• Title/Summary/Keyword: Retention time

Search Result 1,732, Processing Time 0.032 seconds

Simulation and Modelling of the Write/Erase Kinetics and the Retention Time of Single Electron Memory at Room Temperature

  • Boubaker, Aimen;Sghaier, Nabil;Souifi, Abdelkader;Kalboussi, Adel
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.10 no.2
    • /
    • pp.143-151
    • /
    • 2010
  • In this work, we propose a single electron memory 'SEM' design which consist of two key blocs: A memory bloc, with a voltage source $V_{Mem}$, a pure capacitor connected to a tunnel junction through a metallic memory node coupled to the second bloc which is a Single Electron Transistor "SET" through a coupling capacitance. The "SET" detects the potential variation of the memory node by the injection of electrons one by one in which the drainsource current is presented during the memory charge and discharge phases. We verify the design of the SET/SEM cell by the SIMON tool. Finally, we have developed a MAPLE code to predict the retention time and nonvolatility of various SEM structures with a wide operating temperature range.

Poloxamer 407 Hydrogels for Intravesical Instillation to Mouse Bladder: Gel-Forming Capacity and Retention Performance

  • Kim, Sang Hyun;Kim, Sung Rae;Yoon, Ho Yub;Chang, In Ho;Whang, Young Mi;Cho, Min Ji;Kim, Myeong Joo;Kim, Soo Yeon;Lee, Sang Jin;Choi, Young Wook
    • The Korean Journal of Urological Oncology
    • /
    • 제15권3호
    • /
    • pp.178-186
    • /
    • 2017
  • Purpose: Poloxamer 407 (P407) thermo-sensitive hydrogel formulations were developed to enhance the retention time in the urinary bladder after intravesical instillation. Materials and Methods: P407 hydrogels (P407Gels) containing 0.2 w/w% fluorescein isothiocyanate dextran (FD, MW 4 kDa) as a fluorescent probe were prepared by the cold method with different concentrations of the polymer (20, 25, and 30 w/w%). The gel-forming capacities were characterized in terms of gelation temperature (G-Temp), gelation time (G-Time), and gel duration (G-Dur). Homogenous dispersion of the probe throughout the hydrogel was observed by using fluorescence microscopy. The in vitro bladder simulation model was established to evaluate the retention and drug release properties. P407Gels in the solution state were administered to nude mice via urinary instillation, and the in vivo retention behavior of P407Gels was visualized by using an in vivo imaging system (IVIS). Results: P407Gels showed a thermo-reversible phase transition at $4^{\circ}C$ (refrigerated; sol) and $37^{\circ}C$ (body temperature; gel). The G-Temp, G-Time, and G-Dur of FD-free P407Gels were approximately $10^{\circ}C-20^{\circ}C$, 12-30 seconds, and 12-35 hours, respectively, and were not altered by the addition of FD. Fluorescence imaging showed that FD was spread homogenously in the gelled P407 solution. In a bladder simulation model, even after repeated periodic filling-emptying cycles, the hydrogel formulation displayed excellent retention with continuous release of the probe over 8 hours. The FD release from P407Gels and the erosion of the gel, both of which followed zero-order kinetics, had a linear relationship ($r^2=0.988$). IVIS demonstrated that the intravesical retention time of P407Gels was over 4 hours, which was longer than that of the FD solution (<1 hour), even though periodic urination occurred in the mice. Conclusions: FD release from P407Gels was erosion-controlled. P407Gels represent a promising system to enhance intravesical retention with extended drug delivery.

Application of Synthetic Mineral Microparticles with Various Metal Species

  • Lee, Sa-Yong;Hubbe, Martin A.
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.40 no.5
    • /
    • pp.1-10
    • /
    • 2008
  • Synthetic mineral microparticles (SMM) is a patented system which has been developed to promote drainage of water and retention of fine particles during papermaking. It is shown in patents that the SMM system can have advantages in both of drainage and retention, compared with montmorillonite (bentonite), which is one of the most popular materials presently used in this kind of application. Turbidity and gravity drainage time were measured using a Britt-Jar test with representative SMM formulations, in order to confirm the efficacy of SMM covering a wide range of compositions and discover effects of some key variables that have the potential to lead to unexpected advantages in terms of the effectiveness of the microparticles, when used in combination with a cationic polyacrylamide treatment of papermaking furnish. An iron silicate showed highest retention performance, as well as suitably fast drainage time relative to other metal silicate and bentonite. Zinc silicate improved retention and drainage. SMM synthesized from aluminum sulfate ($Al_2(SO_4){_3}$) did not show a benefit in retention and drainage, relative to bentonite. SMM synthesized from aluminum chloride ($AlCl_3$) performed better in drainage and retention than bentonite when the Al/Si ratios were 0.76 and 1.00. It was found that when the Al/Si ratio and neutralization are considered, pH variation due to the change of Al/Si ratio can be a key factor to control the size of primary metal silicate particles and the degree of coagulation of the primary particles.

Analysis of Factors Affecting Retention Time in Grassed Swale (식생수로에서 유하시간에 영향을 주는 인자 분석)

  • Paek, Seoungbong;Gil, Kyungik
    • Journal of Wetlands Research
    • /
    • v.17 no.3
    • /
    • pp.303-310
    • /
    • 2015
  • Recently the water quality management policy gives priority to management the point source. Point pollution sources have definite emission points and are discharged to one point through a pipe. But Nonpoint pollution source (NPS) has uncertain pathway, pollutant load and runoff characteristics unlike point pollution sources, making them difficult to manage. Thus, the Korea government plans to develop and equip facilities that help reduce NPS so as to manage them more easily. But removal efficiency of Best Management Practice (BMPs) is in influenced by rainfall, hydrologic condition like natural phenomenon, so factors of removal efficiency are difficult. Thus there is a need for multilateral research about many factors that affect removal efficiency for removal facility design of proper non-point pollution. In this research, mapping, vegetation coverage and retention time were investigated in the case of factors that affect removal efficiency in grassed swale, a nature-type non-point removal facility. Grassed swale obtained changed of coverage using Braun-Blanquet within swale and retention time was obtained from point that rainfall effluent enters into swale to the time that first outflow starts. Besides, correlation analysis was obtained using pearson correlation analysis method. As a result, it was shown that removal efficiency increases as retention time is longer in grassed swale and that retention time increases as vegetation coverage is higher.

Advanced Retention and Drainage Technology Offers Improved Performance and Operational Cost Savings

  • Freeman William L.
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2006.06b
    • /
    • pp.239-243
    • /
    • 2006
  • Papermaking has changed remarkably during the past 20 years, creating huge pressures on retention and drainage programs. During this time, technology has advanced from single PAM flocculants to inorganic microparticle-based programs and then to micropolymer-based programs. In today's evolving fine paper market, retention and drainage programs have to meet increased demands in many areas, such as increased speed, GAP formers, dilution headboxes, higher ash levels, reduced furnish quality, lower cost, and increased machine efficiency. Hercules recently introduced a new technology that offers performance and stability improvements and operational cost savings as compared to existing advanced technologies. $PerForm(R)$ SP Advanced Retention and Drainage Technology consists of a family of products based on a structured organic particulate that offers papermakers the ultimate flexibility for management of wet end chemistry. This paper compares $PerForm(R)$ SP Advanced Retention and Drainage Technology to inorganic microparticle and micropolymer technologies and provides multiple case histories on machines that demonstrate the benefits of the technology. In these case histories, the PerForm SP is shown to provide improved retention and drainage that results in improved performance and operational cost savings to the mill.

  • PDF

Evaluation Retention Performance of Phosphate-introduced Chemical Admixture Mortar in Extremly Hot Weather Condition (극서환경용 포스페이트 도입 화학혼화제 모르타르 특성 평가)

  • Ki, Jun-Do;Kim, Kwang-Ki;Kim, Jung-Jin;Park, Soon-Jeon;Kim, Jung-Sun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.11a
    • /
    • pp.96-97
    • /
    • 2017
  • Performances such as retention, setting time and strength generation of mortar with phosphate-introduced chemical admixture, domestic and foreign admixtures are evaluated to find one that meets over 3 hours retention in extremly hot weather condition in this study.

  • PDF

Memory retention of education regarding endotracheal and laryngeal tube intubation -A manikin study- (기관내삽관 및 후두튜브 삽관의 교육지속효과 -마네킨연구-)

  • Kim, Jung-Sun;Choi, Uk-Jin
    • The Korean Journal of Emergency Medical Services
    • /
    • v.20 no.3
    • /
    • pp.85-93
    • /
    • 2016
  • Purpose: The purpose of this study was to investigate the education retention effect of endotracheal and laryngeal tube intubation using a manikin study. Methods: The study consisted of measuring intubation time, intubation success rate, and confidence of intubation after education. The evaluation of the education was performed 2 weeks, 4 weeks, and 24 weeks after education and skill tests. The study subjects were 48 paramedic students of third and fourth grade. Results: There was no significant difference in endotracheal intubation time but the time spent performing laryngeal tube intubation significantly increased over time (p<.000). The intubation success rate of endotracheal and laryngeal tube intubation was 100% in the $24^{th}$ week, and there was no significant difference in time spent performing the intubation. The students' confidence in endotracheal (p<.023) and laryngeal tube intubation (p<.001) decreased significantly from the second week to the $24^{th}$ week. Conclusion: This study revealed that it is necessary to spend at least 24 weeks to train students endotracheal and laryngeal intubation to improve the students' confidence in performance of intubation.

A Study on Refresh Time Improvement of DRAM using the MEDICI Simulator (MEDICI 시뮬레이터를 이용한 DRAM의 Refresh 시간 개선에 관한 연구)

  • 이용희;이천희
    • Journal of the Korea Society for Simulation
    • /
    • v.9 no.4
    • /
    • pp.51-58
    • /
    • 2000
  • The control of the data retention time is a main issue for realizing future high density dynamic random access memory. The novel junction process scheme in sub-micron DRAM cell with STI(Shallow Trench Isolation) has been investigated to improve the tail component in the retention time distribution which is of great importance in DRAM characteristics. In this' paper, we propose the new implantation scheme by gate-related ion beam shadowing effect and buffer-enhanced ${\Delta}Rp$ (projected standard deviation) increase using buffered N-implantation with tilt and 4X(4 times)-rotation that is designed on the basis of the local-field-enhancement model of the tail component. We report an excellent tail improvement of the retention time distribution attributed to the reduction of electric field across the cell junction due to the redistribution of N-concentration which is Intentionally caused by ion Beam Shadowing and Buffering Effect using tilt implantation with 4X-rotation. And also, we suggest the least requirements for adoption of this new implantation scheme and the method to optimize the key parameters such as tilt angle, rotation number, Rp compensation and Nd/Na ratio. We used MEDICI Simulator to confirm the junction device characteristics. And measured the refresh time using the ADVAN Probe tester.

  • PDF

Data Retention Time and Electrical Characteristics of Cell Transistor According to STI Materials in 90 nm DRAM

  • Shin, S.H.;Lee, S.H.;Kim, Y.S.;Heo, J.H.;Bae, D.I.;Hong, S.H.;Park, S.H.;Lee, J.W.;Lee, J.G.;Oh, J.H.;Kim, M.S.;Cho, C.H.;Chung, T.Y.;Kim, Ki-Nam
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.3 no.2
    • /
    • pp.69-75
    • /
    • 2003
  • Cell transistor and data retention time characteristics were studied in 90 nm design rule 512M-bit DRAM, for the first time. And, the characteristics of cell transistor are investigated for different STI gap-fill materials. HDP oxide with high compressive stress increases the threshold voltage of cell transistor, whereas the P-SOG oxide with small stress decreases the threshold voltage of cell transistor. Stress between silicon and gap-fill oxide material is found to be the major cause of the shift of the cell transistor threshold voltage. If high stress material is used for STI gap fill, channel-doping concentration can be reduced, so that cell junction leakage current is decreased and data retention time is increased.

The Study of Time Phased Reorder Models for Non-Instaneous Receipt with Learning Effect (수시접수 및 학습효과를 고려한 기간별 재발주 모형에 관한 연구)

  • 남호기
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.19 no.40
    • /
    • pp.321-327
    • /
    • 1996
  • Time phased reorder models for non-instaneous receipt was Presented in a recent paper [l]. This paper extends the models under learning effects and learning retention after breaks. The result of this model show that learning and learning retention significantly influence the amount of inventory and production lot size. Sample example demonstrate the application of the proposed methodology.

  • PDF