q-DEDEKIND-TYPE DAEHEE-CHANGHEE SUMS WITH WEIGHT α ASSOCIATED WITH MODIFIED q-EULER POLYNOMIALS WITH WEIGHT α

Jong Jin Seo*, Serkan Araci**, and Mehmet Acikgoz***

Abstract

Recently, q-Dedekind-type sums related to q-Euler polynomials was studied by Kim in [T. Kim, Note on q-Dedekind-type sums related to q-Euler polynomials, Glasgow Math. J. 54 (2012), 121-125]. It is aim of this paper to consider a p-adic continuous function for an odd prime to inside a p-adic q-analogue of the higher order Dedekind-type sums with weight related to modified q-Euler polynomials with weight by using Kim's p-adic q-integral.

1. Introduction

Let p be a fixed odd prime number. Throughout this paper $\mathbb{Z}_{p}, \mathbb{Q}_{p}, \mathbb{C}$ and \mathbb{C}_{p} will denote the ring of p-adic rational integers, the field of p-adic rational numbers, the complex numbers and the completion of algebraic closure of \mathbb{Q}_{p}, respectively.

Let v_{p} be normalized exponential valuation of \mathbb{C}_{p} with

$$
|p|_{p}=p^{-v_{p}(p)}=\frac{1}{p} .
$$

When one speaks of q-extension, q is variaously considered as an indeterminate, a complex number $q \in \mathbb{C}$ or p-adic number $q \in \mathbb{C}_{p}$. If $q \in \mathbb{C}$, we assume that $|q|<1$. If $q \in \mathbb{C}_{p}$, we assume that $|1-q|_{p}<1$ (see [1-16]).

[^0]A q-extension of p-adic Haar measure is defined by Kim as follows: for any postive integer N,

$$
\mu_{q}\left(a+p^{N} \mathbb{Z}_{p}\right)=(-q)^{a} \frac{(1+q)}{1+q^{p^{N}}}
$$

for $0 \leq a<p^{N}$ and this can be extended to a measure on \mathbb{Z}_{p} (for details, see $[1-4,6-16])$.

The modified q-Euler polynomials with weight α are defined by Rim and Jeong as follows:

$$
\begin{equation*}
\widetilde{\mathcal{E}}_{n, q}^{(\alpha)}(x)=\int_{\mathbb{Z}_{p}} q^{-y}\left(\frac{1-q^{\alpha(x+y)}}{1-q^{\alpha}}\right) d \mu_{q}(y) \tag{1.1}
\end{equation*}
$$

for $n \in \mathbb{Z}_{+}:=\{0,1,2,3, \ldots\}$. We note that

$$
\lim _{q \rightarrow 1} \widetilde{\mathcal{E}}_{n, q}^{(\alpha)}(x)=E_{n}(x)
$$

where E_{n} are the famous Euler polynomials, which are defined by means of the following generating function:

$$
\sum_{n=0}^{\infty} E_{n}(x) \frac{t^{n}}{n!}=e^{t x} \frac{2}{e^{t}+1},|t|<\pi
$$

(for details, see [15]). Taking $x=0$ into (1.1), then, we have $\widetilde{\mathcal{E}}_{n, q}^{(\alpha)}(0):=$ $\widetilde{\mathcal{E}}_{n, q}^{(\alpha)}$ are called modified q-Euler numbers with weight α.

These numbers and polynomials have the following identities:

$$
\begin{gather*}
\widetilde{\mathcal{E}}_{n, q}^{(\alpha)}=\frac{1+q}{\left(1-q^{\alpha}\right)^{n}} \sum_{l=0}^{n}\binom{n}{l}(-1)^{l} \frac{1}{1+q^{\alpha l}} \tag{1.2}\\
\widetilde{\mathcal{E}}_{n, q}^{(\alpha)}(x)=\frac{1+q}{\left(1-q^{\alpha}\right)^{n}} \sum_{l=0}^{n}\binom{n}{l}(-1)^{l} \frac{q^{\alpha l x}}{1+q^{\alpha l}} \tag{1.3}\\
\widetilde{\mathcal{E}}_{n, q}^{(\alpha)}(x)=\sum_{l=0}^{n}\binom{n}{l} q^{\alpha l x} \widetilde{\mathcal{E}}_{l, q}^{(\alpha)}\left(\frac{1-q^{\alpha x}}{1-q^{\alpha}}\right)^{n-l} \tag{1.4}
\end{gather*}
$$

and

$$
\begin{array}{r}
\widetilde{\mathcal{E}}_{n, q}^{(\alpha)}(x)=\left(\frac{1-q^{\alpha d}}{1-q^{\alpha}}\right) \sum_{a=0}^{d-1}(-1)^{a} \widetilde{\mathcal{E}}_{n, q}^{(\alpha)}\left(\frac{x+a}{d}\right) \tag{1.5}\\
d \in \mathbb{N} \text { with } d \equiv 1(\bmod 2)
\end{array}
$$

(for more information, see [15]).

For any positive integer h, k and m, Dedekind-type DC sums are defined by Kim in [6], [7] and [8] as follows:

$$
S_{m}(h, k)=\sum_{M=1}^{k-1}(-1)^{M-1} \frac{M}{k} \bar{E}_{m}\left(\frac{h M}{k}\right)
$$

where $\bar{E}_{m}(x)$ are the m-th periodic Euler function. Kim gave some interesting properties Dedekind-type DC sums. He also constructed a p-adic continuous function for an odd prime number to contain a p-adic q-analogue of the higher order Dedekind-type DC sums $k^{m} S_{m+1}(h, k)$ in [7]. After Simsek also studied to q-analogue of Dedekind-type sums. He also derived their interesting properties. By the same motivation, we, by using p-adic q-integral on \mathbb{Z}_{p}, will construct weighted p-adic q-analogue of the higher order Dedekind-type DC sums $k^{m} S_{m+1}(h, k)$.
2. Weighted q-analogue of Dedekind-type Sums associated with modified q-Euler polynomials with weight α

Let w denotes the Teichmüller character $(\bmod p)$. For $x \in \mathbb{Z}_{p}^{*}:=$ $\mathbb{Z}_{p} / p \mathbb{Z}_{p}$, set

$$
\langle x: q\rangle=w^{-1}(x)\left(\frac{1-q^{x}}{1-q}\right) .
$$

Let a and N be positive integers with $(p, a)=1$ and $p \mid N$. We now consider the following

$$
\widetilde{T}_{q}^{(\alpha)}\left(s, a, N: q^{N}\right)=w^{-1}(a)\left\langle x: q^{\alpha}\right\rangle^{s} \sum_{j=0}^{\infty}\binom{s}{j} q^{\alpha a j}\left(\frac{1-q^{\alpha N}}{1-q^{\alpha a}}\right)^{j} \widetilde{\mathcal{E}}_{j, q^{N}}^{(\alpha)} .
$$

In particular, if $m+1 \equiv 0(\bmod p-1)$, then

$$
\begin{aligned}
& \widetilde{T}_{q}^{(\alpha)}\left(m, a, N: q^{N}\right) \\
& =\left(\frac{1-q^{\alpha a}}{1-q^{\alpha}}\right)^{m} \sum_{j=0}^{m}\binom{m}{j} q^{\alpha a j} \widetilde{\mathcal{E}}_{j, q^{N}}^{(\alpha)}\left(\frac{1-q^{\alpha N}}{1-q^{\alpha a}}\right)^{j} \\
& =\left(\frac{1-q^{\alpha N}}{1-q^{\alpha}}\right)^{m} \int_{\mathbb{Z}_{p}}\left(\frac{1-q^{\alpha N\left(x+\frac{a}{N}\right)}}{1-q^{\alpha N}}\right)^{m} q^{-N x} d \mu_{q^{N}}(x) .
\end{aligned}
$$

That is, $\widetilde{T}_{q}^{(\alpha)}\left(m, a, N: q^{N}\right)$ is a continuous p-adic extension of $\left(\frac{1-q^{\alpha N}}{1-q^{\alpha}}\right)^{n} \widetilde{\mathcal{E}}_{n, q^{N}}^{(\alpha)}\left(\frac{a}{N}\right)$.

Let [.] be the Gauss' symbol and let $\{x\}=x-[x]$. Then, we consider q-analogue of the higher order Dedekind-type DC sums $\widetilde{S}_{m, q}^{(\alpha)}\left(h, k: q^{l}\right)$ as

$$
\begin{aligned}
& \widetilde{S}_{m, q}^{(\alpha)}\left(h, k: q^{l}\right) \\
& =\sum_{M=1}^{k-1}(-1)^{M-1}\left(\frac{1-q^{\alpha M}}{1-q^{\alpha k}}\right) \int_{\mathbb{Z}_{p}} q^{-l x}\left(\frac{1-q^{\alpha\left(l x+l\left\{\frac{h M}{k}\right\}\right)}}{1-q^{\alpha l}}\right)^{m} d \mu_{q^{l}}(x) .
\end{aligned}
$$

$$
\text { If } m+1 \equiv 0(\bmod p-1)
$$

$$
\begin{aligned}
& \left(\frac{1-q^{\alpha k}}{1-q^{\alpha}}\right)^{m+1} \sum_{M=1}^{k-1}(-1)^{M-1}\left(\frac{1-q^{\alpha M}}{1-q^{\alpha k}}\right) \\
& \int_{\mathbb{Z}_{p}}\left(\frac{1-q^{\alpha k\left(x+\frac{h M}{k}\right)}}{1-q^{\alpha k}}\right)^{m} q^{-k x} d \mu_{q^{k}}(x) \\
& =\sum_{M=1}^{k-1}(-1)^{M-1}\left(\frac{1-q^{\alpha M}}{1-q^{\alpha}}\right)^{m}\left(\frac{1-q^{\alpha k}}{1-q^{\alpha}}\right)^{m} \\
& \quad \int_{\mathbb{Z}_{p}}\left(\frac{1-q^{\alpha k\left(x+\frac{h M}{k}\right)}}{1-q^{\alpha k}}\right)^{m} q^{-k x} d \mu_{q^{k}}(x)
\end{aligned}
$$

where $p \mid k,(h M, p)=1$ for each M. From (1.1), we note that

$$
\begin{align*}
& \left(\frac{1-q^{\alpha k}}{1-q^{\alpha}}\right)^{m+1} \widetilde{S}_{m, q}^{(\alpha)}\left(h, k: q^{k}\right) \tag{2.1a}\\
& =\sum_{M=1}^{k-1}\left(\frac{1-q^{\alpha M}}{1-q^{\alpha}}\right)\left(\frac{1-q^{\alpha k}}{1-q^{\alpha}}\right)^{m}(-1)^{M-1} \\
& \qquad \int_{\mathbb{Z}_{p}}\left(\frac{1-q^{\alpha k\left(x+\frac{h M}{k}\right)}}{1-q^{\alpha k}}\right)^{m} q^{-k x} d \mu_{q^{k}}(x) \\
& =\sum_{M=1}^{k-1}(-1)^{M-1}\left(\frac{1-q^{\alpha M}}{1-q^{\alpha}}\right) \widetilde{T}_{q}^{(\alpha)}\left(m,(h M)_{k}: q^{k}\right)
\end{align*}
$$

where $(h M)_{k}$ denotes the integer x such that $0 \leq x<n$ and $x \equiv$ $\alpha(\bmod k)$. It is not difficult to show that

$$
\begin{align*}
& \int_{\mathbb{Z}_{p}} q^{-t}\left(\frac{1-q^{\alpha(x+t)}}{1-q^{\alpha}}\right)^{k} d \mu_{q}(t) \tag{2.2}\\
& =\left(\frac{1-q^{\alpha m}}{1-q^{\alpha}}\right)^{k} \frac{1+q}{1+q^{m}} \sum_{i=0}^{m-1}(-1)^{i} \int_{\mathbb{Z}_{p}} q^{-m t}\left(\frac{1-q^{\alpha m\left(t+\frac{x+i}{m}\right)}}{1-q^{\alpha m}}\right)^{k} d \mu_{q^{m}}(t) .
\end{align*}
$$

By (2.1a) and (2.2), we easily see that

$$
\begin{align*}
& \left(\frac{1-q^{\alpha N}}{1-q^{\alpha}}\right) \int_{\mathbb{Z}_{p}}\left(\frac{1-q^{\alpha N\left(x+\frac{a}{N}\right)}}{1-q^{\alpha N}}\right)^{m} q^{-N x} d \mu_{q^{N}}(x) \tag{2.3}\\
& =\frac{1+q^{N}}{1+q^{N p}} \sum_{i=0}^{p-1}(-1)^{i}\left(\frac{1-q^{\alpha N p}}{1-q^{\alpha}}\right)^{m} \\
& \quad \int_{\mathbb{Z}_{p}}\left(\frac{\left.1-q^{\alpha p N\left(x+\frac{a+i N}{p N}\right.}\right)}{1-q^{\alpha p N}}\right) q^{-x p N} d \mu_{q^{p N}}(x)
\end{align*}
$$

From (2.1a), (2.2) and (2.3), we note that the p-adic integration is given by

$$
\begin{aligned}
& \widetilde{T}_{q}^{(\alpha)}\left(s, a, N: q^{N}\right) \\
& =\frac{1+q^{N}}{1+q^{N p}} \sum_{\substack{0 \leq i \leq p-1 \\
a+i N \neq 0\left(\bmod _{p)}\right.}}(-1)^{i} \widetilde{T}_{q}^{(\alpha)}\left(s,(a+i N)_{p N}, p^{N}: q^{p N}\right)
\end{aligned}
$$

such that

$$
\begin{aligned}
& \widetilde{T}_{q}^{(\alpha)}\left(m, a, N: q^{N}\right) \\
& =\left(\frac{1-q^{\alpha N}}{1-q^{\alpha}}\right)^{m} \int_{\mathbb{Z}_{p}}\left(\frac{1-q^{\alpha N\left(x+\frac{a}{N}\right)}}{1-q^{\alpha N}}\right)^{m} q^{-N x} d \mu_{q^{N}}(x) \\
& \quad-\left(\frac{1-q^{\alpha N p}}{1-q^{\alpha}}\right)^{m} \int_{\mathbb{Z}_{p}}\left(\frac{\left.1-q^{\alpha p N\left(x+\frac{a+i N}{p N}\right.}\right)}{1-q^{\alpha p N}}\right)^{m} q^{-p N x} d \mu_{q^{p N}}(x)
\end{aligned}
$$

where $\left(p^{-1} a\right)_{N}$ denotes the integer x with $0 \leq x<N, p x \equiv a(\bmod N)$ and m is integer with $m+1 \equiv 0(\bmod p-1)$. Therefore, we procure the following

$$
\begin{aligned}
& \sum_{M=1}^{k-1}(-1)^{M-1}\left(\frac{1-q^{\alpha M}}{1-q^{\alpha}}\right) \widetilde{T}_{q}^{(\alpha)}\left(m, h M, k: q^{k}\right) \\
& =\left(\frac{1-q^{\alpha k}}{1-q^{\alpha}}\right)^{m+1} \widetilde{S}_{m, q}^{(\alpha)}\left(h, k: q^{k}\right) \\
& \quad-\left(\frac{1-q^{\alpha k}}{1-q^{\alpha}}\right)^{m+1}\left(\frac{1-q^{\alpha k p}}{1-q^{\alpha k}}\right) \widetilde{S}_{m, q}^{(\alpha)}\left(\left(p^{-1} h\right), k: q^{p k}\right)
\end{aligned}
$$

where $p \nmid k$ and $p \nmid h m$ for each M. Thus, we state the following definition.

Definition 2.1. Let h, k be positive integer with $(h, k)=1, p \nmid k$. For $s \in \mathbb{Z}_{p}$, we define p-adic Dedekind-type DC sums as follows:

$$
\widetilde{S}_{p, q}^{(\alpha)}\left(s: h, k: q^{k}\right)=\sum_{M=1}^{k-1}(-1)^{M-1}\left(\frac{1-q^{\alpha M}}{1-q^{\alpha}}\right) \widetilde{T}_{q}^{(\alpha)}\left(m, h M, k: q^{k}\right) .
$$

Then, we can give the following theorem.
Theorem 2.2. For $m+1 \equiv 0(\bmod p-1)$ and $\left(p^{-1} a\right)_{N}$ denotes the integer x with $0 \leq x<N, p x \equiv a(\bmod N)$, then, we have

$$
\begin{aligned}
& \widetilde{S}_{p, q}^{(\alpha)}\left(s: h, k: q^{k}\right) \\
& =\left(\frac{1-q^{\alpha k}}{1-q^{\alpha}}\right)^{m+1} \widetilde{S}_{m, q}^{(\alpha)}\left(h, k: q^{k}\right) \\
& \quad-\left(\frac{1-q^{\alpha k}}{1-q^{\alpha}}\right)^{m+1}\left(\frac{1-q^{\alpha k p}}{1-q^{\alpha k}}\right) \widetilde{S}_{m, q}^{(\alpha)}\left(\left(p^{-1} h\right), k: q^{p k}\right) .
\end{aligned}
$$

For $\alpha=1$, we have to Kim's results in [7]. This result seems to be interesting for further work in $[6-8,13]$.

References

[1] S. Araci, Novel Identities for the q-Genocchi numbers and polynomials, Journal of Function Spaces and Applications, 2012 (2012), Article ID 214961, 12 pages.
[2] S. Araci, M. Acikgoz, and K. H. Park, A note on the q-analogue of Kim's p-adic log gamma type functions associated with q-extension of Genocchi and Euler numbers with weight α, Bull. Korean Math. Soc. 50 (2013), no. 2, 583-588.
[3] S. Araci, D. Erdal, and J. J. Seo, A study on the fermionic p-adic q-integral representation on \mathbb{Z}_{p} associated with weighted q-Bernstein and q-Genocchi polynomials, Abstract and Applied Analysis, 2011, Article ID 649248, 10 pages.
[4] S. Araci and M. Acikgoz, A note on the Frobenius-Euler numbers and polynomials associated with Bernstein polynomials, Advanced Studies in Contemporary Mathematics 22 (2012), no. 3, 399-406.
[5] S. Araci, M. Acikgoz, A. Bagdasaryan, and E. Şen, The Legendre Polynomials Associated with Bernoulli, Euler, Hermite and Bernstein Polynomials, Turkish Journal of Analysis and Number Theory, no. 1 (1) (2013): 1-3. doi: 10.12691/tjant-1-1-1.
[6] T. Kim, A note on p-adic q-Dedekind sums, C. R. Acad. Bulgare Sci. 54 (2001), 37-42.
[7] T. Kim, Note on q-Dedekind-type sums related to q-Euler polynomials, Glasgow Math. J. 54 (2012), 121-125.
[8] T. Kim, Note on Dedekind type DC sums, Adv. Stud. Contemp. Math. 18 (2009), 249-260.
[9] T. Kim, The modified q-Euler numbers and polynomials, Adv. Stud. Contemp. Math. 16 (2008), 161-170.
[10] T. Kim, q-Volkenborn integration, Russ. J. Math. Phys. 9 (2002), 288-299.
11] T. Kim, On p-adic interpolating function for q-Euler numbers and its derivatives, J. Math. Anal. Appl. 339 (2008), 598-608.
[12] T. Kim, On a q-analogue of the p-adic log gamma functions and related integrals, J. Number Theory 76 (1999), 320-329.
[13] Y. Simsek, q-Dedekind type sums related to q-zeta function and basic L-series, J. Math. Anal. Appl. 318 (2006), 333-351.
[14] M. Acikgoz and Y. Simsek, On multiple interpolation function of the Nörlundtype q-Euler polynomials, Abst. Appl. Anal. 2009 (2009), Article ID 382574, 14 pages.
[15] S. H. Rim and J. Jeong, A note on the Modified q-Euler Numbers and polynomials with weight α, International Mathematical Forum, 6 (2011), no. 65, 3245-3250.
[16] C. S. Ryoo, A note on the weighted q-Euler numbers and polynomials, $A d v$. Stud. Contemp. Math. 21 (2011), 47-54.
*
Department of Applied Mathematics
Pukyong National University
Busan 608-737, Republic of Korea
E-mail: seo2011@pknu.ac.kr
**
Atatürk Street, TR-31290 Hatay, TURKEY
E-mail: mtsrkn@hotmail.com

Department of Mathematics
University of Gaziantep
27310 Gaziantep, TURKEY
E-mail: acikgoz@gantep.edu.tr

[^0]: Received November 27, 2013; Accepted January 06, 2013.
 2010 Mathematics Subject Classification: Primary 11B68, 11S80; Secondary 11M06.

 Key words and phrases: Dedekind sums, q-Dedekind-type sums, p-adic q-integral, q-Euler numbers and polynomials, modified q-Euler numbers and polynomials.

 Correspondence should be addressed to Serkan Araci, mtsrkn@hotmail.com.

