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Abstract— Cell transistor and data retention time
characteristics were studied in 90 nm design rule
512M-bit DRAM, for the first time. And, the
characteristics of cell transistor are investigated for
different ST1 gap-fill materials. HDP oxide with high
compressive stress increases the threshold voltage of
cell transistor, whereas the P-SOG oxide with small
stress decreases the threshold voltage of cell transistor.
Stress between silicon and gap-fill oxide material is
found to be the major cause of the shift of the cell
transistor threshold voltage. If high stress material is
used for STI gap fill, channel-doping concentration
can be reduced, so that cell junction leakage current
is decreased and data retention time is increased.

Index Terms— Data retention time, shallow trench
isolation (STI), cell transistor, STI material, junction
leakage current channel doping, DRAM

I. INTRODUCTION

As the density of dynamic random access memory
(DRAM) enters into the giga-bit era, it is essential for
design rule to be scale down below sub-100 nm [1]. As
design rule shrinks more down, short channel effect
(SCE) increases and various device characteristics such
as sub-threshold current and swing degrades [2]. The

most critical issue is the decrease of threshold voltage
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and increase of sub-threshold current. Therefore the
channel doping concentration should be increased in
order to suppress short channel effects and minimize the
sub-threshold leakage current. But high doping level
leads to increase junction leakage current. After all, it
will decrease retention time.

Recently, data retention time nearly doubles with each
successive generation due to the need for high density,
high speed and low power DRAMs [3]. The electric field
in memory cell’s storage node junction boundary is
becoming stronger and leakage current has been
increasing with each generation, resulting in poor
retention characteristics. Retention time is projected to
be an even more serious problem.

Process integration with design rule of sub-100nm,
has a lot of problems. One of the serious problems in
sub-100 nm process is shallow trench isolation (STI)
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gap-fill process. Fig. 1 shows STI aspect ratio according
to technology generation. To fill STI gap with high
aspect ratio, multi-step deposition of high-density
plasma (HDP) oxide or flowable oxide such as spin-on-
glass (SOG), O3-TEOS are required. In this study, we
used HDP oxide and poly-silazane (P)-SOG oxide as the
gap-fill material and they are compared in characteristics
of cell transistor. Behaviors of cell transistor’s threshold
voltage and junction leakage current are studied with
different gap-fill materials. And, data retention time is
also discussed.

II. FABRICATION PROCESS

Fig. 2 shows major process sequence for DRAM

fabrication. Process sequence is as following. First, the

® Active Patterning.

® Trench Etching.

® STI Gap Fill Process.

@ Cell Vith Ion Implantation.

® Gate (Poly + WSix) Patterning.
® S/D N- Ion Implantation.

® Gate Spacer & ILD1 Process.
® S/D Pad Formation

® BL Formation.

® Cap Process.

® Metal Formation.

Fig. 2. Major process sequences for fabrication of DRAM.

Fig. 3. Process flow for STI gap fill and schematics.
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Fig. 4. Vertical SEM photograph of finally STI gap fill
process using double HDP oxide (a) and P-SOG+HDP
structure (b) and (c).

Fig. 5. Top view (a) and vertical SEM photograph (b) after
gate etch of cell array region.

active region is defined on the silicon substrate by
photolithography and etching process. After trench
etching, sidewall oxidation and LPCVD Si3N4 liner was
deposited such as shown Fig.3. Sequentially, double
oxide layer process was used to make a void free STI
structure. First, gap-fill layer was either HDP oxide or P-
SOG oxide. Then proper amount of first oxide on active
Si3N4 mask was chemically removed by wet etching
process and exposed over-hang point around Si3N4
mask. In case of P-SOG oxide as the first oxide layer,
650 °C wet annealing was added to change the P-SOG
layer into stable SiO2 [4]. Finally, second HDP oxide
layer was deposited and chemical mechanical polishing
(CMP) was used to make a planar surface. Fig. 4 shows
cross-section of STI structure after deposition of gate
poly-silicon. STI with P-SOG+HDP process shows clear
wet boundary but STI with HDP+HDP process does not.
To study the effect of P-SOG oxide gap-fill amounts on
cell transistor’s behavior, wet etch time was split into
two conditions. After STI process, ion implant processes
were executed to form well and to control transistors
threshold voltage.

Dual gate oxide process was adopted to cover various
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Fig. 6. Cross-sectional SEM photographs of (a) word line
direction and (b) bit line direction in cell to core region.

performances of various transistors. For gate formation,
80-nm poly-silicon layer, 100-nm WSix layer, 180-nm
Si3N4 layer were deposited. Following photo process
and etching process defined gate patterns. Fig. 5 shows
top view and cross-sectional view of cell array transistor
after gate etching. Gate length of cell array with 512M-
bit density was about 95-nm. The source/drain extension
is formed by implantation. The gate spacer in formed
using Si3N4 layer. We deposit the interlayer dielectric
(ILD) and use CMP to form a flat surface of ILD in
order to provide a sufficient depth of focus (DOF)
margin for following photolithography process. The
source and drain regions of cell transistors are etched by
using a self-aligned contact (SAC) etching process, and
an N-type dopant is implanted through the SAC
openings, to reduce the contact resistance. The elevated
source and drain contact pads are formed by deposition
of doped poly-silicon, and the contact pads are separated
by using a CMP process After that, bit line process, cap
process and metal process are followed to complete the
DRAM as shown Fig. 6.

ITI. RESULTS AND DISCUSSION

Cell junction leakage current is composed of three
major components as shown Fig. 7. First one is channel
surface (i.e. Si-SiO2 interface) region induced leakage
current, ISUR. Second one is STI sidewall region
leakage current, ISTI. Third one is junction bulk
depletion leakage current, IBULK. As the design rule
shrinks, the thickness of gate oxide scales down to
compensate SCE and gated-induced drain leakage
(GIDL) current increases. GIDL is dependent on gate
etch and re-oxidation condition. This process dependent
GIDL current has a strong relation with data retention

time [5]. DC (bit-line contact) junction leakage current,

L,

Schematic cross-section view of three components in

Fig. 7.
the cell junction leakage current.

shown in Fig. 8, is sum of ISTI and IBULK leakage
current. This DC junction leakage is dependent on first
gap-fill material and increases with increased amount of
HDP oxide than that of P-SOG oxide. HDP oxide and P-
SOG oxide, both have compressive mechanical stress,
but P-SOG oxide has less stress than HDP oxide because
of its lower density. Fig. 9 shows shear stress
characteristics of using HDP oxide and P-SOG oxide
material. It is simulated by TSUPREM4. This less stress
on bulk silicon reduces leakage current. As the P-SOG
oxide amount in STI region increases, total stress on
bulk silicon is reduced and DC leakage current also
decreases. BC (storage node contact) junction leakage
current, which is shown in Fig. 8, is mostly composed of
ISUR. Accordingly, BC junction leakage current is not
changed for different STI gap-fill materials. ISUR is
dependent on Electric (E)-field in BC junction edge and
this E-field has little dependency with STI gap-fill
material. Fig. 10 shows E-field contour simulation result
with following bias condition Vds=3.5 V, Vbb=-0.7 V,
Vgs=0 V. The simulation shows largest E-field value
under gate edge and this value increases as deign rule
scales down. With increased E-field, BC leakage current
will increase and data retention time will decrease. For
longer data retention time, channel and source/drain
junction structure should be optimize as design rule
decreases and it is not going to be further discussed in
this paper.

Threshold voltage of cell transistor is dependent on
STI gap-fill materials and P-SOG oxide volume. If STI
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Fig. 8. Comparison of cell DC(a) and BC(b) junction leakage current according to STI gap fills material and P-SOG thickness
at same dose.

Fig. 9. Simulation shear stress contour of (a) STI HDP and (b) STI HDP+P-SOG.

Fig. 10. E-field simulation with cell transistor at Vds=3.5 V, Vbb=0.7 V and Vgs=0 V. (a) E-field contours, (b) cross-
sectional view of E-field magnitude.

gap is filled only with HDP oxide, threshold voltage of enhancing out-diffusion of boron, channel dopant, during

cell transistor is largest. And threshold voltage decreases following heat process such as gate oxidation or re-
as P-SOG oxide amount increases. If P-SOG oxide oxidation. With same channel ion implant dose, the
amount in STI region increases, stress in bulk silicon larger volume of P-SOG oxide decreases the threshold

decreases. And this less stress in silicon is helpful for voltage of cell transistor. Oxide with larger stress, such
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as HDP oxide, in STI region will increase threshold
voltage of cell transistor for same ion implant dose, as
shown Fig. 11.

Consequently, channel ion implant dose amount can
be decreased to achieve target threshold voltage. And
less channel ion implant dose will decrease defect
density in junction boundary of cell transistor and
thereby increase data retention time in DRAM [6]. Fig.
12 shows data retention time with same cell transistor
threshold voltage. Compared with P-SOG oxide filled
STI, HDP oxide filled STI needs smaller amount of

channel ion implant to have same threshold voltage level.

Consequently, this cell transistor has longer data

retention time.

V1. CONCLUSION

Data retention time of 90 nm cell transistor with
512M-bit density DRAM can be improved with HDP
oxide gap-fill in STI region. If STI region is filled with
larger stress oxide, cell transistor threshold voltage is
increased and channel ion implant dose can be reduced
to achieve target threshold voltage. This less channel
dose will increase data retention time.
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