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SYMMETRIC IDENTITIES INVOLVING THE MODIFIED

(p, q)-HURWITZ EULER ZETA FUNCTION

A HYUN KIM, CHAE KYEONG AN AND HUI YOUNG LEE∗

Abstract. The main subject of this paper is to introduce the (p, q)-Euler

polynomials and obtain several interesting symmetric properties of the
modified (p, q)-Hurwitz Euler Zeta function with regard to (p, q) Euler poly-
nomials. In order to get symmetric properties, we introduce the new (p, q)-
analogue of Euler polynomials En,p,q(x) and numbers En,p,q .

AMS Mathematics Subject Classification : 11B68, 11S40, 11S80.

Key words and phrases : Hurwitz Euler Zeta function, Euler polynomials
and numbers, (p, q)-Euler polynomials.

1. Introduction

Many mathematicians have studied in the area of the Euler polynomials and
numbers. The history of the Euler numbers En can be traced back to the
Switzerland mathematician, Leonhard Euler(1707-1783). Until now, the Euler
polynomials and numbers have been extensively studied in many different con-
texts in such branches of mathematics as, for example, number theory, analytic
number theory, geometry, combinatorial analysis and so on(see [7, 8, 11-14]).
Also, Euler polynomials and numbers are associated with Zeta function. The
Zeta function play a crucial role in analytic number theory and have applica-
tions the field of applied statistics, probability theory, complex analysis, physics,
mathematical physics, p-adic analysis and other related fields. Especially, the
Zeta function happen within the concept of knot theory, quantum theory, num-
ber theory and applied analysis(see [1-10, 12-15]).

In this paper, we define the new (p, q)-analogue of Euler polynomials and
numbers. Furthermore, we introduce the new (p, q)-modified Euler polynomials
and numbers. We give some interesting properties of the new (p, q)-analogue of
Euler polynomials and numbers. In the last section, we define the new modified
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(p, q) -Hurwitz Euler Zeta function and investigate the symmetric property of
the new modified (p, q) - Hurwitz Euler Zeta function.

Throughout, we use the following notations: N = {1, 2, 3, · · · } for the natural
numbers, N0 = {0, 1, 2, 3, · · · } = N ∪ {0} for the set of nonnegative integers,
Z for the set of integers, Z−

0 = {0,−1,−2,−3, · · · } = Z− ∪ {0} for the set of
nonpositive integers, R for the set of real numbers and C for the set of complex
numbers. The q-number and (p, q)-number are defined as below:

[λ]q =
1− qλ

1− q
and [λ]p,q =

pλ − qλ

p− q

where 0 < q < p ≤ 1 and λ ∈ C. Note that lim
q→1

[λ]q = λ for any λ.

From now on, we introduce well-known definitions and theorems about Euler
polynomials, Euler numbers and Euler Zeta function.

Firstly, the Euler polynomials En(x) and the Euler numbers En = En(0) are
defined by the following generating functions(see [1, 7, 8, 11, 12, 14]):

∞∑
n=0

En(x)
tn

n!
=

2

et + 1
ext ( | t |< π ) (1.1)

and
∞∑
n=0

En
tn

n!
=

2

et + 1
( | t |< π ). (1.2)

Definition 1.1. For 0 < q < p ≤ 1, the Carlitz’s type (p, q)-Euler polynomials
En,p,q(x) and (p, q)-Euler numbers En,p,q are defined by the following generating
functions(see [12]):

Fp,q(x, t) =
∞∑
n=0

En,p,q(x)
tn

n!
= [2]q

∞∑
n=0

(−q)ne[x+n]p,qt (1.3)

and

Fp,q(t) =
∞∑
n=0

En,p,q
tn

n!
= [2]q

∞∑
n=0

(−q)ne[n]p,qt. (1.4)

The Hurwitz Zeta function was discovered by Adolf Hurwitz in 1881. The
Hurwitz(or generalized) Zeta function defined by

ζ(s, a) =

∞∑
n=0

1

(n+ a)s
,

where a is a real parameter satisfying 0 < a ≤ 1. It was a simple but important
generalization(see [4, 5, 6, 7, 10, 15]).

Definition 1.2. For a > 0 and ℜ(s) > 0, The Hurwitz-Euler Zeta funtion
ζE(s, a) is defined by(see [1, 5, 7, 8, 14])

ζE(s, a) =
∞∑
n=0

(−1)n

(n+ a)s
.
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2. Properties of the (p, q)-analogue of Euler polynomials and numbers

In this section, we define the new (p, q)-analogue of Euler polynomials and
numbers. Also, we define the modified (p, q)-Euler polynomials. Furthermore,
we provide some of their relevant properties.

Definition 2.1. For 0 < q < p ≤ 1, the (p, q)-analogue of Euler polynomials
En,p,q(x) and (p, q)-analogue of Euler numbers En,p,q are defined by the following
generating functions

Fp,q(x, t) =
∞∑
n=0

En,p,q(x)
tn

n!
= [2]q

∞∑
n=0

(−q)ne(x+[n]p,q)t (2.1)

and

Fp,q(t) =
∞∑
n=0

En,p,q
tn

n!
= [2]q

∞∑
n=0

(−q)ne[n]p,qt. (2.2)

If we take p = 1 and let q → 1 in Definition 2.1, then En,p,q(x) reduces to the
Euler polynomials En(x) and En,p,q reduces to the Euler numbers En:

lim
q→1

En,p,q(x) = En(x) and lim
q→1

En,p,q = En.

From (2.1), we find that
∞∑
l=0

El,p,q(x)
tl

l!
= [2]q

∞∑
n=0

(−q)ne(x+[n]p,q)t

=
∞∑
l=0

(
[2]q

∞∑
n=0

(−q)n (x+ [n]p,q)
l

)
tl

l!
.

By comparing coefficients of t
l

l! in the above equation, we have the following
theorem.

Theorem 2.2. For l ∈ N0 and 0 < q < p ≤ 1, we have

El,p,q(x) = [2]q

∞∑
n=0

(−q)n (x+ [n]p,q)
l
.

Definition 2.3. For 0 < q < p ≤ 1, the modified (p, q)-Euler polynomials are
defined by the following generating functions

F ∗
p,q(x, t) =

∞∑
n=0

E∗
n,p,q(x)

tn

n!
= [2]q

∞∑
n=0

(−q)ne(p
nx+[n]p,q)t.

From (2.1) and Definition 2.3, we get the following theorem.

Theorem 2.4. For l ∈ N0 and 0 < q < p ≤ 1, we have

E∗
l,p,q(x) = El,p,q(p

nx)

= [2]q

∞∑
n=0

(−q)n (pnx+ [n]p,q)
l
.
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Remark 2.1. Setting p = 1 and letting q → 1 in Definifion 2.3, we get
∞∑
n=0

E∗
n(x)

tn

n!
= 2

∞∑
n=0

(−1)ne(x+n)t =

∞∑
n=0

En(x)
tn

n!
.

From (2.1), we find that
∞∑
n=0

En,p,q(x+ y)
tn

n!
= [2]q

∞∑
n=0

(−q)ne(x+y+[n]p,q)t

= [2]q

∞∑
n=0

(−q)ne(x+[n]p,q)teyt

=

( ∞∑
n=0

En,p,q(x)
tn

n!

)( ∞∑
k=0

yk
tk

k!

)
,

which, by applying the Cauchy product, yields
∞∑
n=0

En,p,q(x+ y)
tn

n!
=

∞∑
n=0

(
n∑
k=0

(
n

k

)
Ek,p,q(x)y

n−k

)
tn

n!
. (2.3)

Thus, we have the following theorem by comparing the coefficients of tn

n! on
both sides of this last equation (2.3).

Theorem 2.5. (Addition formula) For n ∈ N0, we obtain

En,p,q(x+ y) =
n∑
k=0

(
n

k

)
Ek,p,q(x)y

n−k.

Let us take d
dx , which is a differential operator, on both sides of expression in

(2.1), we get

d

dx

( ∞∑
n=0

En,p,q(x)
tn

n!

)
=

d

dx

(
[2]q

∞∑
n=0

(−q)ne(x+[n]p,q)t

)

= [2]q

∞∑
n=0

(−q)nte(x+[n]p,q)t

= t
∞∑
n=0

En,p,q(x)
tn

n!

=

∞∑
n=0

nEn−1,p,q(x)
tn

n!
.

Therefore, we have the following theorem by comparing the coefficients of t
n

n!
on both sides of the above equation.

Theorem 2.6. (Difference relation) For n ∈ N, we have

d

dx
En,p,q(x) = nEn−1,p,q(x).
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Let us take
∫ b
a
, which is a integrated operations, on both sides of expression

in Theorem 2.6, we get∫ b

a

d

dx
En,p,q(x) dx =

∫ b

a

nEn−1,p,q(x) dx. (2.4)

Calculating the left-hand side of the equation (2.4), we have∫ b

a

d

dx
En,p,q(x) dx = En,p,q(b)− En,p,q(a). (2.5)

Consequently, we obtain the following theorem from (2.4) and (2.5).

Theorem 2.7. (Integral relation) For n ∈ N, we have∫ b

a

En−1,p,q(x) dx =
En,p,q(b)− En,p,q(a)

n
.

By using (2.1), we obtain
∞∑
n=0

En,p,q(x)
tn

n!

= [2]qe
xt

∞∑
n=0

(−q)n
∞∑
k=0

[n]kp,q
tk

k!

= [2]qe
xt

∞∑
k=0

(
1

p− q

)k ∞∑
n=0

k∑
l=0

(
k

l

)
(−1)n+lqn(1+l)pn(k−l)

tk

k!

= [2]q

( ∞∑
n=0

xn
tn

n!

)( ∞∑
k=0

(
1

p− q

)k k∑
l=0

(
k

l

)
(−1)l

1 + q1+lpk−l
tk

k!

)
which, by applying the Cauchy product, yields

∞∑
n=0

En,p,q(x)
tn

n!

= [2]q

∞∑
n=0

n∑
k=0

xn−k
tn−k

(n− k)!

(
1

p− q

)k k∑
l=0

(
k

l

)
(−1)l

1 + q1+lpk−l
tk

k!

=
∞∑
n=0

(
[2]q

n∑
k=0

k∑
l=0

(
n

k

)(
k

l

)(
1

p− q

)k
xn−k(−1)l

1 + q1+lpk−l

)
tn

n!
.

(2.6)

Thus, we have the following theorem by comparing the coefficients of tn

n! on
both sides of this last equation (2.6).

Theorem 2.8. (Explicit formula) For n ∈ N0, we have

En,p,q(x) = [2]q

n∑
k=0

k∑
l=0

(
n

k

)(
k

l

)(
1

p− q

)k
xn−k(−1)l

1 + q1+lpk−l
.
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3. Symmetric Identities involving the modified (p, q)-Hurwitz Euler
Zeta function

In this section, we introduce Hurwitz (p, q)-Euler Zeta function and define
the new (p, q)-analogue of Hurwitz Euler Zeta function. Furthermore, we define
the modified (p, q)-Hurwitz Euler Zeta function and investigate the symmetric
property of the modified (p, q)-Hurwitz Euler Zeta function.

In 2017, C.S. Ryoo defined the Hurwitz (p, q)-Euler Zeta function as fol-
lows(see [12]):

ζp,q(s, x) = [2]q

∞∑
n=0

(−1)nqn

[x+ n]sp,q
( s ∈ C; x ∈ C \ Z−

0 ). (3.1)

The new (p, q)-analogue of Hurwitz Euler Zeta function is slightly different
from ζp,q(s, x) defined by (3.1).

Definition 3.1. For s ∈ C and 0 < q < p ≤ 1, the (p, q)-analogue of Hurwitz
Euler Zeta function is defined by the following generating functions

ζ̃p,q,E(s, x) =
1

Γ(s)

∫ ∞

0

ts−1 {Fp,q(x,−t)} dt

= [2]q

∞∑
n=0

(−1)nqn

(x+ [n]p,q)
s

where Fp,q(x,−t) is given by (2.1).

By using Theorem 2.2 and Definition 3.1, we get

ζ̃p,q,E(−l, x) = [2]q

∞∑
n=0

(−1)nqn

(x+ [n]p,q)
−l

= [2]q

∞∑
n=0

(−1)nqn (x+ [n]p,q)
l

= El,p,q(x).

(3.2)

Hence, we obtain the following theorem from (3.2).

Theorem 3.2. For l ∈ N0 and 0 < q < p ≤ 1, we have

ζ̃p,q,E(−l, x) = El,p,q(x).

Definition 3.3. For s ∈ C and 0 < q < p ≤ 1, the modified (p, q)-Hurwitz
Euler Zeta function is defined by the following generating functions

ζ̃∗p,q,E(s, x) = [2]q

∞∑
n=0

(−1)nqn

(pnx+ [n]p,q)
s .

From Definition 3.1 and Definition 3.3, we get the following theorem.
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Theorem 3.4. For s ∈ C and 0 < q < p ≤ 1, we get

ζ̃∗p,q,E(s, x) = ζ̃p,q,E(s, p
nx)

= [2]q

∞∑
n=0

(−1)nqn

(pnx+ [n]p,q)
s .

By using Theorem 2.4 and Theroem 3.4, we obtain the following theorem.

Theorem 3.5. For l ∈ N0 and 0 < q < p ≤ 1, we have

ζ̃∗p,q,E(−l, x) = E∗
l,p,q(x).

Remark 3.1. Setting p = 1 and letting q → 1 in Definifion 3.3, we get

ζ̃∗E(s, x) = 2

∞∑
n=0

(−1)n

(x+ n)
s = 2ζE(s, x).

Moreover, by using (3.1) and Definition 3.3, we have

ζp,q(s, x) = [2]q

∞∑
n=0

(−1)nqn

[x+ n]sp,q

= [2]q

∞∑
n=0

(−1)nqn(
px+n−qx+n

p−q

)s
= [2]q

∞∑
n=0

(−1)nqn(
qx(pn−qn)−px+nqx(p−x−q−x)

p−q

)s
= [2]q

∞∑
n=0

(−1)nqn

qsx
(
−px+n p−x−q−x

p−q + [n]p,q

)s
= q−sx[2]q

∞∑
n=0

(−1)nqn(
px+np−1q−1[x]p−1,q−1 + [n]p,q

)s
= q−sxζ̃∗p,q,E

(
s, pxp−1q−1[x]p−1,q−1

)
.

(3.3)

Consequently, we obtain the following theorem from (3.3).

Theorem 3.6. For s ∈ C and 0 < q < p ≤ 1, we have

q−sxζ̃∗p,q,E
(
s, pxp−1q−1[x]p−1,q−1

)
= ζp,q(s, x).
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In view of Theorem 3.6, we consider Definition 3.3 in the following form:

q−absx−sbj ζ̃∗pa,qa,E

(
s, pabx+bjp−aq−a

[
bx+

bj

a

]
p−a,q−a

)

= q−absx−sbj [2]qa
∞∑
n=0

(−1)nqna(
pna+abx+bjp−aq−a

[
bx+ bj

a

]
p−a,q−a

+ [n]pa,qa

)s
= [2]qa

∞∑
n=0

(−1)nqna

(pabx+bjqabx+bj)
s
(
p−abx−bj p

na−qna

pa−qa − pna p
−abx−bj−q−abx−bj

pa−qa

)s
= [2]qa

∞∑
n=0

(−1)nqna(
pabx+bjqabx+bj(pnaq−abx−bj−p−abx−bjqna)

pa−qa

)s
= [2]qa

∞∑
n=0

(−1)nqna(
pna+abx+bj−qna+abx+bj

pa−qa

)s
= [2]qa

∞∑
n=0

(−1)nqna[
n+ bx+ bj

a

]s
pa,qa

.

For non-negative integers k and i such that n = kb+ i with 0 ≤ i ≤ b− 1, if
we suppose that a ≡ 1(mod 2) and b ≡ 1(mod 2), then we have

q−absx−sbj ζ̃∗pa,qa,E

(
s, pabx+bjp−aq−a

[
bx+

bj

a

]
p−a,q−a

)

= [2]qa
∞∑
n=0

(−1)nqna(
pna+abx+bj−qna+abx+bj

pa−qa

)s
= [a]sp,q[2]qa

∞∑
n=0

(−1)nqna

[na+ abx+ bj]
s
p,q

.

(3.4)

Putting n = kb+ i in above equation (3.4). Then we get the following that

q−absx−sbj ζ̃∗pa,qa,E

(
s, pabx+bjp−aq−a

[
bx+

bj

a

]
p−a,q−a

)

= [a]sp,q[2]qa
∞∑
k=0

b−1∑
i=0

(−1)kb+iq(kb+i)a

[(kb+ i)a+ abx+ bj]
s
p,q

= [a]sp,q[2]qa
b−1∑
i=0

(−1)iqai
∞∑
k=0

(−1)kqabk

[ab(x+ k) + ai+ bj]
s
p,q

.

(3.5)
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Let us take

a−1∑
j=0

(−1)jqbj in (3.5), we obtain

a−1∑
j=0

(−1)jqbjq−absx−sbj ζ̃∗pa,qa,E

(
s, pabx+bjp−aq−a

[
bx+

bj

a

]
p−a,q−a

)

= [a]sp,q[2]qa
a−1∑
j=0

(−1)jqbj
b−1∑
i=0

(−1)iqai
∞∑
k=0

(−1)kqabk

[ab(x+ k) + ai+ bj]
s
p,q

.

(3.6)

Exchanging a with b and j with i in (3.5), we get

q−absx−saiζ̃∗pb,qb,E

(
s, pabx+aip−bq−b

[
ax+

ai

b

]
p−b,q−b

)

= [b]sp,q[2]qb

a−1∑
j=0

(−1)jqbj
∞∑
k=0

(−1)kqabk

[ab(x+ k) + ai+ bj]
s
p,q

.

(3.7)

Therefore, we get the following theorem by applying (3.6) in (3.7).

Theorem 3.7. For any odd integers a and b, we have

[2]qb

[a]sp,q

a−1∑
i=0

(−1)iqbi(1−s)ζ̃∗pa,qa,E

(
s, pabx+bip−aq−a

[
bx+

bi

a

]
p−a,q−a

)

=
[2]qa

[b]sp,q

b−1∑
i=0

(−1)iqai(1−s)ζ̃∗pb,qb,E

(
s, pabx+aip−bq−b

[
ax+

ai

b

]
p−b,q−b

)
.

Setting b = 1 in Theorem 3.7, we get

[2]q
[a]sp,q

a−1∑
i=0

(−1)iqi(1−s)ζ̃∗pa,qa,E

(
s, pax+ip−aq−a

[
x+

i

a

]
p−a,q−a

)
= [2]qa ζ̃

∗
p,q,E

(
s, paxp−1q−1 [ax]p−1,q−1

)
.

(3.8)

Hence, we easily deduce the following corollary by applying (3.8).

Corollary 3.8. For any odd integers a, we have

ζ̃∗p,q,E

(
s, paxp−1q−1 [ax]p−1,q−1

)
=

[2]q
[2]qa [a]sp,q

a−1∑
i=0

(−1)iqi(1−s)ζ̃∗pa,qa,E

(
s, pax+ip−aq−a

[
x+

i

a

]
p−a,q−a

)
.

If p = 1 and q → 1 in Theorem 3.7, then we get the following corollary.

Corollary 3.9. For any odd integers a and b, we get

b
a−1∑
i=0

(−1)iζE

(
s, bx+

bi

a

)
= a

b−1∑
i=0

(−1)iζE

(
s, ax+

ai

b

)
.
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If we take s = −l in Theorem 3.7, then we have the following symmetric
property of the modified (p, q)-Euler polynomials.

Theorem 3.10. (symmetric property) For any odd integers a and b, we have

[2]qb [a]
l
p,q

a−1∑
i=0

(−1)iqbi(1+l)E∗
l,pa,qa

(
pabx+bip−aq−a

[
bx+

bi

a

]
p−a,q−a

)

= [2]qa [b]
l
p,q

b−1∑
i=0

(−1)iqai(1+l)E∗
l,pb,qb

(
pabx+aip−bq−b

[
ax+

ai

b

]
p−b,q−b

)
.

Taking b = 1 and replacing x by x
a in Theorem 3.10, we get

[2]q[a]
l
p,q

a−1∑
i=0

(−1)iqi(1+l)E∗
l,pa,qa

(
pax+ip−aq−a

[
x

a
+
i

a

]
p−a,q−a

)
= [2]qaE

∗
l,p,q

(
paxp−1q−1 [x]p−1,q−1

)
.

(3.9)

Therefore, we easily deduce the following corollary by applying (3.9).

Corollary 3.11. For any odd integers a, we have the distribution formula for
the modified (p, q)-Euler polynomials as follows

E∗
l,p,q (−pax[−x]p,q)

=
[2]q[a]

l
p,q

[2]qa

a−1∑
i=0

(−1)iqi(1+l)E∗
l,pa,qa

(
pax+ip−aq−a

[
x

a
+
i

a

]
p−a,q−a

)
.

If p = 1 and q → 1 in Theorem 3.10, then we get the following corollary.

Corollary 3.12. For any odd integers a and b, we have

a
a−1∑
i=0

(−1)iEl

(
bx+

bi

a

)
= b

b−1∑
i=0

(−1)iEl

(
ax+

ai

b

)
.
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