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Abstract. In this paper, we give explicit identities for the degenerate q-
poly-tangent numbers and polynomials. Finally, we obtain the relation of

degenerate q-poly-tangent polynomials and Stirling numbers of the first

kind and Stirling numbers of the second kind.
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1. Introduction

Many mathematicians have studied in the area of the tangent numbers and
polynomials, poly-Bernoulli numbers and polynomials, poly-Euler numbers and
polynomials and special polynomials(see [1-12]). In this paper, we construct
degenerate q-poly-tangent polynomials and study some properties of the degen-
erate q-poly-tangent polynomials. We introduce the tangent polynomials Tn(x)
as follows: (

2

e2t + 1

)
ext =

∞∑
n=0

Tn(x)
tn

n!
.

In the special case, x = 0, Tn(0) = Tn are called the n-th tangent numbers(see
[8]). We remember that the classical Stirling numbers of the first kind S1(n, k)
and S2(n, k) are defined by the relations(see [12])

(x)n =

n∑
k=0

S1(n, k)x
k and xn =

n∑
k=0

S2(n, k)(x)k,
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respectively. Here (x)n = x(x − 1) · · · (x − n + 1) denotes the falling factorial
polynomial of order n. The numbers S2(n,m) also admit a representation in
terms of a generating function

(et − 1)m = m!

∞∑
n=m

S2(n,m)
tn

n!
.

We also have

m!

∞∑
n=m

S1(n,m)
tn

n!
= (log(1 + t))m.

We also need the binomial theorem: for a variable x,

1

(1− t)c
=

∞∑
n=0

(
c+ n− 1

n

)
tn.

The generalized falling factorial (x|λ)n with increment λ is defined by

(x|λ)n =

n−1∏
k=0

(x− λk)

with the convention (x |λ)0 = 1. We also need the binomial theorem: for a
variable x,

(1 + λt)x/λ =

∞∑
n=0

(x|λ)n
tn

n!
.

The degenerate tangent polynomials Tn(x;λ) were introduced by Ryoo [9] by
using the following generating function

2

(1 + λt)2/λ + 1
(1 + λt)x/λ =

∞∑
n=0

Tn(x;λ)
tn

n!
.

The degenerate poly-tangent polynomials T (k)
n (x, λ) were introduced by Ryoo

and Agarwal [1, 6] by using the following generating function

2Lik(1− e−t)

(1 + λt)2/λ + 1
(1 + λt)x/λ =

∞∑
n=0

T (k)
n (x, λ)

tn

n!
, (k ∈ Z),

where

Lik(t) =

∞∑
n=1

tn

nk

is the kth polylogarithm function. When x = 0, T (k)
n (0, λ) = T (k)

n (λ) are called
the degenerate poly-tangent numbers. Upon setting k = 1, we have

T (1)
n (x, λ) = nTn−1(x;λ) for n ≥ 1.
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2. Explicit identities for degenerate q-poly-tangent polynomials

In this section, we introduce degenerate q-poly-tangent polynomials. Also,
we show a diagram to confirm the structure. In addition, we explore some
properties related to degenerate q-poly-tangent polynomials, including addition
formula and explicit formula.

Definition 2.1. For any integer k and 0 < q < 1, degenerate q-poly-tangent

polynomials T
(k)
n,q (x;λ) are defined as the following generating function

2Lik,q(1− e−t)

t
(
(1 + λt)

2
λ + 1

) (1 + λt)
x
λ =

∞∑
n=0

T (k)
n,q (x;λ)

tn

n!
,

where Lik,q(t) =

∞∑
n=1

tn

[n]kq
is k-th q-analogue of polylogarithm function.

T
(k)
n,q (λ) = T

(k)
n,q (0;λ) are called degenerate q-poly-tangent numbers when x =

0. If we set k = 1 in Definition 2.1, then the degenerate q-poly-tangent polyno-
mials are reduced to classical tangent polynomials as q → 1 and λ → 0 because
of lim

q→1
Li1,q(1− e−t) = t and lim

λ→0
(1 + λt)

1
λ = et. That is,

lim
q→1
λ→0

T (1)
n,q(x;λ) = Tn(x).

Theorem 2.2. For any integer k and a nonnegative integer n and m, we get

T (k)
n,q (mx; a) =

n∑
l=0

(
n

l

)
T

(k)
l,q (λ)mn−l

(
x | λ

m

)
n−l

.

Proof. From Definition 2.1, we have
∞∑

n=0

T (k)
n,q (mx;λ)

tn

n!
=

2Lik,q(1− e−t)

t
(
(1 + λt)

2
λ + 1

) (1 + λt)
mx
λ

=

( ∞∑
n=0

T (k)
n,q (λ)

tn

n!

)( ∞∑
n=0

(
mx |λ

)
n

tn

n!

)

=

∞∑
n=0

(
n∑

l=0

(
n

l

)
T

(k)
l,q (λ)mn−l

(
x | λ

m

)
n−l

)
tn

n!
.

(1)

Therefore, we finish the proof of Theorem 2.2 by comparing the coefficients of
tn

n! . □

If m = 1 in Theorem 2.2, then we get the following corollary.

Corollary 2.3. For any integer k and a nonnegative integer n, we have

T (k)
n,q (x;λ) =

n∑
l=0

(
n

l

)
T

(k)
l,q (λ)

(
x |λ

)
n−l

.



334 ChungHyun Yu

Theorem 2.4. For any integer k and a nonnegative integer n and m, we obtain

T (k)
n,q (mx;λ) =

n∑
l=0

(
n

l

)
T

(k)
l,q (x;λ) (m− 1)n−l

(
x | λ

m− 1

)
n−l

.

Proof. By utlizing Definition 2.1, we have

∞∑
n=0

T (k)
n,q (mx;λ)

tn

n!

=
2Lik,q(1− e−t)

t
(
(1 + λt)

2
λ + 1

) (1 + λt)
mx
λ

=

( ∞∑
n=0

T (k)
n,q (x;λ)

tn

n!

)( ∞∑
n=0

(
(m− 1)x |λ

)
n

tn

n!

)

=

∞∑
n=0

(
n∑

l=0

(
n

l

)
T

(k)
l,q (x;λ) (m− 1)n−l

(
x | λ

m− 1

)
n−l

)
tn

n!
.

(2)

Therefore, we end the proof by comparing the coefficients of tn

n! on both sides of
the above equation (2). □

As a result of Theorem 2.2 and Theorem 2.4, T
(k)
n,q (mx;λ) can be presented as

degenerate q-poly-tangent numbers and degenerate q-poly-tangent polynomials,
respectively.

Theorem 2.5. For any integer k and a nonnegative integer n, we get

T (k)
n,q (x+ y;λ) =

n∑
l=0

(
n

l

)
T

(k)
l,q (x;λ)

(
y |λ

)
n−l

.

Proof. Proof is omitted since it is a similar method of Theorem 2.4. □

Theorem 2.6. For any integer k and a positive integer n, we have

T (k)
n,q (x+ 1;λ)− T (k)

n,q (x;λ) =

n−1∑
l=0

(
n

l

)
T

(k)
l,q (x;λ)

(
1 |λ

)
n−l

.
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Proof. By using Definition 2.1, we have

∞∑
n=0

T (k)
n,q (x+ 1;λ)

tn

n!
−

∞∑
n=0

T (k)
n,q (x;λ)

tn

n!

=
2Lik,q(1− e−t)

t
(
(1 + λt)

2
λ + 1

) (1 + λt)
x
λ

(
(1 + λt)

1
λ − 1

)

=

( ∞∑
n=0

T (k)
n,q (x;λ)

tn

n!

)( ∞∑
n=0

(
1 |λ

)
n

tn

n!
− 1

)

=
∞∑

n=1

(
n−1∑
l=0

(
n

l

)
T

(k)
l,q (x;λ)

(
1 |λ

)
n−l

)
tn

n!
.

(3)

Then we compare the coefficients of tn

n! for n ≥ 1. The reason both sides of

the above equation (3) can be compared the coefficients is that T
(k)
0,q (x+ 1;λ)−

T
(k)
0,q (x;λ) = 0. Thus, the proof is done. □

Theorem 2.7. For any integer k and a nonnegative integer n, we get

nT
(k)
n−1,q(x;λ) =

∞∑
l=0

l+1∑
i=0

n∑
m=0

(
l + 1

i

)(
n

m

)
(−1)i+mim

[l + 1]kq
Tn−m(x;λ),

where Tn(x;λ) is degenerate tangent polynomials.

Proof. By using Definition 2.1, we have

∞∑
n=0

T (k)
n,q (x;λ)

tn

n!

=
2Lik,q(1− e−t)

t
(
(1 + λt)

2
λ + 1

) (1 + λt)
x
λ

=
1

t

∞∑
l=1

(1− e−t)l

[l]kq

2

(1 + λt)
2
λ + 1

(1 + λt)
x
λ

=
1

t

( ∞∑
n=0

∞∑
l=0

l+1∑
i=0

(
l + 1

i

)
(−1)i+nin

[l + 1]kq

tn

n!

)( ∞∑
n=0

Tn(x;λ)
tn

n!

)

=
1

t

∞∑
n=0

( ∞∑
l=0

l+1∑
i=0

n∑
m=0

(
l + 1

i

)(
n

m

)
(−1)i+mim

[l + 1]kq
Tn−m(x;λ)

)
tn

n!
.

(4)

Because of the identity
∑∞

n=0 T
(k)
n,q (x;λ)

tn+1

n! =
∑∞

n=0 nT
(k)
n−1,q(x;λ)

tn

n! , we multi-

ply both sides of the above equation (4) by t and compare the coefficients of tn

n! .
Hence, we end the proof. □
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Theorem 2.8. For any integer k and a positive integer n, we obtain

nT
(k)
n−1,q(x;λ)

= 2

∞∑
l=0

l∑
j=0

j+1∑
i=0

n∑
m=0

(
j + 1

i

)(
n

m

)
(−1)l−j+i+mim

[j + 1]kq

(
2l − 2j + x |λ

)
n−m

.

Proof. From Definition 2.1, we have

∞∑
n=0

T (k)
n,q (x;λ)

tn

n!

=
2Lik,q(1− e−t)

t
(
(1 + λt)

2
λ + 1

) (1 + λt)
x
λ

=
2

t

( ∞∑
l=0

(1− e−t)l+1

[l + 1]kq

)( ∞∑
j=0

(−1)j(1 + λt)
2j+x

λ

)

=
2

t

∞∑
l=0

l∑
j=0

(1− e−t)j+1

[j + 1]kq
(−1)l−j(1 + λt)

2l−2j+x
λ

=
2

t

∞∑
l=0

l∑
j=0

(−1)l−j

[j + 1]kq

j+1∑
i=0

(
j + 1

i

)
(−1)i

×

( ∞∑
m=0

(−1)mim
tn

n!

)( ∞∑
n=0

(
2l − 2j + x |λ

)
n

tn

n!

)

=
2

t

∞∑
n=0

 ∞∑
l=0

l∑
j=0

j+1∑
i=0

n∑
m=0

(
j + 1

i

)(
n

m

)

× (−1)l−j+i+mim

[j + 1]kq

(
2l − 2j + x |λ

)
n−m

)
tn

n
.

(5)

If we multiply both sides of the above equation (5) by t, then we can compare the

coefficients. The reason is that
∑∞

n=0 T
(k)
n,q (x;λ)

tn+1

n! =
∑∞

n=0 nT
(k)
n−1,q(x;λ)

tn

n! .
Therefore, the proof is done. □

3. Relation between degenerate q-poly-tangent polynomials and
Stirling numbers of the first kind and Stirling numbers of the

second kind

In this section, we obtain the relation of degenerate q-poly-tangent polyno-
mials and Stirling numbers of the first kind and Stirling numbers of the second
kind.
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Theorem 3.1. For any integer k and a nonnegative integer n, we get

T (k)
n,q (x;λ) =

l∑
m=0

n∑
l=0

(
n

l

)
T

(k)
n−l,q(λ)x

mλl−mS1(l,m),

where S1(l,m) is Stirling numbers of the first kind.

Proof. By using Definition 2.1, we have
∞∑

n=0

T (k)
n,q (x;λ)

tn

n!

=
2Lik,q(1− e−t)

t
(
(1 + λt)

2
λ + 1

) (1 + λt)
x
λ

=

( ∞∑
n=0

T (k)
n,q (λ)

tn

n!

)( ∞∑
m=0

(x
λ

)m (log(1 + λt))m

m!

)

=

∞∑
n=0

(
n∑

l=0

l∑
m=0

(
n

l

)
T

(k)
n−l,q(λ)x

mλl−mS1(l,m)

)
tn

n!

(6)

In equation (6), the reason equation
∑∞

n=0

∑∞
l=0 S1(n, l) =

∑∞
n=0

∑n
l=0 S1(n, l)

can be satisfied is that S1(n, l) = 0 when n < l. Thus, the proof is done by com-

paring the coefficients of tn

n! . □

Theorem 3.2. For any integer k and a nonnegative integer n, we get

T (k)
n,q (x;λ) =

n∑
l=0

l+1∑
m=1

(
n

l

)
(−1)l+m+1m!

[m]kq

S2(l + 1,m)

l + 1
Tn−l(x;λ),

where Tn(x;λ) is degenerate tangent polynomials.

Proof. By utilizing Definition 2.1, we have
∞∑

n=0

T (k)
n,q (x;λ)

tn

n!

=
1

t

∞∑
m=1

(−1)mm!

[m]kq

(e−t − 1)m

m!

2

(1 + λt)
2
λ + 1

(1 + λt)
x
λ

=
1

t

∞∑
n=1

n∑
m=1

(−1)n+m m!

[m]kq
S2(n,m)

tn

n!

2

(1 + λt)
2
λ + 1

(1 + λt)
x
λ

=

( ∞∑
n=0

n+1∑
m=1

(−1)n+m+1m!

[m]kq

S2(n+ 1,m)

n+ 1

tn

n!

)( ∞∑
n=0

Tn(x;λ)
tn

n!

)

=

∞∑
n=0

(
n∑

l=0

l+1∑
m=1

(
n

l

)
(−1)l+m+1m!

[m]kq

S2(l + 1,m)

l + 1
Tn−l(x;λ)

)
tn

n!
.

(7)
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In equation (7), the reason equation

∞∑
n=0

∞∑
l=1

S2(n, l) =

∞∑
n=1

n∑
l=1

S2(n, l)

can be satisfied is that S2(n, l) = 0 when n < l. Thus, the proof is done by

comparing the coefficients of tn

n! . □

Theorem 3.3. For any integer k and a positive integer n, we obtain

T (k)
n,q (x;λ)

= 2

∞∑
j=0

n∑
l=0

l+1∑
m=1

(
n

l

)
(−1)l+m+j+1m!

[m]kq

S2(l + 1,m)

l + 1

(
2l − 2j + x |λ

)
n−l

.

Proof. From Definition 2.1, we have

∞∑
n=0

T (k)
n,q (x;λ)

tn

n!

=
2

t

( ∞∑
l=0

(1− e−t)l+1

[l + 1]kq

)( ∞∑
j=0

(−1)j(1 + λt)
2j+x

λ

)

=
2

t

( ∞∑
n=1

n∑
m=1

(−1)n+m m!

[m]kq
S2(n,m)

tn

n!

)

×

( ∞∑
j=0

(−1)j
∞∑

n=0

(
2l − 2j + x |λ

)
n

tn

n!

)

=
2

t

∞∑
n=0

 ∞∑
j=0

n∑
l=0

l+1∑
m=1

(
n

l

)
(−1)l+m+j+1m!

[m]kq

× S2(l + 1,m)

l + 1

(
2l − 2j + x |λ

)
n−l

)
tn

n!
.

(8)

Thus, we finish the proof by comparing the coefficients of tn

n! . □

Theorem 3.4. For any integer k and a nonnegative integer n, we obtain

T
(k)
n−1,q(x+ 2;λ) + T

(k)
n−1,q(x;λ)

=
2

n

n∑
l=0

l+1∑
m=1

(
n

l

)
(−1)l+m+1m!

[m]kq

S2(l + 1,m)

l + 1
(x |λ)n−l.
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Proof. By using Definition 2.1, we have
∞∑

n=0

T (k)
n,q (x+ 2;λ)

tn

n!
+

∞∑
n=0

T (k)
n,q (x;λ)

tn

n!

=
2Lik,q(1− e−t)

t
(
(1 + λt)

2
λ + 1

) (1 + λt)
x
λ

(
(1 + λt)

2
λ + 1

)

=
2

t

∞∑
m=1

(−1)m m!

[m]kq

(e−t − 1)m

m!

∞∑
n=0

(x |λ)n
tn

n!

=
2

t

( ∞∑
n=0

n+1∑
m=1

(−1)n+m+1m!

[m]kq
S2(n+ 1,m)

tn

n!

)( ∞∑
n=0

(x |λ)n
tn

n!

)

=
2

t

∞∑
n=0

(
n∑

l=0

l+1∑
m=1

(
n

l

)
(−1)l+m+1m!

[m]kq

S2(l + 1,m)

l + 1
(x |λ)n−l

)
tn

n!
.

(9)

Let us multiply both sides of the above equation (9) by t. Then we can com-

pare the coefficients of tn

n! because of the identity
∑∞

n=0 T
(k)
n,q (x + 2;λ) t

n+1

n! +∑∞
n=0 T

(k)
n,q (x;λ)

tn+1

n! =
∑∞

n=0 nT
(k)
n−1,q(x+ 2;λ) t

n

n! +
∑∞

n=0

nT
(k)
n−1,q(x;λ)

tn

n! . Hence, we end the proof. □

4. Zeros of the degenerate q-poly-tangent polynomials

This section aims to demonstrate the benefit of using numerical investigation
to support theoretical prediction and to discover new interesting pattern of the

zeros of the degenerate q-poly-tangent polynomials T
(k)
n,q (x, λ) . The degenerate

q-poly-tangent polynomials T
(k)
n,q (x, λ) can be determined explicitly. A few of

them are

T
(k)
1,q (x, λ) =

3

2
+

(
1− q2

1− q

)−k

+ x,

T
(k)
2,q (x, λ) =

4

3
− 4

(
1− q2

1− q

)−k

+ 2

(
1− q3

1− q

)−k

− 3x+ 2

(
1− q2

1− q

)−k

x

+ x2 + λ− xλ,

T
(k)
3,q (x, λ) =

3

4
+

19

2

(
1− q2

1− q

)−k

− 15

(
1− q3

1− q

)−k

+ 6

(
1− q4

1− q

)−k

+ 4x

− 12

(
1− q2

1− q

)−k

x+ 6

(
1− q3

1− q

)−k

x− 9x2

2
+ 3

(
1− q2

1− q

)−k

x2 + x3

− 3λ

2
+ 3

(
1− q2

1− q

)−k

λ+
15xλ

2
− 3

(
1− q2

1− q

)−k

xλ− 3x2λ− 2λ2 + 2xλ2
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We investigate the beautiful zeros of the degenerate q-poly-tangent polyno-

mials T
(k)
n,q (x, λ) by using a computer. We plot the zeros of the degenerate

q-poly-tangent polynomials T
(k)
n,q (x, λ) for n = 30(Figure 1). In Figure 1(top-

-20 -10 0 10 20
-20

-10

0

10

20

Re(x)

Im(x)

-20 -10 0 10 20
-20

-10

0

10

20

Re(x)

Im(x)

-20 -10 0 10 20
-20

-10

0

10

20

Re(x)

Im(x)

-20 -10 0 10 20
-20

-10

0

10

20

Re(x)

Im(x)

Figure 1. Zeros of T
(k,S)
n (x, y)

left), we choose n = 30, k = 3, q = 1
2 and λ = 1

3 . In Figure 1(top-right),

we choose n = 30, k = 3, q = 1
2 and λ = 1

5 . In Figure 1(bottom-left), we

choose n = 30, k = 3, q = 1
2 and λ = 1

7 . In Figure 1(bottom-right), we choose

n = 30, k = 3, q = 1
2 and λ = 1

9 .
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Stacks of zeros of T
(k)
n,q (x, λ) for 1 ≤ n ≤ 30 from a 3-D structure are pre-

sented(Figure 2). In Figure 2(top-left), we choose k = 3, q = 1
2 and λ = 1

3 . In

Figure 2. Stacks of zeros of T
(k)
n,q (x, λ) for 1 ≤ n ≤ 30

Figure 2(top-right), we choose k = 3, q = 1
2 and λ = 1

5 . In Figure 2(bottom-

left), we choose k = 3, q = 1
2 and λ = 1

7 . In Figure 2(bottom-right), we choose

k = 3, q = 1
2 and λ = 1

9 .
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Next, we calculated an approximate solution satisfying poly-sine tangent poly-

nomials T
(k)
n,q (x, λ) = 0 for x ∈ R. The results are given in Table 1.

Table 1. Approximate solutions of T
(3)

n, 12
(x, 1

3 ) = 0

degree n x

1 1.2037

2 0.35881, 2.3819

3 −0.24208, 1.5759, 3.2772

4 −0.62996, 0.72888, 2.7958, 3.9201

5 −0.75295, −0.11049, 1.8993

6 1.0659, 3.0533

7 0.23279, 2.2327, 4.1407

8 −0.55467, 1.3994, 3.4004, 5.0542

9 −1.0703, 0.56623, 2.5659, 4.5946, 5.6959

10 −1.3236, −0.26864, 1.7328, 3.7322

11 0.89956, 2.8995, 4.8948

12 0.066231, 2.0662, 4.0664, 6.0156
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