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Abstract. In this paper we construct the Carlitz’s type q-tangent num-
bers Tn,q and polynomials Tn,q(x). From these numbers and polynomials,

we establish some interesting identities and relations.
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1. Introduction

Many mathematicians have studied in the area of the Bernoulli numbers and
polynomials, Euler numbers and polynomials, Genocchi numbers and polyno-
mials, tangent numbers and polynomials(see [1-9]). In this paper, we define
(p, q)-analogue of tangent polynomials and numbers and study some properties
of the (p, q)-analogue of tangent polynomials and numbers.

Throughout this paper, we always make use of the following notations: N
denotes the set of natural numbers, Z+ = N∪{0} denotes the set of nonnegative
integers, Z−

0 = {0,−1,−2,−2, . . .} denotes the set of nonpositive integers, Z
denotes the set of integers, R denotes the set of real numbers, and C denotes the
set of complex numbers.

We remember that the classical tangent numbers Tn and tangent polynomials
Tn(x) are defined by the following generating functions(see [4])

2

e2t + 1
=

∞∑
n=0

Tn
tn

n!
, (|2t| < π). (1.1)
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and (
2

e2t + 1

)
ext =

∞∑
n=0

Tn(x)
tn

n!
, (|2t| < π). (1.2)

respectively.
Some interesting properties of the classical tangent numbers and polynomials

were first investigated by Ryoo[3, 4, 5]. Many kinds of of generalizations of
these polynomials and numbers have been presented in the literature(see [3, 4,
5]). The q-number is defined by

[n]q =
1− qn

1− q
.

In particular, we can see limq→1[n]q = n.
By using q-number, we define the Carlitz’s type q-tangent numbers and poly-

nomials, which generalized the previously known numbers and polynomials, in-
cluding the tangent numbers and polynomials. In the following section, we
introduce the Carlitz’s type q-tangent numbers and polynomials. After that we
will investigate some their properties.

2. Carlitz’s type q-tangent numbers and polynomials

In this section, we define the Carlitz’s type q-tangent numbers and polyno-
mials and provide some of their relevant properties.

Definition 2.1. For |q| < 1, the Carlitz’s type q-tangent numbers Tn,q and
polynomials Tn,q(x) are defined by means of the generating functions

Fq(t) =
∞∑
n=0

Tn,q(x)
tn

n!
= [2]q

∞∑
m=0

(−1)mqme[2m]qt. (2.1)

and

Fq(t, x) =
∞∑
n=0

Tn,q(x)
tn

n!
= [2]q

∞∑
m=0

(−1)mqme[2m+x]qt, (2.2)

respectively.

Setting q → 1 in (2.1) and (2.1), we can obtain the corresponding definitions
for the tangent number Tn and tangent polynomials Tn(x) respectively. By using
above equation (2.1), we have

∞∑
n=0

Tn,q
tn

n!
= [2]q

∞∑
m=0

(−1)mqme[2m]qt

=
∞∑
n=0

(
[2]q

(
1

1− q

)n n∑
l=0

(
n

l

)
(−1)l

1

1 + q2l+1

)
tn

n!
.

(2.3)

By comparing the coefficients tn

n! in the above equation, we have the following
theorem.
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Theorem 2.2. For n ∈ Z+, we have

Tn,q = [2]q

(
1

1− q

)n n∑
l=0

(
n

l

)
(−1)l

1

1 + q2l+1
.

By (2.2), we obtain

Tn,q(x) = [2]q

(
1

1− q

)n n∑
l=0

(
n

l

)
(−1)lqxl

1

1 + q2l+1
. (2.4)

By using (2.2) and (2.4), we obtain

∞∑
n=0

Tn,q(x)
tn

n!
=

∞∑
n=0

(
[2]q

(
1

1− q

)n n∑
l=0

(
n

l

)
(−1)lqxl

1

1 + q2l+1

)
tn

n!

= [2]q

∞∑
m=0

(−1)mqme[2m+x]qt

= [2]qe
t

1−q

∞∑
k=0

(
1

1− q

)k
(−1)kqxk

1 + q2k+1

tk

k!
.

(2.5)

Since [x+ 2y]q = [x]q + qx[2y]q, we see that

Tn,q(x) = [2]q

n∑
l=0

(
n

l

)
[x]n−lq qxl

l∑
k=0

(
l

k

)
(−1)k

(
1

1− q

)l
1

1 + q2k+1
. (2.6)

By using (2.6) and Theorem 2.2, we have the following theorem.

Theorem 2.3. For n ∈ Z+, we have

T (h)
n,q (x) =

n∑
l=0

(
n

l

)
[x]n−lq qxlTl,q

= (qxTq + [x]q)
n

= [2]q

∞∑
m=0

(−1)mqm[2m+ x]nq ,

with the usual convention of replacing (Tq)
n by Tn,q.

The following elementary properties of the Carlitz’s type q-tangent numbers
Tn,q and polynomials Tn,q(x) are readily derived form (2.1) and (2.2). We,
therefore, choose to omit details involved.

Theorem 2.4. (Distribution relation). For any positive integer m(=odd), we
have

Tn,q(x) =
[2]q
[2]qm

[m]nq

m−1∑
a=0

(−1)aqaTn,qm

(
2a+ x

m

)
, n ∈ N0.
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Theorem 2.5. (Property of complement).

Tn,q−1(2− x) = (−1)nqnTn,q(x)

By (2.1) and (2.2), we get

− [2]q

∞∑
l=0

(−1)l+nql+ne[2l+2n]qt + [2]q

∞∑
l=0

(−1)lqle[2l]qt

= [2]q

n−1∑
l=0

(−1)lqle[2l]qt.

(2.7)

Hence we have

(−1)n+1qn
∞∑
m=0

Tm,q(2n)
tm

m!
+

∞∑
m=0

Tm,q(2n)
tm

m!

=

∞∑
m=0

(
[2]q

n−l∑
l=0

(−1)lql[2l]mq

)
tm

m!
.

(2.8)

By comparing the coefficients tm

m! on both sides of (2.8), we have the following
theorem.

Theorem 2.6. For n ∈ Z+, we have

n−l∑
l=0

(−1)lql[2l]mq =
(−1)n+1qnTmq(2n) + Tm,q

[2]q
.

3. q-analogue of tangent zeta function

By using Carlitz’s type q-tangent numbers and polynomials, q-tangent zeta
function and Hurwitz q-tangent zeta functions are defined. These functions
interpolate the Carlitz’s type q-tangent numbers Tn,q, and polynomials Tn,q(x),
respectively. From (2.1), we note that

dk

dtk
Fq(t)

∣∣∣∣
t=0

= [2]q

∞∑
m=0

(−1)nqm[2m]kq

= Tk,q, (k ∈ N).

By using the above equation, we are now ready to define q-tangent zeta functions.

Definition 3.1. Let s ∈ C with Re(s) > 0.

ζp,q(s) = [2]q

∞∑
n=1

(−1)nqn

[2n]sq
. (3.1)

Note that ζq(s) is a meromorphic function on C. Note that, if q → 1, then
ζq(s) = ζT (s) which is the tangent zeta functions(see [3]). Relation between
ζq(s) and Tk,q is given by the following theorem.
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Theorem 3.2. For k ∈ N, we have

ζp,q(−k) = Tk,p,q.

Observe that ζq(s) function interpolates Tk,q numbers at non-negative inte-
gers.

By using (2.2), we note that

dk

dtk
Fq(t, x)

∣∣∣∣
t=0

= [2]q

∞∑
m=0

(−1)mqm[2m+ x]kq (3.2)

and (
d

dt

)k( ∞∑
n=0

Tn,q(x)
tn

n!

)∣∣∣∣∣
t=0

= Tk,q(x), for k ∈ N. (3.3)

By (3.2) and (3.3), we are now ready to define the Hurwitz q-tangent zeta func-
tions.

Definition 3.3. Let s ∈ C with Re(s) > 0 and x /∈ Z−
0 .

ζp,q(s, x) = [2]q

∞∑
n=0

(−1)nqn

[2n+ x]sq
. (3.4)

Note that ζq(s, x) is a meromorphic function on C. Obverse that, if q → 1,
then ζq(s, x) = ζT (s, x) which is the Hurwitz tangent zeta functions(see [3]).
Relation between ζq(s, x) and Tk,q(x) is given by the following theorem.

Theorem 3.4. For k ∈ N, we have

ζq(−k, x) = Tk,q(x).

Observe that ζq(−k, x) function interpolates Tk,q(x) numbers at non-negative
integers.

4. Carlitz’s type q-tangent numbers and polynomials associated
with p-adic q-integral on Zp

Throughout this section we use the notation: Zp denotes the ring of p-adic
rational integers, Qp denotes the field of p-adic rational numbers, and Cp denotes
the completion of algebraic closure of Qp. Let νp be the normalized exponential

valuation of Cp with |p|p = p−νp(p) = p−1. When one talks of q-extension, q is
considered in many ways such as an indeterminate, a complex number q ∈ C, or
p-adic number q ∈ Cp. If q ∈ C one normally assume that |q| < 1. If q ∈ Cp, we
normally assume that |q − 1|p < p−

1
p−1 so that qx = exp(x log q) for |x|p ≤ 1.

For

g ∈ UD(Zp) = {g|g : Zp → Cp is uniformly differentiable function},
Kim[1] defined the p-adic q-integral on Zp as follows:

I−q(g) =

∫
Zp

g(x)dµ−q(x) = lim
N→∞

1 + q

1 + qpN

pN−1∑
x=0

g(x)(−q)x. (4.1)
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From (4.1), we note that

qnI−q(fn) = (−1)nI−q(g) + [2]q

n−1∑
l=0

(−1)n−1−lqlg(l), (4.2)

where gn(x) = g(x+ n) for n ∈ N.
For q ∈ Cp with |1− q|p < 1, the Carlitz’s type q-tangent are defined by

Tn,q =

∫
Zp

[2x]nq dµ−q(x). (4.3)

By using p-adic q-integral on Zp, we obtain,∫
Zp

[2x]nq dµ−q(x) = lim
N→∞

1

[pN ]−q

pN−1∑
x=0

[2x]nq (−q)x

= [2]q

(
1

1− q

)n n∑
l=0

(
n

l

)
(−1)l

1

1 + q2l+1

= [2]q

∞∑
m=0

(−1)mqm[2m]nq .

(4.4)

By using (2.1) and (4.3), we have

∞∑
n=0

Tn,q
tn

n!
=

∞∑
n=0

∫
Zp

[2x]nq dµ−q(x)
tn

n!
=

∫
Zp

e[2x]qtdµ−q(x). (4.5)

By (2.1), (4.5), we have∫
Zp

e[2x]qtdµ−1(x) = 2

∞∑
m=0

(−1)mqme[2m]qt.

The Carlitz’s type q-tangent polynomials Tn,q(x) are defined by

Tn,q(x) =

∫
Zp

[2y + x]qdµ−q(y). (4.6)

By using p-adic q-integral on Zp, we obtain∫
Zp

[2y + x]nq dµ−q(y) = lim
N→∞

1

[pN ]−q

pN−1∑
y=0

[2y + x]nq (−q)y

= [2]q

(
1

1− q

)n n∑
l=0

(
n

l

)
(−1)lqxl

1

1 + q2l+1

= [2]q

∞∑
m=0

(−1)mqm[2m+ x]nq .

(4.7)
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From (4.2), we note that

[2]q = q

∫
Zp

e[2x+2]qtdµ−q(x) +

∫
Zp

e[2x]qtdµ−q(x)

=
∞∑
n=0

(
q

∫
Zp

[2x+ 2]nq dµ−q(x) +

∫
Zp

[2x]nq dµ−q(x)

)
tn

n!

=
∞∑
n=0

(qTn,q(2) + Tn,q)
tn

n!
.

Therefore, we obtain the following theorem.

Theorem 4.1. For n ∈ N0, we have

qTn,q(2) + Tn,q =

{
[2]q, if n = 0,
0, if n ̸= 0.

By Theorem 4.1, we have the following corollary.

Corollary 4.2. For n ∈ N0, we have

q
(
q2Tq + [2]q

)n
+ Tn,q =

{
[2]q, if n = 0,
0, if n ̸= 0,

with the usual convention of replacing (Tq)
n by Tn,q.

5. Zeros of the Carlitz’s type q-tangent numbers and polynomials

In this section, we investigate the zeros of the Carlitz’s type q-tangent poly-
nomials Tn,q(x). We investigate the beautiful zeros of the Tn,q(x) by using a
computer. We plot the zeros of the Carlitz’s type q-tangent polynomials Tn,q(x)
for n = 30, q = 1/2, 1/3, 1/4, 1/5 and x ∈ C(Figure 1). In Figure 1(top-left),
we choose n = 30 and q = 1/2. In Figure 1(top-right), we choose n = 30 and
q = 1/3. In Figure 1(bottom-left), we choose n = 30 and q = 1/4. In Figure
1(bottom-right), we choose n = 30 and q = 1/5. Stacks of zeros of Tn,1/2(x) for
1 ≤ n ≤ 30 from a 3-D structure are presented(Figure 2). The plot of real zeros
of Tn,q(x) for 1 ≤ n ≤ 30 and q = 1/2, 1/5 structure are presented(Figure 3). In
Figure 3(left), we choose 1 ≤ n ≤ 30 and q = 1/2. In Figure 3(right), we choose
1 ≤ n ≤ 30 and q = 1/3. Our numerical results for approximate solutions of real
zeros of Tn,q(x) are displayed(Tables 1, 2).
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Figure 1. Zeros of Tn,q(x)

Table 1. Numbers of real and complex zeros of Tn,q(x)

q = 1/2 q = 1/5
degree n real zeros complex zeros real zeros complex zeros

1 1 0 1 0
2 2 0 2 0
3 1 2 1 2
4 2 2 2 2
5 3 2 1 4
6 2 4 2 4
7 3 4 1 6
8 2 6 2 6
9 3 6 1 8
10 2 8 2 8
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Figure 2. Stacks of zeros of Tn,1/2(x) for 1 ≤ n ≤ 30
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Figure 3. Real zeros of Tn,q(x) for 1 ≤ n ≤ 30

We observe a remarkably regular structure of the complex roots of the Car-
litz’s type q-tangent polynomials Tn,q(x). We hope to verify a remarkably reg-
ular structure of the complex roots of the Carlitz’s type q-tangent polynomi-
als Tn,q(x)(Table 1). Next, we calculated an approximate solution satisfying
Tn,q(x), q = 1/2, x ∈ R. The results are given in Table 2.

Table 2. Approximate solutions of Tn,q(x) = 0, x ∈ R

degree n x

1 0.415037

2 −0.386849, 0.927418

3 1.31328

4 −0.335264, 1.61879

5 −0.595106, −0.128945, 1.87113
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Finally, we consider the more general problems. In general, how many ze-
ros does Tn,q(x) have? We are not able to decide if Tn,q(x) = 0 has n dis-
tinct solutions. We would like to know the number of complex zeros CTn,q(x) of
Tn,q(x), Im(x) ̸= 0. Since n is the degree of the polynomial Tn,q(x), the num-
ber of real zeros RTn,q(x) lying on the real plane Im(x) = 0 is then RTn,q(x) =
n − CTn,q(x), where CTn,q(x) denotes complex zeros. See Table 1 for tabulated
values of RTn,q(x) and CTn,q(x). The reader may refer to [2, 3, 6, 7] for the details.
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