• Title/Summary/Keyword: Q polynomials

Search Result 206, Processing Time 0.022 seconds

SYMMETRIC IDENTITIES FOR DEGENERATE CARLITZ-TYPE q-EULER NUMBERS AND POLYNOMIALS

  • RYOO, CHEON SEOUNG
    • Journal of applied mathematics & informatics
    • /
    • v.37 no.3_4
    • /
    • pp.259-270
    • /
    • 2019
  • In this paper we define the degenerate Carlitz-type q-Euler polynomials by generalizing the degenerate Euler numbers and polynomials, degenerate Carlitz-type Euler numbers and polynomials. We also give some interesting properties, explicit formulas, a connection with degenerate Carlitz-type q-Euler numbers and polynomials.

$q$-EXTENSION OF A GENERALIZATION OF GOTTLIEB POLYNOMIALS IN TWO VARIABLES

  • Choi, Junesang
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.25 no.2
    • /
    • pp.253-265
    • /
    • 2012
  • Gottlieb polynomials were introduced and investigated in 1938, and then have been cited in several articles. Very recently Khan and Akhlaq introduced and investigated Gottlieb polynomials in two and three variables to give their generating functions. Subse- quently, Khan and Asif investigated the generating functions for the $q$-analogue of Gottlieb polynomials. Also, by modifying Khan and Akhlaq's method, Choi presented a generalization of the Gottlieb polynomials in $m$ variables to give two generating functions of the generalized Gottlieb polynomials ${\varphi}_{n}^{m}(\cdot)$. Here, we aim at defining a $q$-extension of the generalized two variable Gottlieb polynomials ${\varphi}_{n}^{2}(\cdot)$ and presenting their several generating functions.

CERTAIN RESULTS ON THE q-GENOCCHI NUMBERS AND POLYNOMIALS

  • Seo, Jong Jin
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.26 no.1
    • /
    • pp.231-242
    • /
    • 2013
  • In this work, we deal with $q$-Genocchi numbers and polynomials. We derive not only new but also interesting properties of the $q$-Genocchi numbers and polynomials. Also, we give Cauchy-type integral formula of the $q$-Genocchi polynomials and derive distribution formula for the $q$-Genocchi polynomials. In the final part, we introduce a definition of $q$-Zeta-type function which is interpolation function of the $q$-Genocchi polynomials at negative integers which we express in the present paper.

SYMMETRIC IDENTITIES INVOLVING THE MODIFIED (p, q)-HURWITZ EULER ZETA FUNCTION

  • KIM, A HYUN;AN, CHAE KYEONG;LEE, HUI YOUNG
    • Journal of applied mathematics & informatics
    • /
    • v.36 no.5_6
    • /
    • pp.555-565
    • /
    • 2018
  • The main subject of this paper is to introduce the (p, q)-Euler polynomials and obtain several interesting symmetric properties of the modified (p, q)-Hurwitz Euler Zeta function with regard to (p, q) Euler polynomials. In order to get symmetric properties, we introduce the new (p, q)-analogue of Euler polynomials $E_{n,p,q}(x)$ and numbers $E_{n,p,q}$.

ON FULLY MODIFIED q-POLY-EULER NUMBERS AND POLYNOMIALS

  • C.S. RYOO
    • Journal of Applied and Pure Mathematics
    • /
    • v.6 no.1_2
    • /
    • pp.1-11
    • /
    • 2024
  • In this paper, we define a new fully modified q-poly-Euler numbers and polynomials of the first type by using q-polylogarithm function. We derive some identities of the modified polynomials with Gaussian binomial coefficients. We also explore several relations that are connected with the q-analogue of Stirling numbers of the second kind.

SOME PROPERTIES OF GENERALIZED q-POLY-EULER NUMBERS AND POLYNOMIALS WITH VARIABLE a

  • KIM, A HYUN
    • Journal of applied mathematics & informatics
    • /
    • v.38 no.1_2
    • /
    • pp.133-144
    • /
    • 2020
  • In this paper, we discuss generalized q-poly-Euler numbers and polynomials. To do so, we define generalized q-poly-Euler polynomials with variable a and investigate its identities. We also represent generalized q-poly-Euler polynomials E(k)n,q(x; a) using Stirling numbers of the second kind. So we explore the relation between generalized q-poly-Euler polynomials and Stirling numbers of the second kind through it. At the end, we provide symmetric properties related to generalized q-poly-Euler polynomials using alternating power sum.

q-DEDEKIND-TYPE DAEHEE-CHANGHEE SUMS WITH WEIGHT α ASSOCIATED WITH MODIFIED q-EULER POLYNOMIALS WITH WEIGHT α

  • Seo, Jong Jin;Araci, Serkan;Acikgoz, Mehmet
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.27 no.1
    • /
    • pp.1-8
    • /
    • 2014
  • Recently, q-Dedekind-type sums related to q-Euler polynomials was studied by Kim in [T. Kim, Note on q-Dedekind-type sums related to q-Euler polynomials, Glasgow Math. J. 54 (2012), 121-125]. It is aim of this paper to consider a p-adic continuous function for an odd prime to inside a p-adic q-analogue of the higher order Dedekind-type sums with weight related to modified q-Euler polynomials with weight by using Kim's p-adic q-integral.