SYMMETRIC IDENTITIES FOR DEGENERATE CARLITZ-TYPE q-EULER NUMBERS AND POLYNOMIALS ${ }^{\dagger}$

CHEON SEOUNG RYOO

Abstract

In this paper we define the degenerate Carlitz-type q-Euler polynomials by generalizing the degenerate Euler numbers and polynomials, degenerate Carlitz-type Euler numbers and polynomials. We also give some interesting properties, explicit formulas, a connection with degenerate Carlitz-type q-Euler numbers and polynomials.

AMS Mathematics Subject Classification : 11B68, 11S40, 11S80.
Key words and phrases : Degenerate Euler numbers and polynomials, degenerate q-Euler numbers and polynomials, degenerate Carlitz-type q Euler numbers and polynomials.

1. Introduction

Many mathematicians have studied in the area of the degenerate Bernoulli numbers and polynomials, degenerate Euler numbers and polynomials, degenerate Genocchi numbers and polynomials, degenerate tangent numbers and polynomials(see [1-16]). In this paper, we define the degenerate Carlitz-type q-Euler numbers and polynomials and study some properties of the degenerate Carlitztype q-Euler numbers and polynomials.

Throughout this paper, we always make use of the following notations: \mathbb{N} denotes the set of natural numbers, $\mathbb{Z}_{+}=\mathbb{N} \cup\{0\}$ denotes the set of nonnegative integers, $\mathbb{Z}_{0}^{-}=\{0,-1,-2,-3, \ldots\}$ denotes the set of nonpositive integers, \mathbb{Z} denotes the set of integers, \mathbb{R} denotes the set of real numbers, and \mathbb{C} denotes the set of complex numbers. We remember that the classical degenerate Euler numbers $\mathcal{E}_{n}(\lambda)$ and Euler polynomials $\mathcal{E}_{n}(x, \lambda)$ are defined by the following generating

[^0]functions(see $[2,16]$)
\[

$$
\begin{equation*}
\frac{2}{(1+\lambda t)^{\frac{1}{\lambda}}+1}=\sum_{n=0}^{\infty} \mathcal{E}_{n}(\lambda) \frac{t^{n}}{n!} \tag{1}
\end{equation*}
$$

\]

and

$$
\begin{equation*}
\frac{2}{(1+\lambda t)^{\frac{1}{\lambda}}+1}(1+\lambda t)^{\frac{x}{\lambda}}=\sum_{n=0}^{\infty} \mathcal{E}_{n}(x, \lambda) \frac{t^{n}}{n!} \tag{2}
\end{equation*}
$$

respectively.
Some interesting properties of the classical degenerate Euler numbers and polynomials were first investigated by Carlitz[2]. We recall that the classical Stirling numbers of the first kind $S_{1}(n, k)$ and $S_{2}(n, k)$ are defined by the relations(see [16])

$$
(x)_{n}=\sum_{k=0}^{n} S_{1}(n, k) x^{k} \text { and } x^{n}=\sum_{k=0}^{n} S_{2}(n, k)(x)_{k},
$$

respectively. Here $(x)_{n}=x(x-1) \cdots(x-n+1)$ denotes the falling factorial polynomial of order n. The numbers $S_{2}(n, m)$ also admit a representation in terms of a generating function

$$
\sum_{n=m}^{\infty} S_{2}(n, m) \frac{t^{n}}{n!}=\frac{\left(e^{t}-1\right)^{m}}{m!}
$$

We also have

$$
\sum_{n=m}^{\infty} S_{1}(n, m) \frac{t^{n}}{n!}=\frac{(\log (1+t))^{m}}{m!}
$$

The generalized falling factorial $(x \mid \lambda)_{n}$ with increment λ is defined by

$$
(x \mid \lambda)_{n}=\prod_{k=0}^{n-1}(x-\lambda k)
$$

for positive integer n, with the convention $(x \mid \lambda)_{0}=1$; we may also write

$$
(x \mid \lambda)_{n}=\sum_{k=0}^{n} S_{1}(n, k) \lambda^{n-k} x^{k}
$$

Note that $(x \mid \lambda)$ is a homogeneous polynomials in λ and x of degree n, so if $\lambda \neq 0$ then $(x \mid \lambda)_{n}=\lambda^{n}\left(\lambda^{-1} x \mid 1\right)_{n}$. Clearly $(x \mid 0)_{n}=x^{n}$. We also need the binomial theorem: for a variable x,

$$
(1+\lambda t)^{x / \lambda}=\sum_{n=0}^{\infty}(x \mid \lambda)_{n} \frac{t^{n}}{n!}
$$

The q-number is defined as

$$
[n]_{q}=\frac{1-q^{n}}{1-q}=1+q+q^{2}+\cdots+q^{n-3}+q^{n-2}+q^{n-1}
$$

By using q-number, we define the degenerate Carlitz-type q-Euler numbers and polynomials, which generalized the previously known numbers and polynomials, including the degenerate Euler numbers and polynomials. We begin by recalling here the Carlitz-type q-Euler numbers and polynomials.

Definition 1.1. The Carlitz-type q-Euler numbers $E_{n, q}$ and q-Euler polynomials $E_{n, q}(x)$ are defined by means of the generating functions

$$
\begin{align*}
& \sum_{n=0}^{\infty} E_{n, q} \frac{t^{n}}{n!}=[2]_{q} \sum_{m=0}^{\infty}(-1)^{m} q^{m} e^{[m]_{q} t} \\
& \sum_{n=0}^{\infty} E_{n, q}(x) \frac{t^{n}}{n!}=[2]_{q} \sum_{m=0}^{\infty}(-1)^{m} q^{m} e^{[m+x]_{q} t} \tag{3}
\end{align*}
$$

respectively.
Many kinds of generalizations of these polynomials and numbers have been presented in the literature(see [1-16]). Based on this idea, we construct the degenerate Carlitz-type q-Euler number $\mathcal{E}_{n, q}(\lambda)$ and q-Euler polynomials $\mathcal{E}_{n, q}(x, \lambda)$. In the following section, we introduce the Carlitz-type q-Euler polynomials and numbers. After that we will investigate some their properties.

2. Degenerate Carlitz-type q-Euler numbers and polynomials

In this section, we define the degenerate Carlitz-type q-Euler numbers and polynomials and provide some of their relevant properties.

Definition 2.1. For $|q|<1$, the degenerate Carlitz-type q-Euler numbers $\mathcal{E}_{n, q}(\lambda)$ and polynomials $\mathcal{E}_{n, q}(x, \lambda)$ are defined by means of the generating functions

$$
\begin{equation*}
\sum_{n=0}^{\infty} \mathcal{E}_{n, q}(\lambda) \frac{t^{n}}{n!}=[2]_{q} \sum_{m=0}^{\infty}(-1)^{m} q^{m}(1+\lambda t) \frac{[m]_{q}}{\lambda} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n=0}^{\infty} \mathcal{E}_{n, q}(x, \lambda) \frac{t^{n}}{n!}=[2]_{q} \sum_{m=0}^{\infty}(-1)^{m} q^{m}(1+\lambda t) \frac{[m+x]_{q}}{\lambda} \tag{5}
\end{equation*}
$$

respectively.
Obviously, if $q \rightarrow 1$, then we have

$$
\mathcal{E}_{n, q}(x, \lambda)=\mathcal{E}_{n}(x, \lambda), \quad \mathcal{E}_{n, q}(\lambda)=\mathcal{E}_{n}(\lambda)
$$

On the other hand, we observe that

$$
\begin{align*}
(1+\lambda t)^{\frac{[x+y]_{q}}{\lambda}} & =e^{\frac{[x+y]_{q}}{\lambda} \log (1+\lambda t)} \\
& =\sum_{n=0}^{\infty}\left(\frac{[x+y]_{q}}{\lambda}\right)^{n} \frac{(\log (1+\lambda t))^{n}}{n!} \tag{6}\\
& =\sum_{n=0}^{\infty}\left(\sum_{m=0}^{n} S_{1}(n, m) \lambda^{n-m}[x+y]_{q}^{m}\right) \frac{t^{n}}{n!}
\end{align*}
$$

By (5), we have

$$
\begin{align*}
& \sum_{n=0}^{\infty} \mathcal{E}_{n, q}(x, \lambda) \frac{t^{n}}{n!} \\
& =[2]_{q} \sum_{m=0}^{\infty}(-1)^{m} q^{m}(1+\lambda t) \frac{[m+x]_{q}}{\lambda} \\
& =[2]_{q} \sum_{m=0}^{\infty}(-1)^{m} q^{m} \tag{7}\\
& \quad \times \sum_{n=0}^{\infty} \sum_{l=0}^{n} S_{1}(n, l) \lambda^{n-l} \frac{\sum_{j=0}^{l}\binom{l}{j}(-1)^{j} q^{(x+m) j}}{(1-q)^{l}} \frac{t^{n}}{n!} \\
& =\sum_{n=0}^{\infty}\left([2]_{q} \sum_{l=0}^{n} \sum_{j=0}^{l} \frac{S_{1}(n, l) \lambda^{n-l}\left(\begin{array}{l}
l \\
j \\
j
\end{array}\right)(-1)^{j} q^{x j}}{(1-q)^{l}} \frac{1}{1+q^{j+1}}\right) \frac{t^{n}}{n!} .
\end{align*}
$$

By comparing the coefficients $\frac{t^{n}}{n!}$ in the above equation, we have the following theorem.

Theorem 2.2. For $n \in \mathbb{Z}_{+}$, we have

$$
\begin{aligned}
\mathcal{E}_{n, q}(x, \lambda) & =[2]_{q} \sum_{l=0}^{n} \sum_{j=0}^{l} \frac{\binom{l}{j}(-1)^{j} S_{1}(n, l) \lambda^{n-l} q^{x j}}{(1-q)^{l}} \frac{1}{1+q^{j+1}} \\
& =[2]_{q} \sum_{m=0}^{\infty} \sum_{l=0}^{n}(-1)^{m} S_{1}(n, l) \lambda^{n-l} q^{m}[x+m]_{q}^{l} \\
\mathcal{E}_{n, q}(\lambda) & =[2]_{q} \sum_{l=0}^{n} \sum_{j=0}^{l} \frac{\binom{l}{j}(-1)^{j} S_{1}(n, l) \lambda^{n-l}}{(1-q)^{l}} \frac{1}{1+q^{j+1}} \\
& =[2]_{q} \sum_{m=0}^{\infty} \sum_{l=0}^{n}(-1)^{m} S_{1}(n, l) \lambda^{n-l} q^{m}[m]_{q}^{l} .
\end{aligned}
$$

The degenerate Carlitz-type q-Euler number $\mathcal{E}_{n, q}(\lambda)$ can be determined explicitly. A few of them are

$$
\begin{aligned}
\mathcal{E}_{0, q}(\lambda)= & 1, \\
\mathcal{E}_{1, q}(\lambda)= & \frac{[2]_{q}}{(1-q)(1+q)}-\frac{[2]_{q}}{(1-q)\left(1+q^{2}\right)}, \\
\mathcal{E}_{2, q}(\lambda)= & \frac{[2]_{q}}{(1-q)^{2}(1+q)}-\frac{[2]_{q} \lambda}{(1-q)(1+q)}+\frac{[2]_{q} \lambda}{(1-q)\left(1+q^{2}\right)} \\
& -\frac{2[2]_{q}}{(1-q)^{2}\left(1+q^{2}\right)}+\frac{[2]_{q}}{(1-q)^{2}\left(1+q^{3}\right)}, \\
\mathcal{E}_{3, q}(\lambda)= & \frac{[2]_{q}}{(1-q)^{3}(1+q)}+\frac{2[2]_{q} \lambda^{2}}{(1-q)(1+q)}-\frac{3[2]_{q} \lambda}{(1-q)^{2}(1+q)} \\
& -\frac{2[2]_{q} \lambda^{2}}{(1-q)\left(1+q^{2}\right)}+\frac{6[2]_{q} \lambda}{(1-q)^{2}\left(1+q^{2}\right)}-\frac{3[2]_{q}}{(1-q)^{3}\left(1+q^{2}\right)} \\
& -\frac{3[2]_{q} \lambda}{(1-q)^{2}\left(1+q^{3}\right)}+\frac{3[2]_{q}}{(1-q)^{3}\left(1+q^{3}\right)}-\frac{[2]_{q}}{(1-q)^{3}\left(1+q^{4}\right)} .
\end{aligned}
$$

By replacing t by $\frac{e^{\lambda t}-1}{\lambda}$ in (5), we have

$$
\begin{align*}
\sum_{m=0}^{\infty} E_{m, q}(x) \frac{t^{m}}{m!} & =\sum_{n=0}^{\infty} \mathcal{E}_{n, q}(x, \lambda)\left(\frac{e^{\lambda t}-1}{\lambda}\right)^{n} \frac{1}{n!} \\
& =\sum_{n=0}^{\infty} \mathcal{E}_{n, q}(x, \lambda) \lambda^{-n} \sum_{m=n}^{\infty} S_{2}(m, n) \lambda^{m} \frac{t^{m}}{m!} \tag{8}\\
& =\sum_{m=0}^{\infty}\left(\sum_{n=0}^{m} \mathcal{E}_{n, q}(x, \lambda) \lambda^{m-n} S_{2}(m, n)\right) \frac{t^{m}}{m!}
\end{align*}
$$

Thus, we have the following theorem.
Theorem 2.3. For $m \in \mathbb{Z}_{+}$, we have

$$
E_{m, q}(x)=\sum_{n=0}^{m} \mathcal{E}_{n, q}(x, \lambda) \lambda^{m-n} S_{2}(m, n)
$$

By replacing t by $\log (1+\lambda t)^{1 / \lambda}$ in (3), we have

$$
\begin{align*}
\sum_{n=0}^{\infty} E_{n, q}(x)\left(\log (1+\lambda t)^{1 / \lambda}\right)^{n} \frac{1}{n!} & =[2]_{q} \sum_{m=0}^{\infty}(-1)^{m} q^{m}(1+\lambda t) \frac{[m+x]_{q}}{\lambda} \tag{9}\\
& =\sum_{m=0}^{\infty} \mathcal{E}_{m, q}(x, \lambda) \frac{t^{m}}{m!}
\end{align*}
$$

and

$$
\begin{align*}
& \sum_{n=0}^{\infty} E_{n, q}(x)\left(\log (1+\lambda t)^{1 / \lambda}\right)^{n} \frac{1}{n!} \\
& =\sum_{m=0}^{\infty}\left(\sum_{n=0}^{m} E_{n, q}(x) \lambda^{m-n} S_{1}(m, n)\right) \frac{t^{m}}{m!} \tag{10}
\end{align*}
$$

Thus, by (9) and (10), we have the following theorem.
Theorem 2.4. For $m \in \mathbb{Z}_{+}$, we have

$$
\mathcal{E}_{m, q}(x, \lambda)=\sum_{n=0}^{m} E_{n, q}(x) \lambda^{m-n} S_{1}(m, n)
$$

The degenerate Carlitz-type q-Euler polynomials $\mathcal{E}_{n, q}(x, \lambda)$ can be determined explicitly. A few of them are

$$
\begin{aligned}
\mathcal{E}_{0, q}(x, \lambda)= & 1 \\
\mathcal{E}_{1, q}(x, \lambda)= & \frac{[2]_{q}}{(1-q)(1+q)}-\frac{[2]_{q} q^{x}}{(1-q)\left(1+q^{2}\right)}, \\
\mathcal{E}_{2, q}(x, \lambda)= & -\frac{[2]_{q} \lambda}{(1-q)(1+q)}+\frac{[2]_{q}}{(1-q)^{2}(1+q)}+\frac{[2]_{q} \lambda q^{x}}{(1-q)\left(1+q^{2}\right)} \\
& -\frac{2[2]_{q} q^{x}}{(1-q)^{2}\left(1+q^{2}\right)}+\frac{[2]_{q} q^{2 x}}{(1-q)^{2}\left(1+q^{3}\right)}, \\
\mathcal{E}_{3, q}(x, \lambda)= & \frac{2[2]_{q} \lambda^{2}}{(1-q)(1+q)}-\frac{3[2]_{q} \lambda}{(1-q)^{2}(1+q)}+\frac{[2]_{q}}{(1-q)^{3}(1+q)} \\
& -\frac{2[2]_{q} \lambda^{2} q^{x}}{(1-q)\left(1+q^{2}\right)}+\frac{6[2]_{q} \lambda q^{x}}{(1-q)^{2}\left(1+q^{2}\right)}-\frac{3[2]_{q} q^{x}}{(1-q)^{3}\left(1+q^{2}\right)} \\
& -\frac{3[2]_{q} \lambda}{(1-q)^{2}\left(1+q^{3}\right)}+\frac{3[2]_{q} q^{2 x}}{(1-q)^{3}\left(1+q^{3}\right)}-\frac{[2]_{q} q^{3 x}}{(1-q)^{3}\left(1+q^{4}\right)}
\end{aligned}
$$

We introduce a q-analogue of the generalized falling factorial $(x \mid \lambda)_{n}$ with increment λ. The generalized q-falling factorial $\left([x]_{q} \mid \lambda\right)_{n}$ with increment λ is defined by

$$
\left([x]_{q} \mid \lambda\right)_{n}=\prod_{k=0}^{n-1}\left([x]_{q}-\lambda k\right)
$$

for positive integer n, with the convention $\left([x]_{q} \mid \lambda\right)_{0}=1$.
By (4) and (5), we get

$$
\begin{aligned}
& -[2]_{q}(-1)^{n} q^{n} \sum_{l=0}^{\infty}(-1)^{l} q^{l}(1+\lambda t)^{\frac{[l+n]_{q}}{\lambda}}+[2]_{q} \sum_{l=0}^{\infty}(-1)^{l} q^{l}(1+\lambda t)^{\frac{[l+n]_{q}}{\lambda}} \\
& =[2]_{q} \sum_{l=0}^{n-1}(-1)^{l} q^{l}(1+\lambda t)^{\frac{[l]_{q}}{\lambda}}
\end{aligned}
$$

Hence we have

$$
\begin{align*}
& (-1)^{n+1} q^{n} \sum_{m=0}^{\infty} \mathcal{E}_{m, q}(n, \lambda) \frac{t^{m}}{m!}+\sum_{m=0}^{\infty} \mathcal{E}_{m, q}(\lambda) \frac{t^{m}}{m!} \\
& =\sum_{m=0}^{\infty}\left([2]_{q} \sum_{l=0}^{n-1}(-1)^{l} q^{l}\left([l]_{q} \mid \lambda\right)_{m}\right) \frac{t^{m}}{m!} \tag{11}
\end{align*}
$$

By comparing the coefficients $\frac{t^{m}}{m!}$ on both sides of (11), we have the following theorem.

Theorem 2.5. For $n \in \mathbb{Z}_{+}$, we have

$$
\sum_{l=0}^{n-1}(-1)^{l} q^{l}\left([l]_{q} \mid \lambda\right)_{m}=\frac{(-1)^{n+1} q^{n} \mathcal{E}_{m, q}(n, \lambda)+\mathcal{E}_{m, q}(\lambda)}{[2]_{q}}
$$

We observe that

$$
\begin{align*}
(1+\lambda t)^{\frac{[x+y]_{q}}{\lambda}} & =(1+\lambda t)^{\frac{[x]_{q}}{\lambda}}(1+\lambda t)^{\frac{q^{x}[y]_{q}}{\lambda}} \\
& =\sum_{m=0}^{\infty}\left([x]_{q} \mid \lambda\right)_{m} \frac{t^{m}}{m!} e^{\log (1+\lambda t)} \frac{q^{x}[y]_{q}}{\lambda} \\
& =\sum_{m=0}^{\infty}\left([x]_{q} \mid \lambda\right)_{m} \frac{t^{m}}{m!} \sum_{l=0}^{\infty}\left(\frac{q^{x}[y]_{q}}{\lambda}\right)^{l} \frac{\log (1+\lambda t)^{l}}{l!} \tag{12}\\
& =\sum_{m=0}^{\infty}\left([x]_{q} \mid \lambda\right)_{m} \frac{t^{m}}{m!} \sum_{l=0}^{\infty}\left(\frac{q^{x}[y]_{q}}{\lambda}\right)^{l} \sum_{k=l}^{\infty} S_{1}(k, l) \lambda^{k} \frac{t^{k}}{k!} \\
& =\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n} \sum_{l=0}^{k}\binom{n}{k}\left([x]_{q} \mid \lambda\right)_{n-k} \lambda^{k-l} q^{x l}[y]_{q}^{l} S_{1}(k, l)\right) \frac{t^{n}}{n!}
\end{align*}
$$

From (5) and (12), we get

$$
\begin{aligned}
& \sum_{n=0}^{\infty} \mathcal{E}_{n, q}(x, \lambda) \frac{t^{n}}{n!}=[2]_{q} \sum_{m=0}^{\infty}(-1)^{m} q^{m}(1+\lambda t) \frac{[m+x]_{q}}{\lambda} \\
& =[2]_{q} \sum_{m=0}^{\infty}(-1)^{m} q^{m} \sum_{n=0}^{\infty}\left(\sum_{k=0}^{n} \sum_{l=0}^{k}\binom{n}{k}\left([x]_{q} \mid \lambda\right)_{n-k} \lambda^{k-l} q^{x l}[m]_{q}^{l} S_{1}(k, l)\right) \frac{t^{n}}{n!} \\
& =\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n} \sum_{l=0}^{k}\binom{n}{k}[2]_{q} \sum_{m=0}^{\infty}(-1)^{m} q^{m}[m]_{q}^{l}\left([x]_{q} \mid \lambda\right)_{n-k} \lambda^{k-l} q^{x l} S_{1}(k, l)\right) \frac{t^{n}}{n!} \\
& =\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n} \sum_{l=0}^{k}\binom{n}{k} E_{l, q}\left([x]_{q} \mid \lambda\right)_{n-k} \lambda^{k-l} q^{x l} S_{1}(k, l)\right) \frac{t^{n}}{n!}
\end{aligned}
$$

By comparing the coefficients $\frac{t^{n}}{n!}$ in the above equation, we have the following theorem.

Theorem 2.6. For $n \in \mathbb{Z}_{+}$, we have

$$
\mathcal{E}_{n, q}(x, \lambda)=\sum_{k=0}^{n} \sum_{l=0}^{k}\binom{n}{k}\left([x]_{q} \mid \lambda\right)_{n-k} \lambda^{k-l} q^{x l} S_{1}(k, l) E_{l, q} .
$$

Taking $x=0$ in Theorem 2.3, Theorem 2.4, and Theorem 2.6, we have the following corollary.

Corollary 2.7. For $m \in \mathbb{Z}_{+}$, we have

$$
\mathcal{E}_{m, q}(\lambda)=\sum_{n=0}^{m} E_{n, q} \lambda^{m-n} S_{1}(m, n), \quad E_{m, q}=\sum_{n=0}^{m} \mathcal{E}_{n, q}(\lambda) \lambda^{m-n} S_{2}(m, n)
$$

3. Symmetric properties about degenerate Carlitz-type q-Euler numbers and polynomials

In this section, we are going to obtain the main results of degenerate Carlitztype q-Euler numbers and polynomials. We also establish some interesting symmetric identities for degenerate Carlitz-type q-Euler numbers and polynomials. Let w_{1} and w_{2} be odd positive integers. Observe that $[x y]_{q}=[x]_{q^{y}}[y]_{q}$ for any $x, y \in \mathbb{C}$.
By substitute $w_{1} x+\frac{w_{1} i}{w_{2}}$ for x in Definition 2.1, replace q by $q^{w_{2}}$ and replace λ by $\frac{\lambda}{\left[w_{2}\right]_{q}}$, respectively, we derive

$$
\begin{aligned}
& \sum_{n=0}^{\infty}\left([2]_{q^{w_{1}}}\left[w_{2}\right]_{q}^{n} \sum_{i=0}^{w_{2}-1}(-1)^{i} q^{w_{1} i} \mathcal{E}_{n, q^{w_{2}}}\left(w_{1} x+\frac{w_{1} i}{w_{2}}, \frac{\lambda}{\left[w_{2}\right]_{q}}\right)\right) \frac{t^{n}}{n!} \\
& =[2]_{q^{w_{1}}} \sum_{i=0}^{w_{2}-1}(-1)^{i} q^{w_{1} i} \sum_{n=0}^{\infty} \mathcal{E}_{n, q^{w_{2}}}\left(w_{1} x+\frac{w_{1} i}{w_{2}}, \frac{\lambda}{\left[w_{2}\right]_{q}}\right) \frac{\left(\left[w_{2}\right]_{q} t\right)^{n}}{n!} \\
& =[2]_{q^{w_{1}}} \sum_{i=0}^{w_{2}-1}(-1)^{i} q^{w_{1} i}[2]_{q^{w_{2}}} \sum_{n=0}^{\infty}(-1)^{n} q^{w_{2} n} \\
& \quad \times\left(1+\frac{\lambda}{\left[w_{2}\right]_{q}}\left[w_{2}\right]_{q} t\right) \frac{\left[w_{1} x+\frac{w_{1} i}{w_{2}}+n\right]_{q^{w_{2}}}}{\frac{\lambda}{\left[w_{2}\right]_{q}}} \\
& =[2]_{q^{w_{1}}} \sum_{i=0}^{w_{2}-1}(-1)^{i} q^{w_{1} i}[2]_{q^{w_{2}}} \sum_{n=0}^{\infty}(-1)^{n} q^{w_{2} n}(1+\lambda t) \frac{\left[w_{1} w_{2} x+w_{1} i+n w_{2}\right]_{q}}{\lambda}
\end{aligned}
$$

Since for any non-negative integer n and odd positive integer w_{1}, there exist unique non-negative integer r such that $n=w_{1} r+j$ with $0 \leq j \leq w_{1}-1$.

Hence, this can be written as

$$
\begin{aligned}
& {[2]_{q^{w_{1}}}[2]_{q^{w_{2}}} \sum_{i=0}^{w_{2}-1}(-1)^{i} q^{w_{1} i} \sum_{n=0}^{\infty}(-1)^{n} q^{w_{2} n}} \\
& \times(1+\lambda t) \frac{\left[w_{1} w_{2} x+w_{1} i+n w_{2}\right]_{q}}{\lambda} \cdot \\
& =[2]_{q^{w_{1}}}[2]_{q^{w_{2}}} \sum_{i=0}^{w_{2}-1}(-1)^{i} q^{w_{1} i} \sum_{\substack{w_{1} r+j=0 \\
0 \leq j \leq w_{1}-1}}^{\infty}(-1)^{w_{1} r+j} q^{w_{2}\left(w_{1} r+j\right)} \\
& \quad \times(1+\lambda t) \frac{\left[w_{1} w_{2} x+w_{1} i+\left(w_{1} r+j\right) w_{2}\right]_{q}}{\lambda} . \\
& =[2]_{q^{w_{1}}[2]_{q^{w_{2}}} \sum_{i=0}^{w_{2}-1}(-1)^{i} q^{w_{1} i} \sum_{j=0}^{w_{1}-1} \sum_{r=0}^{\infty}(-1)^{w_{1} r}(-1)^{j} q^{w_{2} w_{1} r} q^{w_{2} j}}^{\lambda} \\
& \quad \times(1+\lambda t) \frac{\left[w_{1} w_{2} x+w_{1} i+w_{1} w_{2} r+w_{2} j\right]_{q}}{\lambda} \\
& =[2]_{q^{w_{1}}}[2]_{q^{w_{2}}} \sum_{i=0}^{w_{2}-1} \sum_{w_{1}-1}^{\sum_{j=0}^{\infty} \sum_{r=0}^{\infty}(-1)^{i}(-1)^{r}(-1)^{j} q^{w_{1} i} q^{w_{2} w_{1} r} q^{w_{2} j}} \\
& \quad \times(1+\lambda t) \frac{\left[w_{1} w_{2} x+w_{1} i+w_{1} w_{2} r+w_{2} j\right]_{q}}{\lambda}
\end{aligned}
$$

It follows from the above equation that

$$
\begin{gather*}
\sum_{n=0}^{\infty}\left([2]_{q^{w_{2}}}\left[w_{2}\right]_{q}^{n} \sum_{i=0}^{w_{2}-1}(-1)^{i} q^{w_{1} i} \mathcal{E}_{n, q^{w_{2}}}\left(w_{1} x+\frac{w_{1} i}{w_{2}}, \frac{\lambda}{\left[w_{2}\right]_{q}}\right)\right) \frac{t^{n}}{n!} \\
=[2]_{q^{w_{1}}}[2]_{q^{w_{2}}} \sum_{i=0}^{w_{2}-1} \sum_{j=0}^{w_{1}-1} \sum_{r=0}^{\infty}(-1)^{i}(-1)^{r}(-1)^{j} q^{w_{1} i} q^{w_{2} w_{1} r} q^{w_{2} j} \tag{13}\\
\times(1+\lambda t) \frac{\left[w_{1} w_{2} x+w_{1} i+w_{1} w_{2} r+w_{2} j\right]_{q}}{\lambda}
\end{gather*}
$$

From the similar method, we can have that

$$
\begin{align*}
& \sum_{n=0}^{\infty}\left([2]_{q^{w_{2}}}\left[w_{1}\right]_{q}^{n} \sum_{i=0}^{w_{1}-1}(-1)^{i} q^{w_{2} i} \mathcal{E}_{n, q^{w_{1}}}\left(w_{2} x+\frac{w_{2} i}{w_{1}}, \frac{\lambda}{\left[w_{1}\right]_{q}}\right)\right) \frac{t^{n}}{n!} \\
& =[2]_{q^{w_{1}}}[2]_{q^{w_{2}}} \sum_{i=0}^{w_{1}-1} \sum_{j=0}^{w_{2}-1} \sum_{r=0}^{\infty}(-1)^{i}(-1)^{r}(-1)^{j} q^{w_{2} i} q^{w_{1} w_{1} r} q^{w_{1} j} \tag{14}\\
& \quad \times(1+\lambda t) \\
& \frac{\left[w_{1} w_{2} x+w_{2} i+w_{1} w_{2} r+w_{1} j\right]_{q}}{\lambda}
\end{align*}
$$

Thus, we have the following theorem from (13) and (14).
Theorem 3.1. Let w_{1} and w_{2} be odd positive integers. Then one has

$$
\begin{aligned}
& {[2]_{q^{w_{1}}}\left[w_{2}\right]_{q}^{n} \sum_{i=0}^{w_{2}-1}(-1)^{i} q^{w_{1} i} \mathcal{E}_{n, q^{w_{2}}}\left(w_{1} x+\frac{w_{1} i}{w_{2}}, \frac{\lambda}{\left[w_{2}\right]_{q}}\right)} \\
& =[2]_{q^{w_{2}}}\left[w_{1}\right]_{q}^{n} \sum_{j=0}^{w_{1}-1}(-1)^{j} q^{w_{2} j} \mathcal{E}_{n, q^{w_{1}}}\left(w_{2} x+\frac{w_{2} j}{w_{1}}, \frac{\lambda}{\left[w_{1}\right]_{q}}\right) .
\end{aligned}
$$

It follows that we show some special cases of Theorem 3.1. Setting $w_{2}=1$ in Theorem 3.1, we obtain the multiplication theorem for the degenerate Carlitztype q-Euler polynomials.
Corollary 3.2. Let w_{1} be odd positive integer. Then one has

$$
\begin{equation*}
\mathcal{E}_{n, q}(x, \lambda)=\frac{[2]_{q}\left[w_{1}\right]_{q}^{n}}{[2]_{q^{w_{1}}}^{n}} \sum_{j=0}^{w_{1}-1}(-1)^{j} q^{j} \mathcal{E}_{n, q^{w_{1}}}\left(\frac{x+j}{w_{1}}, \frac{\lambda}{\left[w_{1}\right]_{q}}\right) . \tag{15}
\end{equation*}
$$

Letting $q \rightarrow 1$ in (15) leads to the familiar multiplication theorem for the degenerate Euler polynomials

$$
\begin{equation*}
\mathcal{E}_{n}(x, \lambda)=w_{1}^{n} \sum_{j=0}^{w_{1}-1}(-1)^{j} \mathcal{E}_{n}\left(\frac{x+i}{w_{1}}, \frac{\lambda}{w_{1}}\right) \tag{16}
\end{equation*}
$$

Letting $\lambda \rightarrow 0$ in (16) leads to the familiar multiplication theorem for the Euler polynomials

$$
E_{n}(x)=w_{1}^{n} \sum_{j=0}^{w_{1}-1}(-1)^{j} E_{n}\left(\frac{x+i}{w_{1}}\right)
$$

Setting $x=0$ in Theorem 3.1, we have the following corollary.
Corollary 3.3. Let w_{1} and w_{2} be odd positive integers. Then one has

$$
\begin{aligned}
& {[2]_{q^{w_{1}}}\left[w_{2}\right]_{q}^{n} \sum_{i=0}^{w_{2}-1}(-1)^{i} q^{w_{1} i} \mathcal{E}_{n, q^{w_{2}}}\left(\frac{w_{1} i}{w_{2}}, \frac{\lambda}{\left[w_{2}\right]_{q}}\right)} \\
& =[2]_{q^{w_{2}}}\left[w_{1}\right]_{q}^{n} \sum_{j=0}^{w_{1}-1}(-1)^{j} q^{w_{2} j} \mathcal{E}_{n, q^{w_{1}}}\left(\frac{w_{2} j}{w_{1}}, \frac{\lambda}{\left[w_{1}\right]_{q}}\right) .
\end{aligned}
$$

By Theorem 2.4 and Corollary 3.3, we have the following theorem.
Theorem 3.4. Let w_{1} and w_{2} be odd positive integers. Then one has

$$
\begin{aligned}
& \sum_{l=0}^{n} S_{1}(n, l) \lambda^{n-l}\left[w_{2}\right]_{q}^{l}[2]_{q^{w_{1}}} \sum_{i=0}^{w_{2}-1}(-1)^{i} q^{w_{1} i} E_{l, q^{w_{2}}}\left(\frac{w_{1}}{w_{2}} i\right) \\
& =\sum_{l=0}^{n} S_{1}(n, l) \lambda^{n-l}\left[w_{1}\right]_{q}^{l}[2]_{q^{w_{2}}} \sum_{j=0}^{w_{1}-1}(-1)^{j} q^{w_{2} j} E_{l, q^{w_{1}}}\left(\frac{w_{2}}{w_{1}} j\right) .
\end{aligned}
$$

We obtain another result by applying the addition theorem for the Carlitztype q-Euler polynomials $E_{n, q}(x)$. From (3), Theorem 2.4, and Theorem 3.1, we have

$$
\begin{aligned}
& {[2]_{q^{w_{1}}}\left[w_{2}\right]_{q}^{n} \sum_{i=0}^{w_{2}-1}(-1)^{i} q^{w_{1} i} \mathcal{E}_{n, q^{w_{2}}}\left(w_{1} x+\frac{w_{1} i}{w_{2}}, \frac{\lambda}{\left[w_{2}\right]_{q}}\right)} \\
& =[2]_{q^{w_{1}}}\left[w_{2}\right]_{q}^{n} \sum_{i=0}^{w_{2}-1}(-1)^{i} q^{w_{1} i} \sum_{l=0}^{n} E_{l, q^{w_{2}}}\left(w_{1} x+\frac{w_{1} i}{w_{2}}\right)\left(\frac{\lambda}{\left[w_{2}\right]_{q}}\right)^{n-l} S_{1}(n, l) \\
& =[2]_{q^{w_{1}}} \sum_{l=0}^{n} S_{1}(n, l) \lambda^{n-l}\left[w_{2}\right]_{q}^{l} \sum_{i=0}^{w_{2}-1}(-1)^{i} q^{w_{1} i} \sum_{k=0}^{l} q^{w_{1}(l-k) i} \\
& \quad \times E_{l-k, q^{w_{2}}}\left(w_{1} x\right)\left(\frac{\left[w_{1}\right]_{q}}{\left[w_{2}\right]_{q}}\right)^{k}[i]_{q^{w_{1}}}^{k} \\
& =[2]_{q^{w_{1}}} \sum_{l=0}^{n} S_{1}(n, l) \lambda^{n-l} \sum_{k=0}^{l}\binom{l}{k}\left[w_{1}\right]_{q}^{k}\left[w_{2}\right]_{q}^{l-k} E_{l-k, q^{w_{2}}}\left(w_{1} x\right) \\
& \quad \times \sum_{i=0}^{w_{2}-1}(-1)^{i} q^{w_{1} i} q^{(l-k) w_{1} i}[i]_{q^{w_{1}}}^{k} .
\end{aligned}
$$

For all different integer $n \geq 0$, let $\mathcal{S}_{l, k, q}\left(w_{1}\right)=\sum_{i=0}^{w_{1}-1}(-1)^{i} q^{(l-k+1) i}[i]_{q}^{k}$. This $\operatorname{sum} \mathcal{S}_{l, k, q}\left(w_{1}\right)=\sum_{i=0}^{w_{1}-1}(-1)^{i} q^{(l-k+1) i}[i]_{q}^{k}$ is called the q-powers sums. Therefore, we obtain that

$$
\begin{align*}
& {[2]_{q^{w_{1}}}\left[w_{2}\right]_{q}^{n} \sum_{i=0}^{w_{2}-1}(-1)^{i} q^{w_{1} i} \mathcal{E}_{n, q^{w_{2}}}\left(w_{1} x+\frac{w_{1} i}{w_{2}}, \frac{\lambda}{\left[w_{2}\right]_{q}}\right)} \\
& =\sum_{l=0}^{n} \sum_{k=0}^{l}\binom{l}{k} S_{1}(n, l) \lambda^{n-l}[2]_{q^{w_{1}}}\left[w_{1}\right]_{q}^{k}\left[w_{2}\right]_{q}^{l-k} E_{l-k, q^{w_{2}}}\left(w_{1} x\right) \mathcal{S}_{l, k, q^{w_{1}}}\left(w_{2}\right), \tag{17}
\end{align*}
$$

and

$$
\begin{align*}
& {[2]_{q^{w_{2}}}\left[w_{1}\right]_{q}^{n} \sum_{j=0}^{w_{1}-1}(-1)^{j} q^{w_{2} j} \mathcal{E}_{n, q^{w_{1}}}\left(w_{2} x+\frac{w_{2} j}{w_{1}}, \frac{\lambda}{\left[w_{1}\right]_{q}}\right)} \tag{18}\\
& =\sum_{l=0}^{n} \sum_{k=0}^{l}\binom{l}{k} S_{1}(n, l) \lambda^{n-l}[2]_{q^{w_{2}}}\left[w_{2}\right]_{q}^{k}\left[w_{1}\right]_{q}^{l-k} E_{l-k, q^{w_{1}}}\left(w_{2} x\right) \mathcal{S}_{l, k, q^{w_{2}}}\left(w_{1}\right) .
\end{align*}
$$

By (17) and (18), we obtain the following symmetric identity.

Theorem 3.5. Let w_{1} and w_{2} be odd positive integers. Then one has

$$
\begin{aligned}
& \sum_{l=0}^{n} \sum_{k=0}^{l}\binom{l}{k} S_{1}(n, l) \lambda^{n-l}[2]_{q^{w_{1}}}\left[w_{1}\right]_{q}^{k}\left[w_{2}\right]_{q}^{l-k} E_{l-k, q^{w_{2}}}\left(w_{1} x\right) S_{l, k, q^{w_{1}}}\left(w_{2}\right) \\
& =\sum_{l=0}^{n} \sum_{k=0}^{l}\binom{l}{k} S_{1}(n, l) \lambda^{n-l}[2]_{q^{w_{2}}}\left[w_{2}\right]_{q}^{k}\left[w_{1}\right]_{q}^{l-k} E_{l-k, q^{w_{1}}}\left(w_{2} x\right) S_{l, k, q^{w_{2}}}\left(w_{1}\right)
\end{aligned}
$$

References

1. R.P. Agarwal and C.S. Ryoo, Differential equations associated with generalized Truesdell polynomials and distribution of their zeros, J. Appl. \& Pure Math. 1 (2019), 11-24.
2. L. Carlitz, Degenerate Stiling, Bernoulli and Eulerian numbers, Utilitas Math. 15 (1979), 51-88.
3. F.T. Howard, Degenerate weighted Stirling numbers, Discrete Mathematics 57 (1985), 4558.
4. F.T. Howard, Explicit formulas for degenerate Bernoulli numbers, Discrete Mathematics 162 (1996), 175-185.
5. N.S. Jung and C.S. Ryoo, A research on the generalized poly-Bernoulli polynomials with variable a, J. Appl. Math. \& Informatics 36 (2018), 475-489.
6. N.S. Jung, C.S. Ryoo, symmetric identities for degenerate q-poly-Bernoulli numbers and polynomials, J. Appl. Math. \& Informatics 36 (2018), 29-38.
7. J.Y. Kang, A study on q-special numbers and polynomials with q-exponential distribution, J. Appl. Math. \& Informatics 36 (2018), 541-553.
8. M.S. Kim, On p-adic Euler L-function of two variables, J. Appl. Math. \& Informatics 36 (2018), 369-379.
9. F. Qi, D.V. Dolgy, T. Kim, C.S. Ryoo, On the partially degenerate Bernoulli polynomials of the first kind, Global Journal of Pure and Applied Mathematics 11 (2015), 2407-2412.
10. C.S. Ryoo, On degenerate Carlitz-type (h, q)-tangent numbers and polynomials, Journal of Algebra and Applied Mathematics 16 (2018), 119-130.
11. C.S. Ryoo, On the (p, q)-analogue of Euler zeta function, J. Appl. Math. \& Informatics 35 (2017), 303-311.
12. C.S. Ryoo, Some identities for (p, q)-Hurwitz zeta function, J. Appl. Math. \& Informatics 37 (2019), 97-103.
13. C.S. Ryoo, Differential equations associated with twisted (h, q)-tangent polynomials, J. Appl. Math. \& Informatics 36 (2018), 205-212.
14. C.S. Ryoo, Identities of symmetry for generalized Carlitz's q-tangent polynomials associated with p-adic integral on \mathbb{Z}_{p}, J. Appl. Math. \& Informatics 36 (2018), 115-120.
15. C.S. Ryoo, Some properties of the (h, p, q)-Euler numbers and polynomials and computation of their zeros, J. Appl. \& Pure Math. 1 (2019), 1-10.
16. P.T. Young, Degenerate Bernoulli polynomials, generalized factorial sums, and their applications, Journal of Number Theory 128 (2008), 738-758.

Cheon Seoung Ryoo received Ph.D. degree from Kyushu University. His research interests focus on the numerical verification method, scientific computing and p-adic functional analysis.
Department of Mathematics, Hannam University, Daejeon, 34430, Korea.
e-mail:ryoocs@hnu.kr

[^0]: Received July 25, 2018. Revised April 7, 2019. Accepted April 13, 2019.
 \dagger This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MEST) (No. 2017R1A2B4006092).
 (C) 2019 KSCAM.

