely
used are generalized nonlinear sigma models in curved spaces, the Dirac mono-
pole, Einstein equations, among others. For further details see [12–16, 20] and
references therein.

In 2021, Meriç et al. [14] established a link between Riemannian submer-
sions and Ricci solitons. They studied Riemannian submersions whose total
manifold admit a Ricci soliton. Under this setup, the authors investigated the
geometry of fibers and base manifold. The harmonocity and biharmonocity
was also studied. This research article quickly attracted attention of various
mathematicians. Yadav et al. studied Riemannian maps [18] and Clairaut Rie-
mannian [19] maps whose total manifolds admit Ricci solitons. Gupta et al. [9]
investigated conformal Riemannian maps whose total manifold admits a Ricci
soliton. Motivated by above studies, we will investigate Riemannian submer-
sions whose total manifolds admit h-almost Ricci-Yamabe solitons.

2. Preliminaries

Let φ : M −→ B be a smooth map from the Riemannian manifold M of
dimension m onto the Riemannian manifold B of dimension n where m > n.
Then φ is said to be a Riemannian submersion [15] if it satisfies the following
conditions:

(i) φ is of maximal rank.
(ii) The differential map φ∗ of φ preserves the lengths of horizontal vectors.
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By a horizontal vector field X on M we mean a vector field which is orthogonal
to the kernel of φ∗ at each point p of M and by a vertical vector field V on
M we mean a vector field which is tangent to the kernel of φ∗ at each point
p ∈ M . The Riemannian manifolds Mm and Bn are called total manifold and
base manifold, respectively. For any fixed b ∈ B, φ−1(b) forms a closed sub-
manifold of M of dimension r = m− n. Denote by Hp = {set of all horizontal
vectors at p} and by Vp = {set of all vertical vectors at p}. Thus a Riemann-
ian submersion defines two complementary orthogonal distributions H and
V , called horizontal and vertical distribution, respectively, on M . Further the
vertical distribution V is always integrable.

O’ Neill defined two fundamental tensors T and A of a Riemannian submer-
sion. These are (1,2)-tensors and are defined by the following formulae:

TEF = H ∇V EV F + V ∇V EH F,(2.1)

AEF = V ∇H EH F + H ∇H EV F,(2.2)

where ∇ denotes Riemannian connection on M , E and F are arbitrary vector
fields on M and V , H denote the projection morphisms on the distributions
kerφ∗ and (kerφ∗)

⊥, respectively. These tensors are called O’Neill’s integrabil-
ity tensors. For any F ∈ Γ(TM), TF and AF are skew-symmetric operators on(
Γ(TM), g

)
and they reverse the horizontal and vertical distributions. It is easy

to see that T is vertical, i.e., TF = TV F and A is horizontal, i.e., AF = AH F .
The tensor field T and A also satisfy:

TV U = TUV ∀ U, V ∈ kerφ∗,(2.3)

AXY = −AY X =
1

2
V [X,Y ] ∀ X,Y ∈ (kerφ∗)

⊥.(2.4)

The above equations imply that T restricted over vertical distribution V is
a symmetric operator and A restricted over horizontal distribution H is a
skew-symmetric operator. Also, the operator A measures the obstruction of
the horizontal distribution from being integrable.

Let φ : M −→ B be a Riemannian submersion and denote the Levi-Civita
connection of M and B by ∇ and ∇′, respectively. If E,F are basic vector
fields φ-related to E′, F ′, then

(i) g(E,F ) = g′(E′, F ′) ◦ φ,
(ii) H [E,F ] is a basic vector field φ-related to [E′, F ′],
(iii) H ∇EF is the basic vector field φ-related to ∇′

E′F ′.
(iv) for any vector field U , [U,E] is a vertical vector field.

From (2.1) and (2.2), we have following equations:

(2.5) ∇UV = TUV + ∇̂UV,

(2.6) ∇UX = H ∇UX + TUX,

(2.7) ∇XU = AXU + V ∇XU,
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(2.8) ∇XY = H ∇XY +AXY,

where U, V ∈ Γ(kerφ∗), X,Y ∈ Γ
(
(kerφ∗)

⊥) and ∇̂UV denotes V ∇UV . On

any fibre φ−1(q), q ∈ B, denote the induced metric by ĝ. Then ∇̂ denotes the
Levi-Civita connection with respect to metric ĝ.

On fibers, T acts as second fundamental form of the submersion and re-
stricted to vertical vector fields, it could be easily seen that T = 0 is equivalent
to the condition that the fibers are totally geodesic. A Riemannian submersion
is said to have totally geodesic fibers if T vanishes identically. Let U1, U2, . . . , Ur

be an orthonormal frame of kerφ∗. Then the horizontal vector field

(2.9) H =
1

r
N

is called the mean curvature vector field of the fiber, where

(2.10) N =

r∑
j=1

TUj
Uj .

IfH= 0, then the Riemmanian submersion is said to be minimal. A Riemannian
submersion is said to have totally umbilical fibers if

TUV = g(U, V )H(2.11)

for U, V ∈ kerφ∗.

Lemma 2.1 ([14]). Let φ : M −→ B be a Riemannian submersion between
Riemannian manifolds. Then the following are equivalent:

(i) the vertical distribution V is parallel.
(ii) the horizontal distribution H is parallel.
(iii) the fundamental tensor fields T and A vanish identically, that is, T ≡ 0

and A ≡ 0.

Let R, R′ and R̂ denote the Riemannian curvature tensors of (M, g), (B, g′)
and any fiber of φ, respectively. Then we have

(2.12) R(U, V,W,E) = R̂(U, V,W,E)− g(TUE, TV W ) + g(TV E, TUW ),

R(X,Y, Z, F ) = R′(X ′, Y ′, Z ′, F ′) ◦ φ+ 2g(AXY,AZF )

− g(AY Z,AXF ) + g(AXZ,AY F ),(2.13)

where U, V,W,E ∈ Γ(kerφ∗) and X,Y, Z, F ∈ Γ
(
(kerφ∗)

⊥).
Denote the sectional curvatures of (M, g), (B, g′) and of any fiber of φ by

K, K ′ and K̂, respectively. Let (U, V ) and (X,Y ) be an orthonormal basis of
2-plane in kerφ∗ and (kerφ∗)

⊥, respectively. Then

(2.14) K(U, V ) = K̂(U, V )− ∥TUV ∥2 + g(TUU, TV V ),

(2.15) K(X,Y ) = K ′(φ∗X,φ∗Y ) + 3∥AXY ∥2.
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The Ricci tensor Ric on (M, g) is given by

Ric(U, V ) = R̂(U, V ) + g(N, TUV )

−
n∑

i=1

{
g
(
(∇XiT )(U, V ), Xi

)
− g(AXiU,AXiV )

}
,(2.16)

Ric(X,Y ) = Ric′(X ′, Y ′) ◦ φ− 1

2
{g(∇XN,Y ) + g(∇Y N,X)}

+ 2

n∑
i=1

g(AXXi,AY Xi) +

r∑
j=1

g(TUj
X, TUj

Y ),(2.17)

Ric(U,X) = − g(∇UN,X) +

r∑
j=1

g
(
(∇Uj

T )(Uj , U), X
)

−
n∑

i=1

{g((∇Xi
A)(Xi, X), U) + 2g(AXi

X, TUXi)},(2.18)

where {Ui} and {Xi} are orthonormal bases of vertical and horizontal distri-
bution, respectively, and U, V ∈ Γ(kerφ∗) and X,Y ∈ Γ

(
(kerφ∗)

⊥).
Let τ , τ ′ and τ̂ denote the scalar curvatures of total manifold (M, g), base

manifold (B, g′) and any fiber of φ, respectively. These are related by the
following expression:

(2.19) τ = τ ′ ◦ φ+ τ̂ − ∥N∥2 − ∥A∥2 − ∥T ∥2 + 2

n∑
i=1

g(∇XiN,Xi).

Let’s recall the notion of harmonic map between Riemannian manifolds. Let
(M, g) and (B, g′) be Riemannian manifolds and suppose that φ : M −→ B is
a smooth map between them. Then the differential φ∗ of φ can be viewed as a
section of the bundle Hom(TM,φ−1TB) −→ M , where φ−1TB is the pullback
bundle which has fibers (φ−1TB)p = Tφ(p)B, p ∈ M . Hom(TM,φ−1TB) has

a connection ∇ induced from Levi-Civita connection ∇M and the pullback
connection. Then the second fundamental form of φ is given by

(∇φ∗)(X,Y ) = ∇φ
Xφ∗(Y )− φ∗(∇M

X Y )(2.20)

for X,Y ∈ Γ(TM), where ∇φ is the pullback connection. It is known that the
second fundamental form is symmetric. A smooth map φ : (M, g) −→ (B, g′)
is said to be harmonic if trace(∇φ∗) = 0. On the other hand, the tension field
of φ is the section τ̃(φ) of Γ(φ−1TB) defined by

τ̃(φ) = divφ∗ =

m∑
i=1

(∇φ∗)(ei, ei),(2.21)

where {e1, e2, . . . , em} is the orthonormal frame on M . Then it follows that φ
is harmonic if and only if τ̃(φ) = 0.
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The divergence of a horizontal vector field X is denoted by δ̌(X) and is given
by

(2.22) δ̌(X) =

n∑
j=r+1

g(∇XjX,Xj).

Using (2.11) in (2.22), we get

(2.23) δ̌(N) =

r∑
i=1

n∑
j=r+1

g
(
(∇Xj

T )Ui
Ui, Xj

)
,

where {Ui} and {Xj} are orthonormal bases of kerφ∗ and (kerφ∗)
⊥, respec-

tively.
A Ricci flat manifold is a (pseudo-)Riemannian manifold whose Ricci tensor

is zero at every point. In particular, scalar curvature τ of Ricci flat manifolds
is also identically zero. Ricci flat manifolds are of particular interest in theoret-
ical physics and differential geometry. In physics, they arise naturally in string
theory and in the study of the geometry of space-time in general relativity. In
differential geometry, Ricci flat manifolds are important because they have spe-
cial geometric properties that allow for the development of new mathematical
techniques and tools.

Examples of Ricci flat manifolds include flat Euclidean space, Calabi-Yau
manifolds, and hyperkahler manifolds. The study of these manifolds has im-
portant applications in fields such as algebraic geometry, mathematical physics,
and theoretical physics.

3. Main results

Theorem 3.1. Let (M, g) be an h-almost Ricci-Yamabe soliton with vertical
potential field V and φ : M −→ B be a Riemannian submersion where (B, g′)
is a Ricci flat Riemannian manifold. If the submersion satisfies one of the
conditions of Lemma 2.1, then the fibers of the submersion are h-almost Ricci-
Yamabe solitons.

Proof. Since (M, g) is an h-almost Ricci-Yamabe soliton, we have by (1.2)

(3.1)
h

2
(LV g)(U,W ) + αRic(U,W ) + (λ− β

2
τ)g(U,W ) = 0

for any U,W ∈ Γ(V).
Using (2.16) and (2.19) in (3.1), we get

h

2
[g(∇UV,W ) + g(U,∇WV )] + α{R̂ic(U,W ) + g(N, TUW )

−
r∑

i=1

[g
(
(∇Xi

T )(U,W ), Xi

)
− g(AXi

U,AXi
W )]}

+
(
λ− β

2
(τ̂ + τ ′ ◦ φ− ∥N∥2 − ∥A∥2 − ∥T ∥2 + 2δ̌(N))

)
g(U,W ) = 0.
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Now using Lemma 2.1 and (2.5) in the above equation, we immediately get

h

2
[g(∇̂UV,W )+g(U, ∇̂WV )]+α{R̂ic(U,W )}+

(
λ− β

2
(τ̂+τ ′ ◦ φ)

)
g(U,W ) = 0.

(3.2)

Since (B, g′) is a Ricci flat manifold, that is τ ′ = 0, we get from (3.2)

h

2
[g(∇̂UV,W ) + g(U, ∇̂WV )] + α{R̂ic(U,W )}+

(
λ− β

2
τ̂
)
g(U,W ) = 0,

which implies that each fiber is an h-almost Ricci-Yamabe soliton. □

Theorem 3.2. Let (M, g) be an h-almost Ricci-Yamabe soliton with vertical
potential field V and φ : M −→ B be a Riemannian submersion with umbilical
fibers. Suppose the horizontal distribution is integrable. Then each fiber is an
h-almost Ricci-Yamabe soliton.

Proof. For vertical vector fields U and W , we have by (1.2)

h

2
(LV g)(U,W ) + αRic(U,W ) + (λ− β

2
τ)g(U,W ) = 0.

Using (2.16) and (2.19) in the above equation we get

h

2
(LV g)(U,W ) + α{R̂ic(U,W ) + g(N, TUW )

−
r∑

i=1

[g
(
(∇XiT )(U,W ), Xi

)
− g(AXiU,AXiW )]}

+
(
λ− β

2
(τ̂ + τ ′ ◦ ϕ− ∥N∥2)− ∥A∥2 − ∥T ∥2 + 2δ̌(N)

)
g(U,W ) = 0.

Now using (2.9) and the fact that ∇ is a metric connection, we get from the
above equation

h

2
(LV g)(U,W ) + α{R̂ic(U,W ) + r

r∑
i=1

g(TUi
Ui, TUW )

−
r∑

i=1

(∇Xi
g)
(
TUW,Xi

)
−

r∑
i=1

g(TUW,∇Xi
Xi) +

r∑
i=1

g(AXi
U,AXi

W )}

+
(
λ− β

2
(τ̂ + τ ′ ◦ ϕ− ∥N∥2 − ∥A∥2 − ∥T ∥2 + 2δ̌(N))

)
g(U,W ) = 0.(3.3)

Using (2.9), (2.22) and the fact that fibers of φ are umblical in (3.3), we get

h

2
(LV g)(U,W ) + αR̂ic(U,W ) + α

[
r∥H∥2g(U,W ) + δ̌(H)g(U,W )

]
+
(
λ− β

2
(τ̂ + τ ′ ◦ φ− ∥N∥2 − ∥T ∥2 + 2δ̌(N))

)
g(U,W ) = 0.

Upon rearranging, we get from the above equation

h

2
[g(∇̂UV,W ) + g(U, ∇̂WV )] + αR̂ic(U,W ) + (Λ− β

2
τ̂)g(U,W ) = 0,
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where Λ = α(r∥H∥2 + δ̌(H)) + λ+ β
2

(
∥T ∥2 + ∥N∥2 − 2δ̂(N)

)
.

Thus the fibers form h-almost Ricci-Yamabe soliton. □

Remark. If the fibers of the Riemannian submersions are minimal and (B, g′)
is a Ricci flat manifold, then T , N,H are identically equal to zero. Hence we
have from the above equation,

h

2
[g(∇̂UV,W ) + g(U, ∇̂WV )] + αR̂ic(U,W ) + (λ− β

2
τ̂)g(U,W ) = 0.

Theorem 3.3. Consider an h-almost Ricci-Yamabe soliton (M,g) with hori-
zontal potential field V and let φ : M −→ B be a Riemannian submersion with
Ricci flat fibers. If one of the conditions of Lemma 2.1 is satisfied, then the
base manifold (B, g′) is an h-almost Ricci-Yamabe soliton.

Proof. For X, Y ∈ Γ
(
(kerφ∗)

⊥), we have by (1.2)

h

2
(LV g)(X,Y ) + αRic(X,Y ) + (λ− β

2
τ)g(X,Y ) = 0.

Using (2.17) and (2.19) we get from the above equation

h

2
[g(∇XV, Y ) + g(X,∇Y V )]

+ α{Ric′(X,Y ) ◦ φ− 1

2
{g(∇XN,Y ) + g(∇Y N,X)}

+ 2

n∑
i=1

g
(
AXXi,AY Xi

)
+

∑
g(TUj

X, TUj
Y )}

+
(
λ− β

2
(τ̂ + τ ′ ◦ φ− ∥N∥2)− ∥A∥2 − ∥T ∥2 + 2δ̌(N)

)
g(U,W ) = 0.(3.4)

Now using Lemma 2.1 and the fact that the fibers of φ are Ricci flat, that is
τ̂ = 0, we get from (3.4)

h

2
[g
(
H(∇XV ), Y

)
+ g

(
X,H(∇Y V )

)
]

+ αRic′(X ′, Y ′) ◦ φ+
(
λ− β

2
(τ ′ ◦ φ)

)
g(X,Y ) = 0.(3.5)

Since H(∇XV ) and H(∇Y V ) are basic vector fields φ-related to ∇′
X′V ′ and

∇′
Y ′V ′, respectively, we get from (3.5)

h

2
[g′

(
∇′

X′V ′, Y ′)+ g′
(
X ′,∇′

Y ′V ′)] ◦ φ
+ αRic′(X ′, Y ′) ◦ ϕ+

(
λ− β

2
(τ ′ ◦ φ)

)
g′(X ′, Y ′) ◦ φ = 0,

which implies

h

2
(LV ′g′)(X ′, Y ′) + αRic′(X ′, Y ′) + (λ− β

2
τ ′)g′(X ′, Y ′) = 0.

Hence (B, g′) is an h-almost Ricci-Yambe soliton. □
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Theorem 3.4. Let (M, g) be an h-almost Ricci soliton with vertical potential
field V and φ : M −→ B be a Riemannian submersion. If one of the conditions
of Lemma 2.1 is satisfied, then (B, g′) is an Einstein manifold.

Proof. Since (M, g) is an h-almost Ricci soliton, we have

h

2
(LV g)(X,Y ) + αRic(X,Y ) + λg(X,Y ) = 0.

Using (2.17) in the above equation, we get

h

2
[g(∇XV, Y ) + g(X,∇Y V )]

+ α{Ric′(X ′, Y ′) ◦ φ− 1

2
{g(∇XN,Y ) + g(∇Y N,X)}

+ 2

n∑
i=1

g
(
AXXi,AY Xi

)
+
∑

g(TUjX, TUjY )}+ λg(X,Y ) = 0.

Using Lemma 2.1, we get

h

2
[g(∇XV, Y ) + g(X,∇Y V )] + αRic′(X ′, Y ′) ◦ φ+ λg(X,Y ) = 0.

Since V is vertical, using (2.7) we get

h

2
[g(AXV, Y ) + g(X,AY V )] + αRic′(X ′, Y ′) ◦ φ+ λg′(X ′, Y ′) ◦ φ = 0.

Again using Lemma 2.1, we get

αRic′(X ′, Y ′) ◦ φ+ λg′(X ′, Y ′) ◦ φ = 0

which implies (B, g′) is an Einstein manifold. □

Theorem 3.5. Let (M, g, h, V, α, β, λ) be an h-almost Ricci-Yamabe soliton
with β ∈ R admitting a Riemannian submersion φ : M −→ B. If one of the
conditions of Lemma 2.1 is satisfied, then scalar curvature of (M, g) is given
by τ = 2λm

βm−2α .

Proof. Since (M, g) is an h-almost Ricci-Yamabe soliton, we have

h

2
(LV g)(E,F ) + αRic(E,F ) + (λ− β

2
τ)g(E,F ) = 0,

where E,F ∈ Γ(TM). Taking trace of above equation, we get

h
[ r∑

i=1

g(∇Ui
Ui, V ) +

m∑
j=m+1

g(∇Xi
Xi, V )

]
+ α

[ r∑
i=1

R̂ic(Ui, Ui) +

m∑
j=r+1

Ric′(X ′
i, X

′
i) ◦ φ

]
+ (λ− β

2
τ)
( r∑

i=1

g(Ui, Ui) +

m∑
j=r+1

g(Xj , Xj

)
= 0,(3.6)
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where {Ui}1≤i≤r and {Xj}r+1≤j≤m are orthonormal bases of vertical and hor-
izontal distributions of φ, respectively.

Since φ satisfies Lemma 2.1, using (2.16), (2.17) and (2.18) in (3.6), we get

h
[ r∑

i=1

Ui

(
g(Ui, V )

)
+

m∑
j=m+1

Xj

(
g(Xj , V )

)]
+ α

(
τ̂ + τ ′ ◦ φ

)
+ (λ− β

2
τ)m = 0.

(3.7)

Now using fact that ∇ is a metric connection, we immediately get

ατ + (λ− β

2
τ)m = 0,

which implies

τ =
2λm

βm− 2α
. □

Corollary 3.6. Let (M, g, h, V, α, β, λ) be an h-almost Ricci-Yamabe soliton
with λ, β ∈ R admitting a Riemannian submerion φ : M −→ B. If one of the
conditions of Lemma 2.1 is satisfied, then (M, g) has constant scalar curvature
τ = 2λm

βm−2α .

Corollary 3.7. Let (M, g, h, V, α, β, λ) be an h-almost Yamabe soliton with
λ ∈ R, β ∈ R+ and φ : M −→ B be a Riemannian submersion. If one of the
conditions of Lemma 2.1 is satisfied, then

(1) (M, g) is shrinking ⇐⇒ τ is positive.
(2) (M, g) is steady ⇐⇒ τ vanishes.
(3) (M, g) is expanding ⇐⇒ τ is negative.

4. Example

Example. Consider Riemannian manifolds M = (R4, g) and N = (R2, g′),
where

g = e−2y2dy21 + dy22 + e−2y2dy23 + dy24 ,

g′ = dy21 + dy22 .

Define a map φ : R4 −→ R2 by

φ(y1, y2, y3, y4) =
(y1 + y4√

2
,
y2 + y3√

2

)
.

Then by direct calculations, we have

kerφ∗ = Span{U1 = ∂y1 − ∂y4, U2 = ∂y2 − ∂y3},(
kerφ∗

)⊥
= Span{X1 = ∂y1 + ∂y4, X2 = ∂y2 + ∂y3},

where {e1 = ey2∂y1, e2 = ∂y2, e3 = ey2∂y3, e4 = ∂y4} is an orthonormal basis
of TpR4 for any p ∈ R4.

Then it is easy to see that φ is a Riemannian submersion.



490 M. A. LONE AND T. A. WANI

Now, for the metric g, we have

[g]ij =


e−2y2 0 0 0
0 1 0 0
0 0 e−2y2 0
0 0 0 1

 , [g]ij =


e2y2 0 0 0
0 1 0 0
0 0 e2y2 0
0 0 0 1

 .

The non-zero Christofell symbols of g are given by

(4.1) Γ2
11 = e−2y2 , Γ1

12 = −1 = Γ1
12, Γ3

23 = −1 = Γ3
32, Γ2

33 = e−2y2 .

Using (4.1), we have

∇U1
U1 = e2, ∇U1

U2 = −e1, ∇U1
X1 = e2, ∇U1

X2 = −e1,

∇U2
U1 = 0, ∇U2

U2 = e2 + e3, ∇U2
X1 = 0, ∇U2

X2 = e3 − e2,

∇X1
U1 = e2, ∇X1

U2 = −e1, ∇X1
X1 = e2, ∇X1

X2 = −e1,

∇X2
U1 = 0, ∇X2

U2 = −e3 − e2, ∇X2
X1 = 0, ∇X2

X2 = −e3 + e2,(4.2)

where ∇ is a Levi-Civita connection on M .
Using (4.2), we get

R(U1, U2)U1 = U2, R(U1, U2)U1 = X1, R(U1, U2)X2 = 0,

R(U1, U2)U2 = −2e1, R(U1, X1)U1 = 0, R(U1, X1)U1 = 0,

R(U1, X1)X1 = 0, R(U1, X1)X2 = 0, R(U1, X2)U1 = X2,

R(U1, X2)U2 = 0, R(U1, X2)X1 = X2, R(U1, X2)X2 = −2e1,

R(U2, X1)U1 = −U2, R(U2, X1)U2 = 2e1, R(U2, X1)X1 = −U2,

R(U2, X1)X2 = 0, R(U2, X2)U1 = 0, R(U2, X2)U2 = 2X2,

R(U2, X2)X1 = 0, R(U2, X2)X2 = −2U2, R(X1, X2)U1 = X2,

R(X1, X2)U2 = 0, R(X1, X2)X1 = X2, R(X1, X2)X2 = −2e1,(4.3)

where R is a curvature endomorphism on M .
Now using (4.3) and the definition Ric(X,Y ) = trace(Z −→ R(Z,X)Y ), the

non-zero components of the Ricci tensor Ric are given by

Ric(U1, U1) = −4, Ric(U1, X1) = −4 = Ric(X1, U1), Ric(U2, U2) = −8,

Ric(X1, X1) = −4, Ric(X2, X2) = −8.(4.4)

Therefore the scalar curvature τ = −24.
For any Ei ∈ kerφ∗, we can write Ei = aiU1 + biU2. Therefore

(4.5) g(E2, E3) = 2(a2a3 + b2b3),

(4.6) (LE1
g)(E2, E3) = −2a2a3b1 + a1a2b3 + a1a3b2,

(4.7) Ric(E2, E3) = −4a2a3 − 8b2b3.

Now substituting (4.5), (4.6) and (4.7) in (1.2) and simplifying we get

λ =
h(2a2a3b1 − a1a2b3 − a1a3b2) + 2α(a2a3 + 4b2b3)

4(a1a2 + b1b2)
− 12β.
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Thus fibers of the Riemannian submersion admit h-almost Ricci-Yamabe soli-
ton if λ satisfies the above equation.

5. Conclusions

The concept of Ricci-Yamabe solitons was introduced by Güler and
Crâşmăreanu [8] as a generalization of Ricci and Yamabe solitons. On a com-
plete Riemannian manifold, Gomes et al. [7] extended the notion of almost
Ricci soliton to h-almost Ricci soliton. De et al. [4] extended the notion of al-
most Ricci-Yamabe soliton to h-almost Ricci-Yamabe soliton in para-Kenmotsu
manifolds. In this paper, we connected the theory of Riemannian submersions
and h-almost Ricci-Yamabe solitons by studying the behaviour of fibers and
base manifold under different conditions. We also give a non-trivial example
at the end.

In the near future, we or possibly other authors will investigate Riemann-
ian submersions from different space forms admitting h-almost Ricci-Yamabe
solitons.
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