ON CARLITZ'S TYPE q-TANGENT NUMBERS AND POLYNOMIALS AND COMPUTATION OF THEIR ZEROS ${ }^{\dagger}$

KYUNG-WON HWANG AND CHEON SEOUNG RYOO*

Abstract

In this paper we construct the Carlitz's type q-tangent numbers $T_{n, q}$ and polynomials $T_{n, q}(x)$. From these numbers and polynomials, we establish some interesting identities and relations.

AMS Mathematics Subject Classification : 11B68, 11S40, 11S80. Key words and phrases : tangent numbers and polynomials, q-tangent numbers and polynomials, Carlitz's type q-tangent numbers and polynomials.

1. Introduction

Many mathematicians have studied in the area of the Bernoulli numbers and polynomials, Euler numbers and polynomials, Genocchi numbers and polynomials, tangent numbers and polynomials(see [1-9]). In this paper, we define (p, q)-analogue of tangent polynomials and numbers and study some properties of the (p, q)-analogue of tangent polynomials and numbers.

Throughout this paper, we always make use of the following notations: \mathbb{N} denotes the set of natural numbers, $\mathbb{Z}_{+}=\mathbb{N} \cup\{0\}$ denotes the set of nonnegative integers, $\mathbb{Z}_{0}^{-}=\{0,-1,-2,-2, \ldots\}$ denotes the set of nonpositive integers, \mathbb{Z} denotes the set of integers, \mathbb{R} denotes the set of real numbers, and \mathbb{C} denotes the set of complex numbers.

We remember that the classical tangent numbers T_{n} and tangent polynomials $T_{n}(x)$ are defined by the following generating functions(see [4])

$$
\begin{equation*}
\frac{2}{e^{2 t}+1}=\sum_{n=0}^{\infty} T_{n} \frac{t^{n}}{n!}, \quad(|2 t|<\pi) \tag{1.1}
\end{equation*}
$$

[^0]and
\[

$$
\begin{equation*}
\left(\frac{2}{e^{2 t}+1}\right) e^{x t}=\sum_{n=0}^{\infty} T_{n}(x) \frac{t^{n}}{n!}, \quad(|2 t|<\pi) \tag{1.2}
\end{equation*}
$$

\]

respectively.
Some interesting properties of the classical tangent numbers and polynomials were first investigated by Ryoo[3, 4, 5]. Many kinds of of generalizations of these polynomials and numbers have been presented in the literature(see [3, 4, $5]$). The q-number is defined by

$$
[n]_{q}=\frac{1-q^{n}}{1-q}
$$

In particular, we can see $\lim _{q \rightarrow 1}[n]_{q}=n$.
By using q-number, we define the Carlitz's type q-tangent numbers and polynomials, which generalized the previously known numbers and polynomials, including the tangent numbers and polynomials. In the following section, we introduce the Carlitz's type q-tangent numbers and polynomials. After that we will investigate some their properties.

2. Carlitz's type q-tangent numbers and polynomials

In this section, we define the Carlitz's type q-tangent numbers and polynomials and provide some of their relevant properties.

Definition 2.1. For $|q|<1$, the Carlitz's type q-tangent numbers $T_{n, q}$ and polynomials $T_{n, q}(x)$ are defined by means of the generating functions

$$
\begin{equation*}
F_{q}(t)=\sum_{n=0}^{\infty} T_{n, q}(x) \frac{t^{n}}{n!}=[2]_{q} \sum_{m=0}^{\infty}(-1)^{m} q^{m} e^{[2 m]_{q} t} \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
F_{q}(t, x)=\sum_{n=0}^{\infty} T_{n, q}(x) \frac{t^{n}}{n!}=[2]_{q} \sum_{m=0}^{\infty}(-1)^{m} q^{m} e^{[2 m+x]_{q} t} \tag{2.2}
\end{equation*}
$$

respectively.
Setting $q \rightarrow 1$ in (2.1) and (2.1), we can obtain the corresponding definitions for the tangent number T_{n} and tangent polynomials $T_{n}(x)$ respectively. By using above equation (2.1), we have

$$
\begin{align*}
\sum_{n=0}^{\infty} T_{n, q} \frac{t^{n}}{n!} & =[2]_{q} \sum_{m=0}^{\infty}(-1)^{m} q^{m} e^{[2 m]_{q} t} \\
& =\sum_{n=0}^{\infty}\left([2]_{q}\left(\frac{1}{1-q}\right)^{n} \sum_{l=0}^{n}\binom{n}{l}(-1)^{l} \frac{1}{1+q^{2 l+1}}\right) \frac{t^{n}}{n!} \tag{2.3}
\end{align*}
$$

By comparing the coefficients $\frac{t^{n}}{n!}$ in the above equation, we have the following theorem.

Theorem 2.2. For $n \in \mathbb{Z}_{+}$, we have

$$
T_{n, q}=[2]_{q}\left(\frac{1}{1-q}\right)^{n} \sum_{l=0}^{n}\binom{n}{l}(-1)^{l} \frac{1}{1+q^{2 l+1}}
$$

By (2.2), we obtain

$$
\begin{equation*}
T_{n, q}(x)=[2]_{q}\left(\frac{1}{1-q}\right)^{n} \sum_{l=0}^{n}\binom{n}{l}(-1)^{l} q^{x l} \frac{1}{1+q^{2 l+1}} . \tag{2.4}
\end{equation*}
$$

By using (2.2) and (2.4), we obtain

$$
\begin{align*}
\sum_{n=0}^{\infty} T_{n, q}(x) \frac{t^{n}}{n!} & =\sum_{n=0}^{\infty}\left([2]_{q}\left(\frac{1}{1-q}\right)^{n} \sum_{l=0}^{n}\binom{n}{l}(-1)^{l} q^{x l} \frac{1}{1+q^{2 l+1}}\right) \frac{t^{n}}{n!} \\
& =[2]_{q} \sum_{m=0}^{\infty}(-1)^{m} q^{m} e^{[2 m+x]_{q} t} \tag{2.5}\\
& =[2]_{q} e^{\frac{t}{1-q}} \sum_{k=0}^{\infty}\left(\frac{1}{1-q}\right)^{k} \frac{(-1)^{k} q^{x k}}{1+q^{2 k+1}} \frac{t^{k}}{k!}
\end{align*}
$$

Since $[x+2 y]_{q}=[x]_{q}+q^{x}[2 y]_{q}$, we see that

$$
\begin{equation*}
T_{n, q}(x)=[2]_{q} \sum_{l=0}^{n}\binom{n}{l}[x]_{q}^{n-l} q^{x l} \sum_{k=0}^{l}\binom{l}{k}(-1)^{k}\left(\frac{1}{1-q}\right)^{l} \frac{1}{1+q^{2 k+1}} . \tag{2.6}
\end{equation*}
$$

By using (2.6) and Theorem 2.2, we have the following theorem.
Theorem 2.3. For $n \in \mathbb{Z}_{+}$, we have

$$
\begin{aligned}
T_{n, q}^{(h)}(x) & =\sum_{l=0}^{n}\binom{n}{l}[x]_{q}^{n-l} q^{x l} T_{l, q} \\
& =\left(q^{x} T_{q}+[x]_{q}\right)^{n} \\
& =[2]_{q} \sum_{m=0}^{\infty}(-1)^{m} q^{m}[2 m+x]_{q}^{n},
\end{aligned}
$$

with the usual convention of replacing $\left(T_{q}\right)^{n}$ by $T_{n, q}$.
The following elementary properties of the Carlitz's type q-tangent numbers $T_{n, q}$ and polynomials $T_{n, q}(x)$ are readily derived form (2.1) and (2.2). We, therefore, choose to omit details involved.
Theorem 2.4. (Distribution relation). For any positive integer m (=odd), we have

$$
T_{n, q}(x)=\frac{[2]_{q}}{[2]_{q^{m}}}[m]_{q}^{n} \sum_{a=0}^{m-1}(-1)^{a} q^{a} T_{n, q^{m}}\left(\frac{2 a+x}{m}\right), n \in \mathbb{N}_{0} .
$$

Theorem 2.5. (Property of complement).

$$
T_{n, q^{-1}}(2-x)=(-1)^{n} q^{n} T_{n, q}(x)
$$

By (2.1) and (2.2), we get

$$
\begin{align*}
& -[2]_{q} \sum_{l=0}^{\infty}(-1)^{l+n} q^{l+n} e^{[2 l+2 n]_{q} t}+[2]_{q} \sum_{l=0}^{\infty}(-1)^{l} q^{l} e^{[2 l]_{q} t} \\
& =[2]_{q} \sum_{l=0}^{n-1}(-1)^{l} q^{l} e^{[2 l]_{q} t} . \tag{2.7}
\end{align*}
$$

Hence we have

$$
\begin{align*}
& (-1)^{n+1} q^{n} \sum_{m=0}^{\infty} T_{m, q}(2 n) \frac{t^{m}}{m!}+\sum_{m=0}^{\infty} T_{m, q}(2 n) \frac{t^{m}}{m!} \\
& =\sum_{m=0}^{\infty}\left([2]_{q} \sum_{l=0}^{n-l}(-1)^{l} q^{l}[2 l]_{q}^{m}\right) \frac{t^{m}}{m!} . \tag{2.8}
\end{align*}
$$

By comparing the coefficients $\frac{t^{m}}{m!}$ on both sides of (2.8), we have the following theorem.
Theorem 2.6. For $n \in \mathbb{Z}_{+}$, we have

$$
\sum_{l=0}^{n-l}(-1)^{l} q^{l}[2 l]_{q}^{m}=\frac{(-1)^{n+1} q^{n} T_{m q}(2 n)+T_{m, q}}{[2]_{q}}
$$

3. q-analogue of tangent zeta function

By using Carlitz's type q-tangent numbers and polynomials, q-tangent zeta function and Hurwitz q-tangent zeta functions are defined. These functions interpolate the Carlitz's type q-tangent numbers $T_{n, q}$, and polynomials $T_{n, q}(x)$, respectively. From (2.1), we note that

$$
\begin{aligned}
\left.\frac{d^{k}}{d t^{k}} F_{q}(t)\right|_{t=0} & =[2]_{q} \sum_{m=0}^{\infty}(-1)^{n} q^{m}[2 m]_{q}^{k} \\
& =T_{k, q},(k \in \mathbb{N})
\end{aligned}
$$

By using the above equation, we are now ready to define q-tangent zeta functions.
Definition 3.1. Let $s \in \mathbb{C}$ with $\operatorname{Re}(s)>0$.

$$
\begin{equation*}
\zeta_{p, q}(s)=[2]_{q} \sum_{n=1}^{\infty} \frac{(-1)^{n} q^{n}}{[2 n]_{q}^{s}} \tag{3.1}
\end{equation*}
$$

Note that $\zeta_{q}(s)$ is a meromorphic function on \mathbb{C}. Note that, if $q \rightarrow 1$, then $\zeta_{q}(s)=\zeta_{T}(s)$ which is the tangent zeta functions(see [3]). Relation between $\zeta_{q}(s)$ and $T_{k, q}$ is given by the following theorem.

Theorem 3.2. For $k \in \mathbb{N}$, we have

$$
\zeta_{p, q}(-k)=T_{k, p, q}
$$

Observe that $\zeta_{q}(s)$ function interpolates $T_{k, q}$ numbers at non-negative integers.

By using (2.2), we note that

$$
\begin{equation*}
\left.\frac{d^{k}}{d t^{k}} F_{q}(t, x)\right|_{t=0}=[2]_{q} \sum_{m=0}^{\infty}(-1)^{m} q^{m}[2 m+x]_{q}^{k} \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\left.\left(\frac{d}{d t}\right)^{k}\left(\sum_{n=0}^{\infty} T_{n, q}(x) \frac{t^{n}}{n!}\right)\right|_{t=0}=T_{k, q}(x), \text { for } k \in \mathbb{N} \tag{3.3}
\end{equation*}
$$

By (3.2) and (3.3), we are now ready to define the Hurwitz q-tangent zeta functions.

Definition 3.3. Let $s \in \mathbb{C}$ with $\operatorname{Re}(s)>0$ and $x \notin \mathbb{Z}_{0}^{-}$.

$$
\begin{equation*}
\zeta_{p, q}(s, x)=[2]_{q} \sum_{n=0}^{\infty} \frac{(-1)^{n} q^{n}}{[2 n+x]_{q}^{s}} \tag{3.4}
\end{equation*}
$$

Note that $\zeta_{q}(s, x)$ is a meromorphic function on \mathbb{C}. Obverse that, if $q \rightarrow 1$, then $\zeta_{q}(s, x)=\zeta_{T}(s, x)$ which is the Hurwitz tangent zeta functions(see [3]). Relation between $\zeta_{q}(s, x)$ and $T_{k, q}(x)$ is given by the following theorem.
Theorem 3.4. For $k \in \mathbb{N}$, we have

$$
\zeta_{q}(-k, x)=T_{k, q}(x) .
$$

Observe that $\zeta_{q}(-k, x)$ function interpolates $T_{k, q}(x)$ numbers at non-negative integers.

4. Carlitz's type q-tangent numbers and polynomials associated with p-adic q-integral on \mathbb{Z}_{p}

Throughout this section we use the notation: \mathbb{Z}_{p} denotes the ring of p-adic rational integers, \mathbb{Q}_{p} denotes the field of p-adic rational numbers, and \mathbb{C}_{p} denotes the completion of algebraic closure of \mathbb{Q}_{p}. Let ν_{p} be the normalized exponential valuation of \mathbb{C}_{p} with $|p|_{p}=p^{-\nu_{p}(p)}=p^{-1}$. When one talks of q-extension, q is considered in many ways such as an indeterminate, a complex number $q \in \mathbb{C}$, or p-adic number $q \in \mathbb{C}_{p}$. If $q \in \mathbb{C}$ one normally assume that $|q|<1$. If $q \in \mathbb{C}_{p}$, we normally assume that $|q-1|_{p}<p^{-\frac{1}{p-1}}$ so that $q^{x}=\exp (x \log q)$ for $|x|_{p} \leq 1$. For

$$
g \in U D\left(\mathbb{Z}_{p}\right)=\left\{g \mid g: \mathbb{Z}_{p} \rightarrow \mathbb{C}_{p} \text { is uniformly differentiable function }\right\}
$$

$\operatorname{Kim}[1]$ defined the p-adic q-integral on \mathbb{Z}_{p} as follows:

$$
\begin{equation*}
I_{-q}(g)=\int_{\mathbb{Z}_{p}} g(x) d \mu_{-q}(x)=\lim _{N \rightarrow \infty} \frac{1+q}{1+q^{p^{N}}} \sum_{x=0}^{p^{N}-1} g(x)(-q)^{x} . \tag{4.1}
\end{equation*}
$$

From (4.1), we note that

$$
\begin{equation*}
q^{n} I_{-q}\left(f_{n}\right)=(-1)^{n} I_{-q}(g)+[2]_{q} \sum_{l=0}^{n-1}(-1)^{n-1-l} q^{l} g(l), \tag{4.2}
\end{equation*}
$$

where $g_{n}(x)=g(x+n)$ for $n \in \mathbb{N}$.
For $q \in \mathbb{C}_{p}$ with $|1-q|_{p}<1$, the Carlitz's type q-tangent are defined by

$$
\begin{equation*}
T_{n, q}=\int_{\mathbb{Z}_{p}}[2 x]_{q}^{n} d \mu_{-q}(x) \tag{4.3}
\end{equation*}
$$

By using p-adic q-integral on \mathbb{Z}_{p}, we obtain,

$$
\begin{align*}
\int_{\mathbb{Z}_{p}}[2 x]_{q}^{n} d \mu_{-q}(x) & =\lim _{N \rightarrow \infty} \frac{1}{\left[p^{N}\right]_{-q}} \sum_{x=0}^{p^{N}-1}[2 x]_{q}^{n}(-q)^{x} \\
& =[2]_{q}\left(\frac{1}{1-q}\right)^{n} \sum_{l=0}^{n}\binom{n}{l}(-1)^{l} \frac{1}{1+q^{2 l+1}} \tag{4.4}\\
& =[2]_{q} \sum_{m=0}^{\infty}(-1)^{m} q^{m}[2 m]_{q}^{n}
\end{align*}
$$

By using (2.1) and (4.3), we have

$$
\begin{equation*}
\sum_{n=0}^{\infty} T_{n, q} \frac{t^{n}}{n!}=\sum_{n=0}^{\infty} \int_{\mathbb{Z}_{p}}[2 x]_{q}^{n} d \mu_{-q}(x) \frac{t^{n}}{n!}=\int_{\mathbb{Z}_{p}} e^{[2 x]_{q} t} d \mu_{-q}(x) \tag{4.5}
\end{equation*}
$$

By (2.1), (4.5), we have

$$
\int_{\mathbb{Z}_{p}} e^{[2 x]_{q} t} d \mu_{-1}(x)=2 \sum_{m=0}^{\infty}(-1)^{m} q^{m} e^{[2 m]_{q} t}
$$

The Carlitz's type q-tangent polynomials $T_{n, q}(x)$ are defined by

$$
\begin{equation*}
T_{n, q}(x)=\int_{\mathbb{Z}_{p}}[2 y+x]_{q} d \mu_{-q}(y) \tag{4.6}
\end{equation*}
$$

By using p-adic q-integral on \mathbb{Z}_{p}, we obtain

$$
\begin{align*}
\int_{\mathbb{Z}_{p}}[2 y+x]_{q}^{n} d \mu_{-q}(y) & =\lim _{N \rightarrow \infty} \frac{1}{\left[p^{N}\right]_{-q}} \sum_{y=0}^{p^{N}-1}[2 y+x]_{q}^{n}(-q)^{y} \\
& =[2]_{q}\left(\frac{1}{1-q}\right)^{n} \sum_{l=0}^{n}\binom{n}{l}(-1)^{l} q^{x l} \frac{1}{1+q^{2 l+1}} \tag{4.7}\\
& =[2]_{q} \sum_{m=0}^{\infty}(-1)^{m} q^{m}[2 m+x]_{q}^{n}
\end{align*}
$$

From (4.2), we note that

$$
\begin{aligned}
{[2]_{q} } & =q \int_{\mathbb{Z}_{p}} e^{[2 x+2]_{q} t} d \mu_{-q}(x)+\int_{\mathbb{Z}_{p}} e^{[2 x]_{q} t} d \mu_{-q}(x) \\
& =\sum_{n=0}^{\infty}\left(q \int_{\mathbb{Z}_{p}}[2 x+2]_{q}^{n} d \mu_{-q}(x)+\int_{\mathbb{Z}_{p}}[2 x]_{q}^{n} d \mu_{-q}(x)\right) \frac{t^{n}}{n!} \\
& =\sum_{n=0}^{\infty}\left(q T_{n, q}(2)+T_{n, q}\right) \frac{t^{n}}{n!} .
\end{aligned}
$$

Therefore, we obtain the following theorem.
Theorem 4.1. For $n \in \mathbb{N}_{0}$, we have

$$
q T_{n, q}(2)+T_{n, q}= \begin{cases}{[2]_{q},} & \text { if } n=0, \\ 0, & \text { if } n \neq 0\end{cases}
$$

By Theorem 4.1, we have the following corollary.
Corollary 4.2. For $n \in \mathbb{N}_{0}$, we have

$$
q\left(q^{2} T_{q}+[2]_{q}\right)^{n}+T_{n, q}= \begin{cases}{[2]_{q},} & \text { if } n=0, \\ 0, & \text { if } n \neq 0,\end{cases}
$$

with the usual convention of replacing $\left(T_{q}\right)^{n}$ by $T_{n, q}$.

5. Zeros of the Carlitz's type q-tangent numbers and polynomials

In this section, we investigate the zeros of the Carlitz's type q-tangent polynomials $T_{n, q}(x)$. We investigate the beautiful zeros of the $T_{n, q}(x)$ by using a computer. We plot the zeros of the Carlitz's type q-tangent polynomials $T_{n, q}(x)$ for $n=30, q=1 / 2,1 / 3,1 / 4,1 / 5$ and $x \in \mathbb{C}$ (Figure 1). In Figure 1(top-left), we choose $n=30$ and $q=1 / 2$. In Figure 1(top-right), we choose $n=30$ and $q=1 / 3$. In Figure 1(bottom-left), we choose $n=30$ and $q=1 / 4$. In Figure 1 (bottom-right), we choose $n=30$ and $q=1 / 5$. Stacks of zeros of $T_{n, 1 / 2}(x)$ for $1 \leq n \leq 30$ from a 3-D structure are presented(Figure 2). The plot of real zeros of $T_{n, q}(x)$ for $1 \leq n \leq 30$ and $q=1 / 2,1 / 5$ structure are presented(Figure 3). In Figure 3(left), we choose $1 \leq n \leq 30$ and $q=1 / 2$. In Figure 3(right), we choose $1 \leq n \leq 30$ and $q=1 / 3$. Our numerical results for approximate solutions of real zeros of $T_{n, q}(x)$ are displayed(Tables 1, 2).

Figure 1. Zeros of $T_{n, q}(x)$
Table 1. Numbers of real and complex zeros of $T_{n, q}(x)$

degree n	$q=1 / 2$		$q=1 / 5$	
	real zeros	complex zeros	real zeros	complex zeros
1	1	0	1	0
2	2	0	2	0
3	1	2	1	2
4	2	2	2	2
5	3	2	1	4
6	2	4	2	4
7	3	4	1	6
8	2	6	2	6
9	3	6	1	8
10	2	8	2	8

Figure 2. Stacks of zeros of $T_{n, 1 / 2}(x)$ for $1 \leq n \leq 30$

Figure 3. Real zeros of $T_{n, q}(x)$ for $1 \leq n \leq 30$

We observe a remarkably regular structure of the complex roots of the Carlitz's type q-tangent polynomials $T_{n, q}(x)$. We hope to verify a remarkably regular structure of the complex roots of the Carlitz's type q-tangent polynomials $T_{n, q}(x)$ (Table 1). Next, we calculated an approximate solution satisfying $T_{n, q}(x), q=1 / 2, x \in \mathbb{R}$. The results are given in Table 2.

Table 2. Approximate solutions of $T_{n, q}(x)=0, x \in \mathbb{R}$

degree n	x
1	0.415037
2	$-0.386849, \quad 0.927418$
3	1.31328
4	$-0.335264, \quad 1.61879$
5	$-0.595106, \quad-0.128945, \quad 1.87113$

Finally, we consider the more general problems. In general, how many zeros does $T_{n, q}(x)$ have? We are not able to decide if $T_{n, q}(x)=0$ has n distinct solutions. We would like to know the number of complex zeros $C_{T_{n, q}(x)}$ of $T_{n, q}(x), \operatorname{Im}(x) \neq 0$. Since n is the degree of the polynomial $T_{n, q}(x)$, the number of real zeros $R_{T_{n, q}(x)}$ lying on the real plane $\operatorname{Im}(x)=0$ is then $R_{T_{n, q}(x)}=$ $n-C_{T_{n, q}(x)}$, where $C_{T_{n, q}(x)}$ denotes complex zeros. See Table 1 for tabulated values of $R_{T_{n, q}(x)}$ and $C_{T_{n, q}(x)}$. The reader may refer to $[2,3,6,7]$ for the details.

References

1. T. Kim, q-Euler numbers and polynomials associated with p-adic q-integrals, J. Nonlinear Math. Phys. 14 (2007), 15-27.
2. C.S. Ryoo, A numerical investigation on the structure of the roots of q-Genocchi polynomials, J. Appl. Math. Comput. 26 (2008), 325-332.
3. C.S. Ryoo, A numerical investigation on the zeros of the tangent polynomials, J. Appl. Math. \& Informatics 32 (2014), 315-322.
4. C.S. Ryoo, A note on the tangent numbers and polynomials, Adv. Studies Theor. Phys. 7 (2013), 447-454
5. C.S. Ryoo, Differential equations associated with tangent numbers, J. Appl. Math. \& Informatics 34 (2016), 487-494.
6. C.S. Ryoo, A Note on the Zeros of the q-Bernoulli Polynomials, J. Appl. Math. \& Informatics 28 (2010), 805-811.
7. C.S. Ryoo, Reflection Symmetries of the q-Genocchi Polynomials, J. Appl. Math. \& Informatics 28 (2010), 1277-1284.
8. C.S. Ryoo, On degenerate q-tangent polynomials of higher order, J. Appl. Math. \& Informatics 35 (2017), 113-120.
9. H. Shin, J. Zeng, The q-tangent and q-secant numbers via continued fractions, European J. Combin. 31 (2010), 1689-1705

Kyung-Won Hwang received Ph.D. degree from University of Illinois at UrbanaChampaign. His research interests focus on the combinatorics, graph theory,discrete geometry, scientific computing and p-adic functional analysis.
Department of Mathematics, Dang-A University, Pusan 49315, Korea
e-mail:khwang@dau.ac.kr
Cheon Seoung Ryoo received Ph.D. degree from Kyushu University. His research interests focus on the numerical verification method, scientific computing and p-adic functional analysis.

Department of Mathematics, Hannam University, Daejeon, 306-791, Korea
e-mail:ryoocs@hnu.kr

[^0]: Received November 15, 2016. Revised April 20, 2017. Accepted July 23, 2017. * Corresponding author.
 ${ }^{\dagger}$ This work was supported by the Dong-A university research fund.
 © 2017 Korean SIGCAM and KSCAM.

