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SYMMETRIC IDENTITIES FOR DEGENERATE

CARLITZ-TYPE q-EULER NUMBERS AND POLYNOMIALS†

CHEON SEOUNG RYOO

Abstract. In this paper we define the degenerate Carlitz-type q-Euler
polynomials by generalizing the degenerate Euler numbers and polynomi-
als, degenerate Carlitz-type Euler numbers and polynomials. We also give
some interesting properties, explicit formulas, a connection with degenerate

Carlitz-type q-Euler numbers and polynomials.
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1. Introduction

Many mathematicians have studied in the area of the degenerate Bernoulli
numbers and polynomials, degenerate Euler numbers and polynomials, degener-
ate Genocchi numbers and polynomials, degenerate tangent numbers and poly-
nomials(see [1-16]). In this paper, we define the degenerate Carlitz-type q-Euler
numbers and polynomials and study some properties of the degenerate Carlitz-
type q-Euler numbers and polynomials.

Throughout this paper, we always make use of the following notations: N
denotes the set of natural numbers, Z+ = N∪{0} denotes the set of nonnegative
integers, Z−

0 = {0,−1,−2,−3, . . .} denotes the set of nonpositive integers, Z de-
notes the set of integers, R denotes the set of real numbers, and C denotes the set
of complex numbers. We remember that the classical degenerate Euler numbers
En(λ) and Euler polynomials En(x, λ) are defined by the following generating

Received July 25, 2018. Revised April 7, 2019. Accepted April 13, 2019.
†This work was supported by the National Research Foundation of Korea(NRF) grant funded by

the Korea government(MEST) (No. 2017R1A2B4006092).

c⃝ 2019 KSCAM.

259



260 Cheon Seoung Ryoo

functions(see [2, 16])

2

(1 + λt)
1
λ + 1

=
∞∑

n=0

En(λ)
tn

n!
, (1)

and
2

(1 + λt)
1
λ + 1

(1 + λt)
x
λ =

∞∑
n=0

En(x, λ)
tn

n!
, (2)

respectively.
Some interesting properties of the classical degenerate Euler numbers and

polynomials were first investigated by Carlitz[2]. We recall that the classical
Stirling numbers of the first kind S1(n, k) and S2(n, k) are defined by the rela-
tions(see [16])

(x)n =
n∑

k=0

S1(n, k)x
k and xn =

n∑
k=0

S2(n, k)(x)k,

respectively. Here (x)n = x(x − 1) · · · (x − n + 1) denotes the falling factorial
polynomial of order n. The numbers S2(n,m) also admit a representation in
terms of a generating function

∞∑
n=m

S2(n,m)
tn

n!
=

(et − 1)m

m!
.

We also have
∞∑

n=m

S1(n,m)
tn

n!
=

(log(1 + t))m

m!
.

The generalized falling factorial (x|λ)n with increment λ is defined by

(x|λ)n =
n−1∏
k=0

(x− λk)

for positive integer n, with the convention (x|λ)0 = 1; we may also write

(x|λ)n =
n∑

k=0

S1(n, k)λ
n−kxk.

Note that (x|λ) is a homogeneous polynomials in λ and x of degree n, so if
λ ̸= 0 then (x|λ)n = λn(λ−1x|1)n. Clearly (x|0)n = xn. We also need the
binomial theorem: for a variable x,

(1 + λt)x/λ =

∞∑
n=0

(x|λ)n
tn

n!
.

The q-number is defined as

[n]q =
1− qn

1− q
= 1 + q + q2 + · · ·+ qn−3 + qn−2 + qn−1.
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By using q-number, we define the degenerate Carlitz-type q-Euler numbers
and polynomials, which generalized the previously known numbers and polyno-
mials, including the degenerate Euler numbers and polynomials. We begin by
recalling here the Carlitz-type q-Euler numbers and polynomials.

Definition 1.1. The Carlitz-type q-Euler numbers En,q and q-Euler polynomi-
als En,q(x) are defined by means of the generating functions

∞∑
n=0

En,q
tn

n!
= [2]q

∞∑
m=0

(−1)mqme[m]qt,

∞∑
n=0

En,q(x)
tn

n!
= [2]q

∞∑
m=0

(−1)mqme[m+x]qt,

(3)

respectively.

Many kinds of generalizations of these polynomials and numbers have been
presented in the literature(see [1-16]). Based on this idea, we construct the de-
generate Carlitz-type q-Euler number En,q(λ) and q-Euler polynomials En,q(x, λ).
In the following section, we introduce the Carlitz-type q-Euler polynomials and
numbers. After that we will investigate some their properties.

2. Degenerate Carlitz-type q-Euler numbers and polynomials

In this section, we define the degenerate Carlitz-type q-Euler numbers and
polynomials and provide some of their relevant properties.

Definition 2.1. For |q| < 1, the degenerate Carlitz-type q-Euler numbers
En,q(λ) and polynomials En,q(x, λ) are defined by means of the generating func-
tions

∞∑
n=0

En,q(λ)
tn

n!
= [2]q

∞∑
m=0

(−1)mqm(1 + λt)

[m]q
λ , (4)

and

∞∑
n=0

En,q(x, λ)
tn

n!
= [2]q

∞∑
m=0

(−1)mqm(1 + λt)

[m+ x]q
λ , (5)

respectively.

Obviously, if q → 1, then we have

En,q(x, λ) = En(x, λ), En,q(λ) = En(λ).
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On the other hand, we observe that

(1 + λt)

[x+ y]q
λ = e

[x+ y]q
λ

log(1+λt)

=
∞∑

n=0

(
[x+ y]q

λ

)n
(log(1 + λt))n

n!

=
∞∑

n=0

(
n∑

m=0

S1(n,m)λn−m[x+ y]mq

)
tn

n!
.

(6)

By (5), we have

∞∑
n=0

En,q(x, λ)
tn

n!

= [2]q

∞∑
m=0

(−1)mqm(1 + λt)

[m+ x]q
λ

= [2]q

∞∑
m=0

(−1)mqm

×
∞∑

n=0

n∑
l=0

S1(n, l)λ
n−l

∑l
j=0

(
l
j

)
(−1)jq(x+m)j

(1− q)l
tn

n!

=
∞∑

n=0

[2]q

n∑
l=0

l∑
j=0

S1(n, l)λ
n−l
(
l
j

)
(−1)jqxj

(1− q)l
1

1 + qj+1

 tn

n!
.

(7)

By comparing the coefficients tn

n! in the above equation, we have the following
theorem.

Theorem 2.2. For n ∈ Z+, we have

En,q(x, λ) = [2]q

n∑
l=0

l∑
j=0

(
l
j

)
(−1)jS1(n, l)λ

n−lqxj

(1− q)l
1

1 + qj+1

= [2]q

∞∑
m=0

n∑
l=0

(−1)mS1(n, l)λ
n−lqm[x+m]lq,

En,q(λ) = [2]q

n∑
l=0

l∑
j=0

(
l
j

)
(−1)jS1(n, l)λ

n−l

(1− q)l
1

1 + qj+1

= [2]q

∞∑
m=0

n∑
l=0

(−1)mS1(n, l)λ
n−lqm[m]lq.
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The degenerate Carlitz-type q-Euler number En,q(λ) can be determined ex-
plicitly. A few of them are

E0,q(λ) = 1,

E1,q(λ) =
[2]q

(1− q)(1 + q)
− [2]q

(1− q)(1 + q2)
,

E2,q(λ) =
[2]q

(1− q)2(1 + q)
− [2]qλ

(1− q)(1 + q)
+

[2]qλ

(1− q)(1 + q2)

− 2[2]q
(1− q)2(1 + q2)

+
[2]q

(1− q)2(1 + q3)
,

E3,q(λ) =
[2]q

(1− q)3(1 + q)
+

2[2]qλ
2

(1− q)(1 + q)
− 3[2]qλ

(1− q)2(1 + q)

− 2[2]qλ
2

(1− q)(1 + q2)
+

6[2]qλ

(1− q)2(1 + q2)
− 3[2]q

(1− q)3(1 + q2)

− 3[2]qλ

(1− q)2(1 + q3)
+

3[2]q
(1− q)3(1 + q3)

− [2]q
(1− q)3(1 + q4)

.

By replacing t by
eλt − 1

λ
in (5), we have

∞∑
m=0

Em,q(x)
tm

m!
=

∞∑
n=0

En,q(x, λ)
(
eλt − 1

λ

)n
1

n!

=
∞∑

n=0

En,q(x, λ)λ−n
∞∑

m=n

S2(m,n)λm tm

m!

=
∞∑

m=0

(
m∑

n=0

En,q(x, λ)λm−nS2(m,n)

)
tm

m!
.

(8)

Thus, we have the following theorem.

Theorem 2.3. For m ∈ Z+, we have

Em,q(x) =
m∑

n=0

En,q(x, λ)λm−nS2(m,n).

By replacing t by log(1 + λt)1/λ in (3), we have

∞∑
n=0

En,q(x)
(
log(1 + λt)1/λ

)n 1

n!
= [2]q

∞∑
m=0

(−1)mqm(1 + λt)

[m+ x]q
λ

=

∞∑
m=0

Em,q(x, λ)
tm

m!
,

(9)
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and
∞∑

n=0

En,q(x)
(
log(1 + λt)1/λ

)n 1

n!

=
∞∑

m=0

(
m∑

n=0

En,q(x)λ
m−nS1(m,n)

)
tm

m!
.

(10)

Thus, by (9) and (10), we have the following theorem.

Theorem 2.4. For m ∈ Z+, we have

Em,q(x, λ) =
m∑

n=0

En,q(x)λ
m−nS1(m,n)

The degenerate Carlitz-type q-Euler polynomials En,q(x, λ) can be determined
explicitly. A few of them are

E0,q(x, λ) = 1,

E1,q(x, λ) =
[2]q

(1− q)(1 + q)
− [2]qq

x

(1− q)(1 + q2)
,

E2,q(x, λ) = − [2]qλ

(1− q)(1 + q)
+

[2]q
(1− q)2(1 + q)

+
[2]qλq

x

(1− q)(1 + q2)

− 2[2]qq
x

(1− q)2(1 + q2)
+

[2]qq
2x

(1− q)2(1 + q3)
,

E3,q(x, λ) =
2[2]qλ

2

(1− q)(1 + q)
− 3[2]qλ

(1− q)2(1 + q)
+

[2]q
(1− q)3(1 + q)

− 2[2]qλ
2qx

(1− q)(1 + q2)
+

6[2]qλq
x

(1− q)2(1 + q2)
− 3[2]qq

x

(1− q)3(1 + q2)

− 3[2]qλ

(1− q)2(1 + q3)
+

3[2]qq
2x

(1− q)3(1 + q3)
− [2]qq

3x

(1− q)3(1 + q4)
.

We introduce a q-analogue of the generalized falling factorial (x|λ)n with incre-
ment λ. The generalized q-falling factorial ([x]q|λ)n with increment λ is defined
by

([x]q|λ)n =
n−1∏
k=0

([x]q − λk)

for positive integer n, with the convention ([x]q|λ)0 = 1.
By (4) and (5), we get

− [2]q(−1)nqn
∞∑
l=0

(−1)lql(1 + λt)

[l + n]q
λ + [2]q

∞∑
l=0

(−1)lql(1 + λt)

[l + n]q
λ

= [2]q

n−1∑
l=0

(−1)lql(1 + λt)

[l]q
λ .
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Hence we have

(−1)n+1qn
∞∑

m=0

Em,q(n, λ)
tm

m!
+

∞∑
m=0

Em,q(λ)
tm

m!

=
∞∑

m=0

(
[2]q

n−1∑
l=0

(−1)lql([l]q|λ)m

)
tm

m!
.

(11)

By comparing the coefficients tm

m! on both sides of (11), we have the following
theorem.

Theorem 2.5. For n ∈ Z+, we have

n−1∑
l=0

(−1)lql([l]q|λ)m =
(−1)n+1qnEm,q(n, λ) + Em,q(λ)

[2]q
.

We observe that

(1 + λt)

[x+ y]q
λ = (1 + λt)

[x]q
λ (1 + λt)

qx[y]q
λ

=

∞∑
m=0

([x]q|λ)m
tm

m!
elog(1+λt)

qx[y]q
λ

=
∞∑

m=0

([x]q|λ)m
tm

m!

∞∑
l=0

(
qx[y]q
λ

)l
log(1 + λt)l

l!

=
∞∑

m=0

([x]q|λ)m
tm

m!

∞∑
l=0

(
qx[y]q
λ

)l ∞∑
k=l

S1(k, l)λ
k t

k

k!

=

∞∑
n=0

(
n∑

k=0

k∑
l=0

(
n

k

)
([x]q|λ)n−kλ

k−lqxl[y]lqS1(k, l)

)
tn

n!
.

(12)

From (5) and (12), we get

∞∑
n=0

En,qζ(x, λ)
tn

n!
= [2]q

∞∑
m=0

(−1)mqm(1 + λt)

[m+ x]q
λ

= [2]q

∞∑
m=0

(−1)mqm
∞∑

n=0

(
n∑

k=0

k∑
l=0

(
n

k

)
([x]q|λ)n−kλ

k−lqxl[m]lqS1(k, l)

)
tn

n!

=
∞∑

n=0

(
n∑

k=0

k∑
l=0

(
n

k

)
[2]q

∞∑
m=0

(−1)mqm[m]lq([x]q|λ)n−kλ
k−lqxlS1(k, l)

)
tn

n!

=
∞∑

n=0

(
n∑

k=0

k∑
l=0

(
n

k

)
El,q([x]q|λ)n−kλ

k−lqxlS1(k, l)

)
tn

n!
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By comparing the coefficients tn

n! in the above equation, we have the following
theorem.

Theorem 2.6. For n ∈ Z+, we have

En,q(x, λ) =
n∑

k=0

k∑
l=0

(
n

k

)
([x]q|λ)n−kλ

k−lqxlS1(k, l)El,q.

Taking x = 0 in Theorem 2.3, Theorem 2.4, and Theorem 2.6, we have the
following corollary.

Corollary 2.7. For m ∈ Z+, we have

Em,q(λ) =

m∑
n=0

En,qλ
m−nS1(m,n), Em,q =

m∑
n=0

En,q(λ)λm−nS2(m,n).

3. Symmetric properties about degenerate Carlitz-type q-Euler
numbers and polynomials

In this section, we are going to obtain the main results of degenerate Carlitz-
type q-Euler numbers and polynomials. We also establish some interesting sym-
metric identities for degenerate Carlitz-type q-Euler numbers and polynomials.
Let w1 and w2 be odd positive integers. Observe that [xy]q = [x]qy [y]q for any
x, y ∈ C.
By substitute w1x+ w1i

w2
for x in Definition 2.1, replace q by qw2 and replace λ

by
λ

[w2]q
, respectively, we derive

∞∑
n=0

(
[2]qw1 [w2]

n
q

w2−1∑
i=0

(−1)iqw1iEn,qw2

(
w1x+

w1i

w2
,

λ

[w2]q

))
tn

n!

= [2]qw1

w2−1∑
i=0

(−1)iqw1i
∞∑

n=0

En,qw2

(
w1x+

w1i

w2
,

λ

[w2]q

)
([w2]qt)

n

n!

= [2]qw1

w2−1∑
i=0

(−1)iqw1i[2]qw2

∞∑
n=0

(−1)nqw2n

×
(
1 +

λ

[w2]q
[w2]qt

) [w1x+ w1i
w2

+ n]qw2

λ
[w2]q

= [2]qw1

w2−1∑
i=0

(−1)iqw1i[2]qw2

∞∑
n=0

(−1)nqw2n (1 + λt)

[w1w2x+ w1i+ nw2]q
λ .

Since for any non-negative integer n and odd positive integer w1, there exist
unique non-negative integer r such that n = w1r + j with 0 ≤ j ≤ w1 − 1.
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Hence, this can be written as

[2]qw1 [2]qw2

w2−1∑
i=0

(−1)iqw1i
∞∑

n=0

(−1)nqw2n

× (1 + λt)

[w1w2x+ w1i+ nw2]q
λ .

= [2]qw1 [2]qw2

w2−1∑
i=0

(−1)iqw1i
∞∑

w1r+j=0
0≤j≤w1−1

(−1)w1r+jqw2(w1r+j)

× (1 + λt)

[w1w2x+ w1i+ (w1r + j)w2]q
λ .

= [2]qw1 [2]qw2

w2−1∑
i=0

(−1)iqw1i
w1−1∑
j=0

∞∑
r=0

(−1)w1r(−1)jqw2w1rqw2j

× (1 + λt)

[w1w2x+ w1i+ w1w2r + w2j]q
λ

= [2]qw1 [2]qw2

w2−1∑
i=0

w1−1∑
j=0

∞∑
r=0

(−1)i(−1)r(−1)jqw1iqw2w1rqw2j

× (1 + λt)

[w1w2x+ w1i+ w1w2r + w2j]q
λ .

It follows from the above equation that

∞∑
n=0

(
[2]qw2 [w2]

n
q

w2−1∑
i=0

(−1)iqw1iEn,qw2

(
w1x+

w1i

w2
,

λ

[w2]q

))
tn

n!

= [2]qw1 [2]qw2

w2−1∑
i=0

w1−1∑
j=0

∞∑
r=0

(−1)i(−1)r(−1)jqw1iqw2w1rqw2j

× (1 + λt)

[w1w2x+ w1i+ w1w2r + w2j]q
λ .

(13)

From the similar method, we can have that

∞∑
n=0

(
[2]qw2 [w1]

n
q

w1−1∑
i=0

(−1)iqw2iEn,qw1

(
w2x+

w2i

w1
,

λ

[w1]q

))
tn

n!

= [2]qw1 [2]qw2

w1−1∑
i=0

w2−1∑
j=0

∞∑
r=0

(−1)i(−1)r(−1)jqw2iqw1w1rqw1j

× (1 + λt)

[w1w2x+ w2i+ w1w2r + w1j]q
λ .

(14)
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Thus, we have the following theorem from (13) and (14).

Theorem 3.1. Let w1 and w2 be odd positive integers. Then one has

[2]qw1 [w2]
n
q

w2−1∑
i=0

(−1)iqw1iEn,qw2

(
w1x+

w1i

w2
,

λ

[w2]q

)

= [2]qw2 [w1]
n
q

w1−1∑
j=0

(−1)jqw2jEn,qw1

(
w2x+

w2j

w1
,

λ

[w1]q

)
.

It follows that we show some special cases of Theorem 3.1. Setting w2 = 1 in
Theorem 3.1, we obtain the multiplication theorem for the degenerate Carlitz-
type q-Euler polynomials.

Corollary 3.2. Let w1 be odd positive integer. Then one has

En,q(x, λ) =
[2]q[w1]

n
q

[2]qw1

w1−1∑
j=0

(−1)jqjEn,qw1

(
x+ j

w1
,

λ

[w1]q

)
. (15)

Letting q → 1 in (15) leads to the familiar multiplication theorem for the
degenerate Euler polynomials

En(x, λ) = wn
1

w1−1∑
j=0

(−1)jEn
(
x+ i

w1
,
λ

w1

)
. (16)

Letting λ → 0 in (16) leads to the familiar multiplication theorem for the Euler
polynomials

En(x) = wn
1

w1−1∑
j=0

(−1)jEn

(
x+ i

w1

)
.

Setting x = 0 in Theorem 3.1, we have the following corollary.

Corollary 3.3. Let w1 and w2 be odd positive integers. Then one has

[2]qw1 [w2]
n
q

w2−1∑
i=0

(−1)iqw1iEn,qw2

(
w1i

w2
,

λ

[w2]q

)

= [2]qw2 [w1]
n
q

w1−1∑
j=0

(−1)jqw2jEn,qw1

(
w2j

w1
,

λ

[w1]q

)
.

By Theorem 2.4 and Corollary 3.3, we have the following theorem.

Theorem 3.4. Let w1 and w2 be odd positive integers. Then one has

n∑
l=0

S1(n, l)λ
n−l[w2]

l
q[2]qw1

w2−1∑
i=0

(−1)iqw1iEl,qw2

(
w1

w2
i

)

=

n∑
l=0

S1(n, l)λ
n−l[w1]

l
q[2]qw2

w1−1∑
j=0

(−1)jqw2jEl,qw1

(
w2

w1
j

)
.
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We obtain another result by applying the addition theorem for the Carlitz-
type q-Euler polynomials En,q(x). From (3), Theorem 2.4, and Theorem 3.1, we
have

[2]qw1 [w2]
n
q

w2−1∑
i=0

(−1)iqw1iEn,qw2

(
w1x+

w1i

w2
,

λ

[w2]q

)

= [2]qw1 [w2]
n
q

w2−1∑
i=0

(−1)iqw1i
n∑

l=0

El,qw2

(
w1x+

w1i

w2

)(
λ

[w2]q

)n−l

S1(n, l)

= [2]qw1

n∑
l=0

S1(n, l)λ
n−l[w2]

l
q

w2−1∑
i=0

(−1)iqw1i
l∑

k=0

qw1(l−k)i

× El−k,qw2 (w1x)

(
[w1]q
[w2]q

)k

[i]kqw1

= [2]qw1

n∑
l=0

S1(n, l)λ
n−l

l∑
k=0

(
l

k

)
[w1]

k
q [w2]

l−k
q El−k,qw2 (w1x)

×
w2−1∑
i=0

(−1)iqw1iq(l−k)w1i[i]kqw1 .

For all different integer n ≥ 0, let Sl,k,q(w1) =
∑w1−1

i=0 (−1)iq(l−k+1)i[i]kq . This

sum Sl,k,q(w1) =
∑w1−1

i=0 (−1)iq(l−k+1)i[i]kq is called the q-powers sums. There-
fore, we obtain that

[2]qw1 [w2]
n
q

w2−1∑
i=0

(−1)iqw1iEn,qw2

(
w1x+

w1i

w2
,

λ

[w2]q

)

=
n∑

l=0

l∑
k=0

(
l

k

)
S1(n, l)λ

n−l[2]qw1 [w1]
k
q [w2]

l−k
q El−k,qw2 (w1x)Sl,k,qw1 (w2),

(17)

and

[2]qw2 [w1]
n
q

w1−1∑
j=0

(−1)jqw2jEn,qw1

(
w2x+

w2j

w1
,

λ

[w1]q

)

=
n∑

l=0

l∑
k=0

(
l

k

)
S1(n, l)λ

n−l[2]qw2 [w2]
k
q [w1]

l−k
q El−k,qw1 (w2x)Sl,k,qw2 (w1).

(18)

By (17) and (18), we obtain the following symmetric identity.
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Theorem 3.5. Let w1 and w2 be odd positive integers. Then one has

n∑
l=0

l∑
k=0

(
l

k

)
S1(n, l)λ

n−l[2]qw1 [w1]
k
q [w2]

l−k
q El−k,qw2 (w1x)Sl,k,qw1 (w2)

=
n∑

l=0

l∑
k=0

(
l

k

)
S1(n, l)λ

n−l[2]qw2 [w2]
k
q [w1]

l−k
q El−k,qw1 (w2x)Sl,k,qw2 (w1).
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