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Abstract. In this paper, we construcr the q-Bernoulli-Fibonacci numbers
and polynomials. Finally, we investigate the distribution of the zeros of

the q-Bernoulli-Fibonacci polynomials by using computer.
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1. Introduction

In this paper, we define the q-Bernoulli-Fibonacci numbers and polynomials
and investigate the distribution of zeros of the q-Bernoulli-Fibonacci polynomials
by using computer. Throughout this paper, we always make use of the following
notations: R denotes the set of all real numbers and C denotes the set of complex
numbers, respectively.

The authors [1, 2, 3, 4, 5, 6] introduced generating functions for Bernoulli
numbers Bn and Bernoulli polynomials Bn(x)B as follow
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Bn
tn

n!
=
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et − 1
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Now, we give some definitions that we will use throughout the article. The
F -factorial is defined as

Fn! = Fn · Fn−1 · Fn−2 · · ·F1, F0! = 1.
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where Fn is n-th Fibonacci numbers. The Fibonomial coefficients are defined as
(0 ≤ k ≤ n) as (

n

k

)
F

=
Fn!

Fn−k!Fk!

with
(
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)
F
=

(
n
n

)
F
= 1 and

(
n
k

)
F
= 0 for n < k(see [7]).

The binomial theorem for the F -analogues (or-Golden binomial theorem) are
given by
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n∑
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The F -exponential functions eF (x) and EF (x) are defined as

eF (x) =

∞∑
n=0

xn

Fn!
, EF (x) =
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n=0
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.

The quantum q- Fibonacci number is defined as

[Fn]q =
1− qFn

1− q
.

for Fn is n-th Fibonacci numbers with q ̸= 1.
Now, we give some definitions that we will use throughout the article. The

q-F -factorial is defined as

[Fn]q! = [Fn]q · [Fn−1]q · [Fn−2]q · · · [F1]q, [F0]q! = 1.

where Fn is n-th Fibonacci numbers. The q-Fibonomial coefficients are defined
as (0 ≤ r ≤ m) as [

m
r

]
q,F

=
[Fm]q!

[Fm−r]q![Fr]q!
,

where m and r are non-negative integers.
The q-F -exponential functions eq,F (x) is defined as

eq,F (x) =

∞∑
n=0

xn

[Fn]q!
.

We define generating functions for q-Bernoulli-Fibonacci numbers Bn,q,F and
q-Bernoulli-Fibonacci polynomials Bn,q,F (x) as follow

∞∑
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Theorem 1.1. For n ≥ 1, we have

Bn,q,F (x) =

n∑
l=0

[
n
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]
q,F

Bl,q,Fx
n−l.
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For the first few q-Bernoulli-Fibonacci numbers we have,
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2. Zeros of the q-Bernoulli-Fibonacci polynomials

This section aims to demonstrate the benefit of using numerical investiga-
tion to support theoretical prediction and to discover new interesting pattern of
the zeros of the q- Bernoulli-Fibonacci polynomials Bn,q,F (x). The Bernoulli-
Fibonacci polynomials Bn,q,F (x). can be determined explicitly.
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A few of them are
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We investigate the zeros of the q-Bernoulli-Fibonacci polynomials Bn,q,F (x) =
0. by using a computer. We plot the zeros of the q-Bernoulli-Fibonacci polyno-
mials Bn,q,F (x) = 0 for x ∈ C(Figure 1).
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Figure 1. Zeros of Bn,q,F (x) = 0

In Figure 1(top-left), we choose n = 20, q = 3
10 . In Figure 1(top-right), we

choose n = 20, q = 5
10 . In Figure 1(bottom-left), we choose n = 20, q = 7

10 . In

Figure 1(bottom-right), we choose n = 20, q = 9
10 .
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Stacks of zeros of the q-Bernoulli-Fibonacci polynomials Bn,q,F (x) = 0 for
1 ≤ n ≤ 20 from a 3-D structure are presented(Figure 3).

Figure 2. Zeros of Bn,q,F (x) = 0

In Figure 2(top-left), we choose q = 3
10 . In Figure 2(top-right), we choose

q = 5
10 . In Figure 2(bottom-left), we choose q = 7

10 . In Figure 2(bottom-right),

we choose q = 9
10 .
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Stacks of zeros of the q-Bernoulli-Fibonacci polynomials Bn,q,F (x) = 0 for
1 ≤ n ≤ 20, q = 99

100 from a 3-D structure are presented(Figure 3).

Figure 3. Zeros of Bn,q,F (x) = 0

In Figure 3(top-left), we draw stacks of zeros of the q-Bernoulli-Fibonacci
polynomials in the three dimensions. In Figure 3(top-right), we draw x and y
axes but no z axis in the three dimensions. In Figure 3(bottom-left), we draw
y and z axes but no x axis in the three dimensions. In Figure 3(bottom-right),
we draw x and z axes but no y axis in the three dimensions.
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The plot of real zeros of q-Bernoulli-Fibonacci polynomials Bn,q,F (x) = 0 for
1 ≤ n ≤ 20 structure are presented(Figure4).

Figure 4. Zeros of Bn,q,F (x) = 0

In Figure 4(top-left), we choose q = 3
10 . In Figure 4(top-right), we choose

q = 5
10 . In Figure 4(bottom-left), we choose q = 7

10 . In Figure 4(bottom-right),

we choose q = 9
10 .
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Next, we calculated an approximate solution satisfying q-Bernoulli-Fibonacci
polynomials Bn,q,F (x) = 0 for x ∈ R, q = 3

10 . The results are given in Table 1.

Table 1. Approximate solutions of Bn,q,F (x) = 0

degree n x

1 1.0000

2 0.36132, 0.63868

3 1.0261

4 0.36950, 0.99271

5 1.0092

6 0.32541, 0.99685

7 0.083202, 0.21251, 1.0002

8 0.33821, 0.99995

9 1.0001

10 0.31785, 0.99997

11 0.061770, 0.24382, 1.0000

12 0.32779, 0.24382, 1.0000
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