SOME PROPERTIES OF DEGENERATE q-POLY-TANGENT POLYNOMIALS

CHUNGHYUN YU

Abstract

In this paper, we give explicit identities for the degenerate q -poly-tangent numbers and polynomials. Finally, we obtain the relation of degenerate q-poly-tangent polynomials and Stirling numbers of the first kind and Stirling numbers of the second kind.

AMS Mathematics Subject Classification : 11B68, 11B73, 11B75. Key words and phrases : Tangent numbers and polynomials, degenerate tangent numbers and polynomials, degenerate poly tangent numbers and polynomials, degenerate q-poly-tangent numbers, degenerate q-polytangent polynomials, Stirling numbers.

1. Introduction

Many mathematicians have studied in the area of the tangent numbers and polynomials, poly-Bernoulli numbers and polynomials, poly-Euler numbers and polynomials and special polynomials(see [1-12]). In this paper, we construct degenerate q-poly-tangent polynomials and study some properties of the degenerate q-poly-tangent polynomials. We introduce the tangent polynomials $T_{n}(x)$ as follows:

$$
\left(\frac{2}{e^{2 t}+1}\right) e^{x t}=\sum_{n=0}^{\infty} T_{n}(x) \frac{t^{n}}{n!}
$$

In the special case, $x=0, T_{n}(0)=T_{n}$ are called the n-th tangent numbers(see [8]). We remember that the classical Stirling numbers of the first kind $S_{1}(n, k)$ and $S_{2}(n, k)$ are defined by the relations(see [12])

$$
(x)_{n}=\sum_{k=0}^{n} S_{1}(n, k) x^{k} \text { and } x^{n}=\sum_{k=0}^{n} S_{2}(n, k)(x)_{k},
$$

[^0]respectively. Here $(x)_{n}=x(x-1) \cdots(x-n+1)$ denotes the falling factorial polynomial of order n. The numbers $S_{2}(n, m)$ also admit a representation in terms of a generating function
$$
\left(e^{t}-1\right)^{m}=m!\sum_{n=m}^{\infty} S_{2}(n, m) \frac{t^{n}}{n!}
$$

We also have

$$
m!\sum_{n=m}^{\infty} S_{1}(n, m) \frac{t^{n}}{n!}=(\log (1+t))^{m}
$$

We also need the binomial theorem: for a variable x,

$$
\frac{1}{(1-t)^{c}}=\sum_{n=0}^{\infty}\binom{c+n-1}{n} t^{n}
$$

The generalized falling factorial $(x \mid \lambda)_{n}$ with increment λ is defined by

$$
(x \mid \lambda)_{n}=\prod_{k=0}^{n-1}(x-\lambda k)
$$

with the convention $(x \mid \lambda)_{0}=1$. We also need the binomial theorem: for a variable x,

$$
(1+\lambda t)^{x / \lambda}=\sum_{n=0}^{\infty}(x \mid \lambda)_{n} \frac{t^{n}}{n!}
$$

The degenerate tangent polynomials $T_{n}(x ; \lambda)$ were introduced by Ryoo [9] by using the following generating function

$$
\frac{2}{(1+\lambda t)^{2 / \lambda}+1}(1+\lambda t)^{x / \lambda}=\sum_{n=0}^{\infty} T_{n}(x ; \lambda) \frac{t^{n}}{n!}
$$

The degenerate poly-tangent polynomials $\mathcal{T}_{n}^{(k)}(x, \lambda)$ were introduced by Ryoo and Agarwal $[1,6]$ by using the following generating function

$$
\frac{2 \operatorname{Li}_{k}\left(1-e^{-t}\right)}{(1+\lambda t)^{2 / \lambda}+1}(1+\lambda t)^{x / \lambda}=\sum_{n=0}^{\infty} \mathcal{T}_{n}^{(k)}(x, \lambda) \frac{t^{n}}{n!}, \quad(k \in \mathbb{Z})
$$

where

$$
\operatorname{Li}_{k}(t)=\sum_{n=1}^{\infty} \frac{t^{n}}{n^{k}}
$$

is the k th polylogarithm function. When $x=0, \mathcal{T}_{n}^{(k)}(0, \lambda)=\mathcal{T}_{n}^{(k)}(\lambda)$ are called the degenerate poly-tangent numbers. Upon setting $k=1$, we have

$$
\mathcal{T}_{n}^{(1)}(x, \lambda)=n T_{n-1}(x ; \lambda) \text { for } n \geq 1
$$

2. Explicit identities for degenerate q-poly-tangent polynomials

In this section, we introduce degenerate q-poly-tangent polynomials. Also, we show a diagram to confirm the structure. In addition, we explore some properties related to degenerate q-poly-tangent polynomials, including addition formula and explicit formula.

Definition 2.1. For any integer k and $0<q<1$, degenerate q-poly-tangent polynomials $T_{n, q}^{(k)}(x ; \lambda)$ are defined as the following generating function

$$
\frac{2 L i_{k, q}\left(1-e^{-t}\right)}{t\left((1+\lambda t)^{\frac{2}{\lambda}}+1\right)}(1+\lambda t)^{\frac{x}{\lambda}}=\sum_{n=0}^{\infty} T_{n, q}^{(k)}(x ; \lambda) \frac{t^{n}}{n!}
$$

where $L i_{k, q}(t)=\sum_{n=1}^{\infty} \frac{t^{n}}{[n]_{q}^{k}}$ is k-th q-analogue of polylogarithm function.
$T_{n, q}^{(k)}(\lambda)=T_{n, q}^{(k)}(0 ; \lambda)$ are called degenerate q-poly-tangent numbers when $x=$ 0 . If we set $k=1$ in Definition 2.1, then the degenerate q-poly-tangent polynomials are reduced to classical tangent polynomials as $q \rightarrow 1$ and $\lambda \rightarrow 0$ because of $\lim _{q \rightarrow 1} L i_{1, q}\left(1-e^{-t}\right)=t$ and $\lim _{\lambda \rightarrow 0}(1+\lambda t)^{\frac{1}{\lambda}}=e^{t}$. That is,

$$
\lim _{\substack{q \rightarrow 1 \\ \lambda \rightarrow 0}} T_{n, q}^{(1)}(x ; \lambda)=T_{n}(x) .
$$

Theorem 2.2. For any integer k and a nonnegative integer n and m, we get

$$
T_{n, q}^{(k)}(m x ; a)=\sum_{l=0}^{n}\binom{n}{l} T_{l, q}^{(k)}(\lambda) m^{n-l}\left(x \left\lvert\, \frac{\lambda}{m}\right.\right)_{n-l}
$$

Proof. From Definition 2.1, we have

$$
\begin{align*}
\sum_{n=0}^{\infty} T_{n, q}^{(k)}(m x ; \lambda) \frac{t^{n}}{n!} & =\frac{2 L i_{k, q}\left(1-e^{-t}\right)}{t\left((1+\lambda t)^{\frac{2}{\lambda}}+1\right)}(1+\lambda t)^{\frac{m x}{\lambda}} \\
& =\left(\sum_{n=0}^{\infty} T_{n, q}^{(k)}(\lambda) \frac{t^{n}}{n!}\right)\left(\sum_{n=0}^{\infty}(m x \mid \lambda)_{n} \frac{t^{n}}{n!}\right) \tag{1}\\
& =\sum_{n=0}^{\infty}\left(\sum_{l=0}^{n}\binom{n}{l} T_{l, q}^{(k)}(\lambda) m^{n-l}\left(x \left\lvert\, \frac{\lambda}{m}\right.\right)_{n-l}\right) \frac{t^{n}}{n!}
\end{align*}
$$

Therefore, we finish the proof of Theorem 2.2 by comparing the coefficients of $\frac{t^{n}}{n!}$.

If $m=1$ in Theorem 2.2, then we get the following corollary.
Corollary 2.3. For any integer k and a nonnegative integer n, we have

$$
T_{n, q}^{(k)}(x ; \lambda)=\sum_{l=0}^{n}\binom{n}{l} T_{l, q}^{(k)}(\lambda)(x \mid \lambda)_{n-l}
$$

Theorem 2.4. For any integer k and a nonnegative integer n and m, we obtain

$$
T_{n, q}^{(k)}(m x ; \lambda)=\sum_{l=0}^{n}\binom{n}{l} T_{l, q}^{(k)}(x ; \lambda)(m-1)^{n-l}\left(x \left\lvert\, \frac{\lambda}{m-1}\right.\right)_{n-l}
$$

Proof. By utlizing Definition 2.1, we have

$$
\begin{align*}
& \sum_{n=0}^{\infty} T_{n, q}^{(k)}(m x ; \lambda) \frac{t^{n}}{n!} \\
& =\frac{2 L i_{k, q}\left(1-e^{-t}\right)}{t\left((1+\lambda t)^{\frac{2}{\lambda}}+1\right)}(1+\lambda t)^{\frac{m x}{\lambda}} \\
& =\left(\sum_{n=0}^{\infty} T_{n, q}^{(k)}(x ; \lambda) \frac{t^{n}}{n!}\right)\left(\sum_{n=0}^{\infty}((m-1) x \mid \lambda)_{n} \frac{t^{n}}{n!}\right) \tag{2}\\
& =\sum_{n=0}^{\infty}\left(\sum_{l=0}^{n}\binom{n}{l} T_{l, q}^{(k)}(x ; \lambda)(m-1)^{n-l}\left(x \left\lvert\, \frac{\lambda}{m-1}\right.\right)_{n-l}\right) \frac{t^{n}}{n!}
\end{align*}
$$

Therefore, we end the proof by comparing the coefficients of $\frac{t^{n}}{n!}$ on both sides of the above equation (2).

As a result of Theorem 2.2 and Theorem 2.4, $T_{n, q}^{(k)}(m x ; \lambda)$ can be presented as degenerate q-poly-tangent numbers and degenerate q-poly-tangent polynomials, respectively.

Theorem 2.5. For any integer k and a nonnegative integer n, we get

$$
T_{n, q}^{(k)}(x+y ; \lambda)=\sum_{l=0}^{n}\binom{n}{l} T_{l, q}^{(k)}(x ; \lambda)(y \mid \lambda)_{n-l}
$$

Proof. Proof is omitted since it is a similar method of Theorem 2.4.

Theorem 2.6. For any integer k and a positive integer n, we have

$$
T_{n, q}^{(k)}(x+1 ; \lambda)-T_{n, q}^{(k)}(x ; \lambda)=\sum_{l=0}^{n-1}\binom{n}{l} T_{l, q}^{(k)}(x ; \lambda)(1 \mid \lambda)_{n-l}
$$

Proof. By using Definition 2.1, we have

$$
\begin{align*}
& \sum_{n=0}^{\infty} T_{n, q}^{(k)}(x+1 ; \lambda) \frac{t^{n}}{n!}-\sum_{n=0}^{\infty} T_{n, q}^{(k)}(x ; \lambda) \frac{t^{n}}{n!} \\
& =\frac{2 L i_{k, q}\left(1-e^{-t}\right)}{t\left((1+\lambda t)^{\frac{2}{\lambda}}+1\right)}(1+\lambda t)^{\frac{x}{\lambda}}\left((1+\lambda t)^{\frac{1}{\lambda}}-1\right) \\
& =\left(\sum_{n=0}^{\infty} T_{n, q}^{(k)}(x ; \lambda) \frac{t^{n}}{n!}\right)\left(\sum_{n=0}^{\infty}(1 \mid \lambda)_{n} \frac{t^{n}}{n!}-1\right) \tag{3}\\
& =\sum_{n=1}^{\infty}\left(\sum_{l=0}^{n-1}\binom{n}{l} T_{l, q}^{(k)}(x ; \lambda)(1 \mid \lambda)_{n-l}\right) \frac{t^{n}}{n!}
\end{align*}
$$

Then we compare the coefficients of $\frac{t^{n}}{n!}$ for $n \geq 1$. The reason both sides of the above equation (3) can be compared the coefficients is that $T_{0, q}^{(k)}(x+1 ; \lambda)-$ $T_{0, q}^{(k)}(x ; \lambda)=0$. Thus, the proof is done.

Theorem 2.7. For any integer k and a nonnegative integer n, we get

$$
n T_{n-1, q}^{(k)}(x ; \lambda)=\sum_{l=0}^{\infty} \sum_{i=0}^{l+1} \sum_{m=0}^{n}\binom{l+1}{i}\binom{n}{m} \frac{(-1)^{i+m} i^{m}}{[l+1]_{q}^{k}} T_{n-m}(x ; \lambda)
$$

where $T_{n}(x ; \lambda)$ is degenerate tangent polynomials.
Proof. By using Definition 2.1, we have

$$
\begin{align*}
& \sum_{n=0}^{\infty} T_{n, q}^{(k)}(x ; \lambda) \frac{t^{n}}{n!} \\
& =\frac{2 L i_{k, q}\left(1-e^{-t}\right)}{t\left((1+\lambda t)^{\frac{2}{\lambda}}+1\right)}(1+\lambda t)^{\frac{x}{\lambda}} \\
& =\frac{1}{t} \sum_{l=1}^{\infty} \frac{\left(1-e^{-t}\right)^{l}}{[l]_{q}^{k}} \frac{2}{(1+\lambda t)^{\frac{2}{\lambda}+1}}(1+\lambda t)^{\frac{x}{\lambda}} \tag{4}\\
& =\frac{1}{t}\left(\sum_{n=0}^{\infty} \sum_{l=0}^{\infty} \sum_{i=0}^{l+1}\binom{l+1}{i} \frac{(-1)^{i+n} i^{n}}{[l+1]_{q}^{k}} \frac{t^{n}}{n!}\right)\left(\sum_{n=0}^{\infty} T_{n}(x ; \lambda) \frac{t^{n}}{n!}\right) \\
& =\frac{1}{t} \sum_{n=0}^{\infty}\left(\sum_{l=0}^{\infty} \sum_{i=0}^{l+1} \sum_{m=0}^{n}\binom{l+1}{i}\binom{n}{m} \frac{(-1)^{i+m} i^{m}}{[l+1]_{q}^{k}} T_{n-m}(x ; \lambda)\right) \frac{t^{n}}{n!}
\end{align*}
$$

Because of the identity $\sum_{n=0}^{\infty} T_{n, q}^{(k)}(x ; \lambda) \frac{t^{n+1}}{n!}=\sum_{n=0}^{\infty} n T_{n-1, q}^{(k)}(x ; \lambda) \frac{t^{n}}{n!}$, we multiply both sides of the above equation (4) by t and compare the coefficients of $\frac{t^{n}}{n!}$. Hence, we end the proof.

Theorem 2.8. For any integer k and a positive integer n, we obtain

$$
\begin{aligned}
& n T_{n-1, q}^{(k)}(x ; \lambda) \\
& =2 \sum_{l=0}^{\infty} \sum_{j=0}^{l} \sum_{i=0}^{j+1} \sum_{m=0}^{n}\binom{j+1}{i}\binom{n}{m} \frac{(-1)^{l-j+i+m} i^{m}}{[j+1]_{q}^{k}}(2 l-2 j+x \mid \lambda)_{n-m}
\end{aligned}
$$

Proof. From Definition 2.1, we have

$$
\begin{align*}
& \sum_{n=0}^{\infty} T_{n, q}^{(k)}(x ; \lambda) \frac{t^{n}}{n!} \\
& =\frac{2 L i_{k, q}\left(1-e^{-t}\right)}{t\left((1+\lambda t)^{\frac{2}{\lambda}}+1\right)}(1+\lambda t)^{\frac{x}{\lambda}} \\
& =\frac{2}{t}\left(\sum_{l=0}^{\infty} \frac{\left(1-e^{-t}\right)^{l+1}}{[l+1]_{q}^{k}}\right)\left(\sum_{j=0}^{\infty}(-1)^{j}(1+\lambda t)^{\frac{2 j+x}{\lambda}}\right) \\
& =\frac{2}{t} \sum_{l=0}^{\infty} \sum_{j=0}^{l} \frac{\left(1-e^{-t}\right)^{j+1}}{[j+1]_{q}^{k}}(-1)^{l-j}(1+\lambda t)^{\frac{2 l-2 j+x}{\lambda}} \tag{5}\\
& =\frac{2}{t} \sum_{l=0}^{\infty} \sum_{j=0}^{l} \frac{(-1)^{l-j}}{[j+1]_{q}^{k}} \sum_{i=0}^{j+1}\binom{j+1}{i}(-1)^{i} \\
& \times\left(\sum_{m=0}^{\infty}(-1)^{m} i^{m} \frac{t^{n}}{n!}\right)\left(\sum_{n=0}^{\infty}(2 l-2 j+x \mid \lambda)_{n} \frac{t^{n}}{n!}\right) \\
& =\frac{2}{t} \sum_{n=0}^{\infty}\left(\sum_{l=0}^{\infty} \sum_{j=0}^{l} \sum_{i=0}^{j+1} \sum_{m=0}^{n}\binom{j+1}{i}\binom{n}{m}\right. \\
& \left.\times \frac{(-1)^{l-j+i+m} i^{m}}{[j+1]_{q}^{k}}(2 l-2 j+x \mid \lambda)_{n-m}\right) \frac{t^{n}}{n}
\end{align*}
$$

If we multiply both sides of the above equation (5) by t, then we can compare the coefficients. The reason is that $\sum_{n=0}^{\infty} T_{n, q}^{(k)}(x ; \lambda) \frac{t^{n+1}}{n!}=\sum_{n=0}^{\infty} n T_{n-1, q}^{(k)}(x ; \lambda) \frac{t^{n}}{n!}$. Therefore, the proof is done.

3. Relation between degenerate q-poly-tangent polynomials and Stirling numbers of the first kind and Stirling numbers of the second kind

In this section, we obtain the relation of degenerate q-poly-tangent polynomials and Stirling numbers of the first kind and Stirling numbers of the second kind.

Theorem 3.1. For any integer k and a nonnegative integer n, we get

$$
T_{n, q}^{(k)}(x ; \lambda)=\sum_{m=0}^{l} \sum_{l=0}^{n}\binom{n}{l} T_{n-l, q}^{(k)}(\lambda) x^{m} \lambda^{l-m} S_{1}(l, m)
$$

where $S_{1}(l, m)$ is Stirling numbers of the first kind.
Proof. By using Definition 2.1, we have

$$
\begin{align*}
& \sum_{n=0}^{\infty} T_{n, q}^{(k)}(x ; \lambda) \frac{t^{n}}{n!} \\
& =\frac{2 L i_{k, q}\left(1-e^{-t}\right)}{t\left((1+\lambda t)^{\frac{2}{\lambda}}+1\right)}(1+\lambda t)^{\frac{x}{\lambda}} \\
& =\left(\sum_{n=0}^{\infty} T_{n, q}^{(k)}(\lambda) \frac{t^{n}}{n!}\right)\left(\sum_{m=0}^{\infty}\left(\frac{x}{\lambda}\right)^{m} \frac{(\log (1+\lambda t))^{m}}{m!}\right) \tag{6}\\
& =\sum_{n=0}^{\infty}\left(\sum_{l=0}^{n} \sum_{m=0}^{l}\binom{n}{l} T_{n-l, q}^{(k)}(\lambda) x^{m} \lambda^{l-m} S_{1}(l, m)\right) \frac{t^{n}}{n!}
\end{align*}
$$

In equation (6), the reason equation $\sum_{n=0}^{\infty} \sum_{l=0}^{\infty} S_{1}(n, l)=\sum_{n=0}^{\infty} \sum_{l=0}^{n} S_{1}(n, l)$ can be satisfied is that $S_{1}(n, l)=0$ when $n<l$. Thus, the proof is done by comparing the coefficients of $\frac{t^{n}}{n!}$.

Theorem 3.2. For any integer k and a nonnegative integer n, we get

$$
T_{n, q}^{(k)}(x ; \lambda)=\sum_{l=0}^{n} \sum_{m=1}^{l+1}\binom{n}{l} \frac{(-1)^{l+m+1} m!}{[m]_{q}^{k}} \frac{S_{2}(l+1, m)}{l+1} T_{n-l}(x ; \lambda),
$$

where $T_{n}(x ; \lambda)$ is degenerate tangent polynomials.
Proof. By utilizing Definition 2.1, we have

$$
\begin{align*}
& \sum_{n=0}^{\infty} T_{n, q}^{(k)}(x ; \lambda) \frac{t^{n}}{n!} \\
& =\frac{1}{t} \sum_{m=1}^{\infty} \frac{(-1)^{m} m!}{[m]_{q}^{k}} \frac{\left(e^{-t}-1\right)^{m}}{m!} \frac{2}{(1+\lambda t)^{\frac{2}{\lambda}}+1}(1+\lambda t)^{\frac{x}{\lambda}} \\
& =\frac{1}{t} \sum_{n=1}^{\infty} \sum_{m=1}^{n} \frac{(-1)^{n+m} m!}{[m]_{q}^{k}} S_{2}(n, m) \frac{t^{n}}{n!} \frac{2}{(1+\lambda t)^{\frac{2}{\lambda}}+1}(1+\lambda t)^{\frac{x}{\lambda}} \tag{7}\\
& =\left(\sum_{n=0}^{\infty} \sum_{m=1}^{n+1} \frac{(-1)^{n+m+1} m!}{[m]_{q}^{k}} \frac{S_{2}(n+1, m)}{n+1} \frac{t^{n}}{n!}\right)\left(\sum_{n=0}^{\infty} T_{n}(x ; \lambda) \frac{t^{n}}{n!}\right) \\
& =\sum_{n=0}^{\infty}\left(\sum_{l=0}^{n} \sum_{m=1}^{l+1}\binom{n}{l} \frac{(-1)^{l+m+1} m!}{[m]_{q}^{k}} \frac{S_{2}(l+1, m)}{l+1} T_{n-l}(x ; \lambda)\right) \frac{t^{n}}{n!} .
\end{align*}
$$

In equation (7), the reason equation

$$
\sum_{n=0}^{\infty} \sum_{l=1}^{\infty} S_{2}(n, l)=\sum_{n=1}^{\infty} \sum_{l=1}^{n} S_{2}(n, l)
$$

can be satisfied is that $S_{2}(n, l)=0$ when $n<l$. Thus, the proof is done by comparing the coefficients of $\frac{t^{n}}{n!}$.

Theorem 3.3. For any integer k and a positive integer n, we obtain

$$
\begin{aligned}
& T_{n, q}^{(k)}(x ; \lambda) \\
& =2 \sum_{j=0}^{\infty} \sum_{l=0}^{n} \sum_{m=1}^{l+1}\binom{n}{l} \frac{(-1)^{l+m+j+1} m!}{[m]_{q}^{k}} \frac{S_{2}(l+1, m)}{l+1}(2 l-2 j+x \mid \lambda)_{n-l}
\end{aligned}
$$

Proof. From Definition 2.1, we have

$$
\begin{align*}
& \sum_{n=0}^{\infty} T_{n, q}^{(k)}(x ; \lambda) \frac{t^{n}}{n!} \\
& =\frac{2}{t}\left(\sum_{l=0}^{\infty} \frac{\left(1-e^{-t}\right)^{l+1}}{[l+1]_{q}^{k}}\right)\left(\sum_{j=0}^{\infty}(-1)^{j}(1+\lambda t)^{\frac{2 j+x}{\lambda}}\right) \\
& =\frac{2}{t}\left(\sum_{n=1}^{\infty} \sum_{m=1}^{n} \frac{(-1)^{n+m} m!}{[m]_{q}^{k}} S_{2}(n, m) \frac{t^{n}}{n!}\right) \\
& \times\left(\sum_{j=0}^{\infty}(-1)^{j} \sum_{n=0}^{\infty}(2 l-2 j+x \mid \lambda)_{n} \frac{t^{n}}{n!}\right) \tag{8}\\
& =\frac{2}{t} \sum_{n=0}^{\infty}\left(\sum_{j=0}^{\infty} \sum_{l=0}^{n} \sum_{m=1}^{l+1}\binom{n}{l} \frac{(-1)^{l+m+j+1} m!}{[m]_{q}^{k}}\right. \\
& \left.\times \frac{S_{2}(l+1, m)}{l+1}(2 l-2 j+x \mid \lambda)_{n-l}\right) \frac{t^{n}}{n!}
\end{align*}
$$

Thus, we finish the proof by comparing the coefficients of $\frac{t^{n}}{n!}$.

Theorem 3.4. For any integer k and a nonnegative integer n, we obtain

$$
\begin{aligned}
& T_{n-1, q}^{(k)}(x+2 ; \lambda)+T_{n-1, q}^{(k)}(x ; \lambda) \\
& =\frac{2}{n} \sum_{l=0}^{n} \sum_{m=1}^{l+1}\binom{n}{l} \frac{(-1)^{l+m+1} m!}{[m]_{q}^{k}} \frac{S_{2}(l+1, m)}{l+1}(x \mid \lambda)_{n-l} .
\end{aligned}
$$

Proof. By using Definition 2.1, we have

$$
\begin{align*}
& \sum_{n=0}^{\infty} T_{n, q}^{(k)}(x+2 ; \lambda) \frac{t^{n}}{n!}+\sum_{n=0}^{\infty} T_{n, q}^{(k)}(x ; \lambda) \frac{t^{n}}{n!} \\
& =\frac{2 L i_{k, q}\left(1-e^{-t}\right)}{t\left((1+\lambda t)^{\frac{2}{\lambda}}+1\right)}(1+\lambda t)^{\frac{x}{\lambda}}\left((1+\lambda t)^{\frac{2}{\lambda}}+1\right) \\
& =\frac{2}{t} \sum_{m=1}^{\infty} \frac{(-1)^{m} m!}{[m]_{q}^{k}} \frac{\left(e^{-t}-1\right)^{m}}{m!} \sum_{n=0}^{\infty}(x \mid \lambda)_{n} \frac{t^{n}}{n!} \tag{9}\\
& =\frac{2}{t}\left(\sum_{n=0}^{\infty} \sum_{m=1}^{n+1} \frac{(-1)^{n+m+1} m!}{[m]_{q}^{k}} S_{2}(n+1, m) \frac{t^{n}}{n!}\right)\left(\sum_{n=0}^{\infty}(x \mid \lambda)_{n} \frac{t^{n}}{n!}\right) \\
& =\frac{2}{t} \sum_{n=0}^{\infty}\left(\sum_{l=0}^{n} \sum_{m=1}^{l+1}\binom{n}{l} \frac{(-1)^{l+m+1} m!}{[m]_{q}^{k}} \frac{S_{2}(l+1, m)}{l+1}(x \mid \lambda)_{n-l}\right) \frac{t^{n}}{n!} .
\end{align*}
$$

Let us multiply both sides of the above equation (9) by t. Then we can compare the coefficients of $\frac{t^{n}}{n!}$ because of the identity $\sum_{n=0}^{\infty} T_{n, q}^{(k)}(x+2 ; \lambda) \frac{t^{n+1}}{n!}+$ $\sum_{n=0}^{\infty} T_{n, q}^{(k)}(x ; \lambda) \frac{t^{n+1}}{n!}=\sum_{n=0}^{\infty} n T_{n-1, q}^{(k)}(x+2 ; \lambda) \frac{t^{n}}{n!}+\sum_{n=0}^{\infty}$ $n T_{n-1, q}^{(k)}(x ; \lambda) \frac{t^{n}}{n!}$. Hence, we end the proof.

4. Zeros of the degenerate q-poly-tangent polynomials

This section aims to demonstrate the benefit of using numerical investigation to support theoretical prediction and to discover new interesting pattern of the zeros of the degenerate q-poly-tangent polynomials $T_{n, q}^{(k)}(x, \lambda)$. The degenerate q-poly-tangent polynomials $T_{n, q}^{(k)}(x, \lambda)$ can be determined explicitly. A few of them are

$$
\begin{aligned}
T_{1, q}^{(k)}(x, \lambda) & =\frac{3}{2}+\left(\frac{1-q^{2}}{1-q}\right)^{-k}+x \\
T_{2, q}^{(k)}(x, \lambda) & =\frac{4}{3}-4\left(\frac{1-q^{2}}{1-q}\right)^{-k}+2\left(\frac{1-q^{3}}{1-q}\right)^{-k}-3 x+2\left(\frac{1-q^{2}}{1-q}\right)^{-k} x \\
& +x^{2}+\lambda-x \lambda, \\
T_{3, q}^{(k)}(x, \lambda) & =\frac{3}{4}+\frac{19}{2}\left(\frac{1-q^{2}}{1-q}\right)^{-k}-15\left(\frac{1-q^{3}}{1-q}\right)^{-k}+6\left(\frac{1-q^{4}}{1-q}\right)^{-k}+4 x \\
& -12\left(\frac{1-q^{2}}{1-q}\right)^{-k} x+6\left(\frac{1-q^{3}}{1-q}\right)^{-k} x-\frac{9 x^{2}}{2}+3\left(\frac{1-q^{2}}{1-q}\right)^{-k} x^{2}+x^{3} \\
& -\frac{3 \lambda}{2}+3\left(\frac{1-q^{2}}{1-q}\right)^{-k} \lambda+\frac{15 x \lambda}{2}-3\left(\frac{1-q^{2}}{1-q}\right)^{-k} x \lambda-3 x^{2} \lambda-2 \lambda^{2}+2 x \lambda^{2}
\end{aligned}
$$

We investigate the beautiful zeros of the degenerate q-poly-tangent polynomials $T_{n, q}^{(k)}(x, \lambda)$ by using a computer. We plot the zeros of the degenerate q-poly-tangent polynomials $T_{n, q}^{(k)}(x, \lambda)$ for $n=30$ (Figure 1). In Figure 1(top-

Figure 1. Zeros of $T_{n}^{(k, S)}(x, y)$
left), we choose $n=30, k=3, q=\frac{1}{2}$ and $\lambda=\frac{1}{3}$. In Figure 1 (top-right), we choose $n=30, k=3, q=\frac{1}{2}$ and $\lambda=\frac{1}{5}$. In Figure 1(bottom-left), we choose $n=30, k=3, q=\frac{1}{2}$ and $\lambda=\frac{1}{7}$. In Figure 1(bottom-right), we choose $n=30, k=3, q=\frac{1}{2}$ and $\lambda=\frac{1}{9}$.

Stacks of zeros of $T_{n, q}^{(k)}(x, \lambda)$ for $1 \leq n \leq 30$ from a 3-D structure are presented(Figure 2). In Figure 2(top-left), we choose $k=3, q=\frac{1}{2}$ and $\lambda=\frac{1}{3}$. In

Figure 2. Stacks of zeros of $T_{n, q}^{(k)}(x, \lambda)$ for $1 \leq n \leq 30$
Figure 2(top-right), we choose $k=3, q=\frac{1}{2}$ and $\lambda=\frac{1}{5}$. In Figure 2(bottomleft), we choose $k=3, q=\frac{1}{2}$ and $\lambda=\frac{1}{7}$. In Figure 2(bottom-right), we choose $k=3, q=\frac{1}{2}$ and $\lambda=\frac{1}{9}$.

Next, we calculated an approximate solution satisfying poly-sine tangent polynomials $T_{n, q}^{(k)}(x, \lambda)=0$ for $x \in \mathbb{R}$. The results are given in Table 1.

Table 1. Approximate solutions of $T_{n, \frac{1}{2}}^{(3)}\left(x, \frac{1}{3}\right)=0$

degree n	x
1	1.2037
2	$0.35881, \quad 2.3819$
3	$-0.24208, \quad 1.5759, \quad 3.2772$
4	$-0.62996, \quad 0.72888, \quad 2.7958, \quad 3.9201$
5	$-0.75295, \quad-0.11049, \quad 1.8993$
6	$1.0659, \quad 3.0533$
7	$-0.55467, \quad 1.3994, \quad 3.4004, \quad 5.0542$
8	$-1.0703, \quad 0.56623, \quad 2.5659, \quad 4.5946, \quad 5.6959$
9	$-1.3236, \quad-0.26864, \quad 1.7328, \quad 3.7322$
10	$0.89956, \quad 2.8995, \quad 4.8948$
11	$0.066231, \quad 2.0662, \quad 4.0664, \quad 6.0156$
12	

Conflicts of interest : The author declares no conflict of interest.
Data availability : Not applicable
Acknowledgments : The numerical computations and graph of the distribution of roots in this paper were assisted by Prof. C.S. Ryoo. We would like to thank Prof. C.S. Ryoo for his assistance.

References

1. R.P. Agarwal and C.S. Ryoo, On degenerate poly-tangent numbers and polynomials and distribution of their zeros, J. Appl. \& Pure Math. 1 (2019), 141-155.
2. L.C. Andrews, Special Functions for Engineers and Applied Mathematicians, Macmillan Publishing Company, New York, 1985.
3. G.E. Andrews, R. Askey, R. Roy, Special Functions, Cambridge University Press, Cambridge, 1999.
4. K.N. Boyadzhiev, A series transformation formula and related polynomials, Internation Journal of Mathematics and Mathematical Sciences 2005:23 (2005), 3849-3866.
5. A. Erdelyi, W. Magnus, F. Oberhettinger, F.G. Tricomi, Higher Transcendental Functions, Vol 3., Krieger, New York, 1981.
6. C.S. Ryoo, R.P. Agarwal, Some identities involving q-poly-tangent numbers and polynomials and distribution of their zeros, Advances in Difference Equations 213 (2017). DOI 10.1186/s13662-017-1275-2
7. C.S. Ryoo, A numerical investigation on the structure of the zeros of the degenerate Eulertangent mixed-type polynomials, J. Nonlinear Sci. Appl. 10 (2017), 4474-4484.
8. C.S. Ryoo, A note on the tangent numbers and polynomials, Adv. Studies Theor. Phys. 7 (2013), 447-454.
9. C.S. Ryoo, Notes on degenerate tangent polynomials, Global Journal of Pure and Applied Mathematics 11 (2015), 3631-3637.
10. C.S. Ryoo, Some identities involving the generalized polynomials of derangements arising from differential equation, J. Appl. Math. \& Informatics 38 (2020), 159-173.
11. H. Shin, J. Zeng, The q-tangent and q-secant numbers via continued fractions, European J. Combin. 31 (2010), 1689-1705.
12. P.T. Young, Degenerate Bernoulli polynomials, generalized factorial sums, and their applications, Journal of Number Theory 128(2008), 738-758.

ChungHyun Yu received Ph.D. at Seoul National University. His research interests are mathematics education and special functions.
Department of Mathematics Education, Hannam University, Daejeon 34430, Korea.
e-mail: profyu@hnu.kr

[^0]: Received December 28, 2022. Revised February 7, 2023. Accepted February 25, 2023.
 (C) 2023 KSCAM.

