ON FULLY MODIFIED q-POLY-EULER NUMBERS AND POLYNOMIALS

C.S. RYOO

Abstract

In this paper, we define a new fully modified q-poly-Euler numbers and polynomials of the first type by using q-polylogarithm function. We derive some identities of the modified polynomials with Gaussian binomial coefficients. We also explore several relations that are connected with the q-analogue of Stirling numbers of the second kind.

AMS Mathematics Subject Classification : 11B68, 11B73, 11B75. Key words and phrases : Q-poly-Bernoulli polynomials of the first type, q-poly-Euler polynomials of the first type, q-Stirling numbers of the second kind, Gaussian binomials coefficient, q-polylogarithm function.

1. Introduction

Throughout this paper, we use the following notations: \mathbb{N} denotes the set of natural numbers, \mathbb{Z}_{+}denotes the set of nonnegative integers, \mathbb{Z} denotes the set of integers, \mathbb{R} denotes the set of real numbers, and \mathbb{C} denotes the set of complex numbers, respectively.

For $n, q \in \mathbb{R}$, the q-number is defined by

$$
[x]_{q}=\frac{1-q^{x}}{1-q},(q \neq 1) .
$$

We note that $\lim _{q \rightarrow 1}[x]_{q}=x$. The q-factorial of n of order k is defined as

$$
[n]_{q}^{(\underline{k})}=[n]_{q}[n-1]_{q} \cdots[n-k+1]_{q}, \quad(k=1,2,3, \cdots),
$$

where $[n]_{q}$ is q-number(see[?]-[8]). Specially, when $k=n$, it is reduced the q-factorial

$$
\begin{equation*}
[n]_{q}!=[n]_{q}[n-1]_{q} \cdots[1]_{q} . \tag{1.1}
\end{equation*}
$$

[^0](C) 2024 KSCAM .

The q-analogues of the binomial coefficients that are called the Gaussian binomial coefficients are given by

$$
\left[\begin{array}{l}
n \tag{1.2}\\
k
\end{array}\right]_{q}=\frac{[n]_{q}!}{[k]_{q}![n-k]_{q}!}, \quad(n \geq k)
$$

with q-factorial $[n]_{q}!=[n]_{q}[n-1]_{q} \cdots[2]_{q}[1]_{q}$. For $k \in \mathbb{Z}$, the q-analogue of polylogarithm function $L i_{k, q}$ is known by

$$
\begin{equation*}
L i_{k, q}(x)=\sum_{n=1}^{\infty} \frac{x^{n}}{[n]_{q}^{k}}(\text { see }[2],[5],[6]) \tag{1.3}
\end{equation*}
$$

In [7], the q-exponential functions are defined as:

$$
\begin{equation*}
e_{q}(t)=\sum_{n=0}^{\infty} \frac{t^{n}}{[n]_{q}!}, \quad E_{q}(t)=\sum_{n=0}^{\infty} q^{\binom{n}{2}} \frac{t^{n}}{[n]_{q}!} \tag{1.4}
\end{equation*}
$$

Definition 1.1. For $n \in \mathbb{Z}_{+}, k \in \mathbb{Z}$ and $0<q<1, q$-Euler polynomials is defined by

$$
\frac{[2]_{q}}{e_{q}(t)+1} e_{q}(x t)=\sum_{n=0}^{\infty} E_{n, q}(x) \frac{t^{n}}{n!}
$$

When $x=0, E_{n, q}=E_{n, q}(0)$ are called q-Euler numbers.
A few of them are

$$
\begin{aligned}
E_{0, q}(x)= & \frac{1+q}{2} \\
E_{1, q}(x)= & -\frac{1}{4}-\frac{q}{4}+\frac{x}{2}+\frac{q x}{2} \\
E_{2, q}(x)= & -\frac{1}{8(1-q)}+\frac{q}{8(1-q)}+\frac{q^{2}}{8(1-q)}-\frac{q^{3}}{8(1-q)}-\frac{x}{4(1-q)} \\
& -\frac{q x}{4(1-q)}+\frac{q^{2} x}{4(1-q)}+\frac{q^{3} x}{4(1-q)}+\frac{x^{2}}{2(1-q)}-\frac{q^{2} x^{2}}{2(1-q)}
\end{aligned}
$$

The (q, r, w)-Stirling numbers of the second kind $S_{q, r, w}(n+r+w, m+r+w)$ are defined by the following generating function

$$
\begin{equation*}
\sum_{n=m}^{\infty} S_{q, r, w}(n+r+w, m+r+w) \frac{t^{n}}{[n]_{q}!}=\frac{\left(e_{q}(t)-1\right)^{m}}{[m]_{q}!} e_{q}(r t) E_{q}(w t) \tag{1.5}
\end{equation*}
$$

where $n, m \in \mathbb{Z}_{+}$with $n \geq m \geq 0$ (see [1],[3],[4]). Setting $r=w=0$, we get

$$
\begin{equation*}
\sum_{n=m}^{\infty} S_{q}(n, m) \frac{t^{n}}{[n]_{q}!}=\frac{\left(e_{q}(t)-1\right)^{m}}{[m]_{q}!} \tag{1.6}
\end{equation*}
$$

In the following section, we define the fully modified q-poly-Euler numbers and polynomials of first type with Gaussian binomial coefficients. We also derive several identities with each other and investigate some properties that are concerned with (q, r, w)-Stirling numbers of the second kind, $S_{q, r, w}(n+r+w, k+r+w)$. In addition, we find the relationship with the generating function of the q-Stirling numbers of the second kind.

2. New fully modified q-poly-Euler polynomials

In this section, we construct a new fully modified q-poly-Euler polynomials $\widetilde{E}_{n, q}^{(k)}(x)$ of the first type. Using the generating functions of the polynomials, we derive some identities that are related with the q-analogue of ordinary Euler polynomials.

Definition 2.1. For $n \in \mathbb{Z}_{+}, k \in \mathbb{Z}$ and $0<q<1$, we define fully modified q-poly-Euler polynomials $\widetilde{E}_{n, q}^{(k)}(x)$ of the first type by

$$
\begin{equation*}
\frac{[2]_{q} L i_{k, q}\left(1-e_{q}(-t)\right)}{t\left(e_{q}(t)+1\right)} e_{q}(x t)=\sum_{n=0}^{\infty} \widetilde{E}_{n, q}^{(k)}(x) \frac{t^{n}}{[n]_{q}!} \tag{2.1}
\end{equation*}
$$

When $x=0, \widetilde{E}_{n, q}^{(k)}=\widetilde{E}_{n, q}^{(k)}(0)$ are called fully modified q-poly-Euler numbers of the first type.

Corollary 2.2. If we set $q \rightarrow 1$ in definition 2.1, then we get the poly-Euler polynomials $E_{n}^{(k)}(x)$ and

$$
\frac{2 L i_{k}\left(1-e^{-t}\right)}{t\left(e^{t}+1\right)} e^{x t}=\sum_{n=0}^{\infty} E_{n}^{(k)}(x) \frac{t^{n}}{n!}
$$

Theorem 2.3. Let $n \in \mathbb{Z}_{+}, k \in \mathbb{Z}$ and $0<q<1$. Then we have

$$
\widetilde{E}_{n, q}^{(k)}(x)=\sum_{l=0}^{n}\left[\begin{array}{c}
n \tag{2.2}\\
l
\end{array}\right]_{q} \widetilde{E}_{l, q}^{(k)} x^{n-l}
$$

Using the q-exponential functions, we introduce the following fully modified q-poly-Euler polynomials of the first type with two variables.

Definition 2.4. Let $n \in \mathbb{Z}_{+}, k \in \mathbb{Z}$ and $0<q<1$. We define the fully modified q-poly-Euler polynomials $\widetilde{E}_{n, q}^{(k)}(x, y)$ of the first type with two variables as below

$$
\begin{equation*}
\frac{[2]_{q} L i_{k, q}\left(1-e_{q}(-t)\right)}{t\left(e_{q}(t)-1\right)} e_{q}(x t) E_{q}(y t)=\sum_{n=0}^{\infty} \widetilde{E}_{n, q}^{(k)}(x, y) \frac{t^{n}}{[n]_{q}!} \tag{2.3}
\end{equation*}
$$

Theorem 2.5. For $n \in \mathbb{Z}_{+}, k \in \mathbb{Z}$ and $0<q<1$, then we have

$$
\left.\widetilde{E}_{n, q}^{(k)}(x, y)=\sum_{l=0}^{n}\left[\begin{array}{c}
n \\
l
\end{array}\right]_{q} q^{(n-l} 2\right) \widetilde{E}_{l, q}^{(k)}(x) y^{n-l} .
$$

Proof. Let n be a nonnegative integer, $k \in \mathbb{Z}$ and $0<q<1$. Then we get

$$
\begin{aligned}
\sum_{n=0}^{\infty} \widetilde{E}_{n, q}^{(k)}(x, y) \frac{t^{n}}{[n]_{q}!} & =\frac{[2]_{q} L i_{k, q}\left(1-e_{q}(-t)\right)}{t\left(e_{q}(t)+1\right)} e_{q}(x t) E_{q}(y t) \\
& =\sum_{n=0}^{\infty}\left(\sum_{l=0}^{n}\left[\begin{array}{c}
n \\
l
\end{array}\right]_{p, q} \widetilde{E}_{l, q}^{(k)}(x) q^{\left(\frac{n-l}{2}\right)} y^{n-l}\right) \frac{t^{n}}{[n]_{q}!}
\end{aligned}
$$

Therefore, we have

$$
\widetilde{E}_{n, q}^{(k)}(x, y)=\sum_{l=0}^{n}\left[\begin{array}{c}
n \\
l
\end{array}\right]_{q} q^{\binom{n-l}{2}} \widetilde{E}_{l, q}^{(k)}(x) y^{n-l}
$$

The fully modified q-poly Euler polynomials of the first type with two variables is represented by the following formula.

Theorem 2.6. For $n \in \mathbb{N}, k \in \mathbb{Z}$ and $0<q<1$, we derive

$$
\widetilde{E}_{n, q}^{(k)}(x, y)-\widetilde{E}_{n, q}^{(k)}(x)=\sum_{l=0}^{n-1}\left[\begin{array}{c}
n \\
l
\end{array}\right]_{q} q^{\left(\begin{array}{c}
n-l
\end{array}\right)} y^{n-l} \widetilde{E}_{l, q}^{(k)}(x) .
$$

Proof. Let $n \in \mathbb{Z}_{+}, k \in \mathbb{Z}$ and $0<q<1$. Using (2.1), we have

$$
\begin{aligned}
& \sum_{n=0}^{\infty} \widetilde{E}_{n, q}^{(k)}(x, y) \frac{t^{n}}{[n]_{q}!}-\sum_{n=0}^{\infty} \widetilde{E}_{n, q}^{(k)}(x) \frac{t^{n}}{[n]_{q}!} \\
&=\frac{[2]_{q} L i_{k, q}\left(1-e_{q}(-t)\right)}{t\left(e_{q}(t)+1\right)} e_{q}(x t)\left(E_{q}(y t)-1\right) \\
&=\sum_{n=0}^{\infty} \widetilde{E}_{l, q}^{(k)}(x) \frac{t^{n}}{[n]_{q}!} \sum_{n=0}^{\infty} q^{\binom{n+1}{2}} y^{n+1} \frac{t^{n+1}}{[n+1]_{q}!} \\
&=\sum_{n=1}^{\infty} \sum_{l=0}^{n-1}\left[\begin{array}{c}
n \\
l
\end{array}\right]_{q} q^{\binom{n-l}{2}} y^{n-l} \widetilde{E}_{l, q}^{(k)}(x) \frac{t^{n}}{[n]_{q}!}
\end{aligned}
$$

Comparing the coefficients of $\frac{t^{n}}{[n]_{q}!}$, it is obvious the above result for $n \in \mathbb{N}$.
Specially, in the case $y=1$, we get

$$
\widetilde{E}_{n, q}^{(k)}(x, 1)-\widetilde{E}_{n, q}^{(k)}(x)=\sum_{l=0}^{n-1}\left[\begin{array}{c}
n \\
l
\end{array}\right]_{q} q^{\left(\begin{array}{c}
n-l
\end{array}\right)} \widetilde{E}_{l, q}^{(k)}(x)
$$

Using (1.5), the modified q-Euler polynomials of the first type of two variables are represented by the q-Euler numbers and the (q, r, w)-Stirling numbers.
Theorem 2.7. For $n \in \mathbb{Z}_{+}, k \in \mathbb{Z}$ and $q \in \mathbb{R}$ such that $0<q<1$, we get $\widetilde{E}_{n, q}^{(k)}(x, y)=\sum_{a=0}^{n} \sum_{l=1}^{a+1}\left[\begin{array}{l}n \\ a\end{array}\right]_{q} \frac{(-1)^{l+a+1}[l-1]_{q}!}{[l]_{q}^{k-1}[a+1]_{q}} S_{q, x, y}(a+1+x+y, l+x+y) E_{n-a, q}$.

Proof. For $n \in \mathbb{Z}_{+}, k \in \mathbb{Z}$ and $0<q<1$, we have

$$
\begin{aligned}
& \sum_{n=0}^{\infty} \widetilde{E}_{n, q}^{(k)}(x, y) \frac{t^{n}}{[n]_{q}!}=\frac{[2]_{q} L i_{k, q}\left(1-e_{q}(-t)\right)}{t\left(e_{q}(t)+1\right)} e_{q}(x t) E_{q}(y t) \\
& =\sum_{n=0}^{\infty} \sum_{l=1}^{n+1} \frac{(-1)^{l+n+l}[l]_{q}!}{[l]_{q}^{k}} \frac{S_{q, x, y}(n+1+x+y, l+x+y)}{[n+1]_{q}} \frac{t^{n}}{[n]_{q}!} \sum_{n=0}^{\infty} E_{n, q} \frac{t^{n}}{[n]_{q}!} \\
& =\sum_{n=0}^{\infty} \sum_{a=0}^{n} \sum_{l=1}^{a+1}\left[\begin{array}{l}
n \\
a
\end{array}\right]_{q} \frac{(-1)^{l+a+1}[l-1]_{q}!}{[l]_{q}^{k-1}} \frac{S_{q, x, y}(a+1+x+y, l+x+y)}{[a+1]_{q}} E_{n-a, q} \frac{t^{n}}{[n]_{q}!} .
\end{aligned}
$$

The modified q-polylogarithm function is represented by q-Stirling numbers as below

$$
\begin{align*}
\frac{1}{t} L i_{k, q}\left(1-e_{q}(-t)\right) & =\frac{1}{t} \sum_{l=1}^{\infty} \frac{\left(1-e_{q}(-t)\right)^{l}}{[l]_{q}^{k}} \\
& =\sum_{n=0}^{\infty} \sum_{l=1}^{n+1} \frac{(-1)^{l+n+1}[l-1]_{q}!}{[l]_{q}^{k-1}[n+1]_{q}} S_{q}(n+1, l) \frac{t^{n}}{[n]_{q}!} \tag{2.4}
\end{align*}
$$

Using (2.4), we can find the equation that contain the q-Euler polynomials and the q-Stirling numbers of the second kind.

Theorem 2.8. Let $n \in \mathbb{Z}_{+}, k \in \mathbb{Z}$ and $0<q<1$. Then we have

$$
\widetilde{E}_{n, q}^{(k)}(x)=\sum_{a=0}^{n} \sum_{l=1}^{a+1}\left[\begin{array}{l}
n \\
a
\end{array}\right]_{q} \frac{(-1)^{l+a+1}[l-1]_{q}!}{[l]_{q}^{k-1}} \frac{S_{q}(a+1, l)}{[a+1]_{q}} E_{n-a, q}(x)
$$

Proof. For $n \in \mathbb{Z}_{+}, k \in \mathbb{Z}$ and $0<q<1$, the modified q-polylogarithm function is expressed with the q-Stirling numbers of the second kind. Then we get

$$
\begin{aligned}
\sum_{n=0}^{\infty} \widetilde{E}_{n, q}^{(k)}(x) \frac{t^{n}}{[n]_{q}!} & =\frac{[2]_{q} L i_{k, q}\left(1-e_{q}(-t)\right)}{t\left(e_{q}(t)+1\right)} e_{q}(x t) \\
& =\sum_{n=1}^{\infty} \sum_{l=1}^{n+1} \frac{(-1)^{l+n+l}[l]_{q}!}{[l]_{p, q}^{k}[n+1]_{q}} S_{q}(n+1, l) \frac{t^{n}}{[n]_{q}!} \sum_{n=0}^{\infty} E_{n, q}(x) \frac{t^{n}}{[n]_{q}!} \\
& =\sum_{n=0}^{\infty} \sum_{a=0}^{n} \sum_{l=1}^{a+1}\left[\begin{array}{l}
n \\
a
\end{array}\right]_{q} \frac{(-1)^{l+a+1}[l-1]_{q}!}{[l]_{q}^{k-1}} \frac{S_{q}(a+1, l)}{[a+1]_{q}} E_{n-a, q}(x) \frac{t^{n}}{[n]_{q}!}
\end{aligned}
$$

3. Zeros of the fully modified q-poly-Euler polynomials

This section aims to demonstrate the benefit of using numerical investigation to support theoretical prediction and to discover new interesting pattern of the zeros of the fully modified q-poly-Euler polynomials $\widetilde{E}_{n, q}^{(k)}(x)$. The fully modified q-poly-Euler polynomials $\widetilde{E}_{n, q}^{(k)}(x)$ can be determined explicitly.

A few of them are

$$
\begin{aligned}
\widetilde{E}_{1, q}^{(k)}(x)= & -\frac{3}{4}-\frac{q}{4}+\frac{1}{2[2]_{q}^{k-1}}+\frac{x}{2}+\frac{q x}{2} \\
\widetilde{E}_{2, q}^{(k)}(x)= & \frac{1}{8(1-q)}+\frac{q}{8(1-q)}-\frac{q^{2}}{8(1-q)}-\frac{q^{3}}{8(1-q)}-\frac{1}{4(1-q)[2]_{q}^{k-1}} \\
& +\frac{q^{2}}{4(1-q)[2]_{q}^{k-1}}-\frac{1}{(1-q)(1+q)[2]_{q}^{k-1}}+\frac{q^{2}}{(1-q)(1+q)[2]_{q}^{k-1}} \\
& +\frac{1}{2(1-q)\left(1+q+q^{2}\right)}-\frac{q^{2}}{2(1-q)\left(1+q+q^{2}\right)}+\frac{q^{2}}{2(1-q)^{2}\left(1+q+q^{2}\right)[3]_{p, q}^{k-1}} \\
& -\frac{q^{4}}{(1-q)^{2}\left(1+q+q^{2}\right)[3]_{p, q}^{k-1}}+\frac{1}{2(1-q)^{2}\left(1+q+q^{2}\right)[3]_{p, q}^{k-1}}-\frac{3 x}{4(1-q)} \\
& -\frac{q x}{4(1-q)}+\frac{3 q^{2} x}{4(1-q)}+\frac{q^{3} x}{4(1-q)}+\frac{x}{2(1-q)[2]_{q}^{k-1}} \\
& -\frac{q^{2} x}{2(1-q)[2]_{q}^{k-1}+\frac{x^{2}}{2(1-q)}-\frac{q^{2} x^{2}}{2(1-q)}}
\end{aligned}
$$

We investigate the zeros of the fully modified q-poly-Euler polynomials $\widetilde{E}_{n, q}^{(k)}(x)$ by using a computer. We plot the zeros of the q-poly-Euler polynomials $\widetilde{E}_{n, q}^{(k)}(x)$ for $n=20$ and $x \in \mathbb{C}$ (Figure 1). In Figure 1(top-left), we choose $n=20, q=$

Figure 1. Zeros of $\widetilde{E}_{n, q}^{(k)}(x)=0$
$1 / 10$, and $k=-5$. In Figure 1 (top-right), we choose $n=20, q=1 / 10$, and $k=-10$. In Figure 1(bottom-left), we choose $n=20, q=1 / 10$, and $k=-15$. In Figure 1(bottom-right), we choose $n=20, q=1 / 10$, and $k=-20$.

We investigate the zeros of the fully modified q-poly-Euler polynomials $\widetilde{E}_{n, q}^{(k)}(x)$ by using a computer. We plot the zeros of the (p, q)-poly-tangent polynomials $\widetilde{E}_{n, q}^{(k)}(x)$ for $n=20$ and $x \in \mathbb{C}$ (Figure 1). In Figure 2(top-left), we choose

Figure 2. Zeros of $\widetilde{E}_{n, q}^{(k)}(x)=0$
$n=20, q=7 / 10$, and $k=1$. In Figure 2(top-right), we choose $n=20, q=7 / 10$, and $k=10$. In Figure 2(bottom-left), we choose $n=20, q=7 / 10$, and $k=20$. In Figure 2(bottom-right), we choose $n=20, q=7 / 10$, and $k=30$.

The plot of real zeros of $\widetilde{E}_{n, q}^{(k)}(x)=0$ for $1 \leq n \leq 20$ structure are presented(Figure 3).

Figure 3. Real zeros of $\widetilde{E}_{n, q}^{(k)}(x)=0$ for $1 \leq n \leq 20$
In Figure 3(top-left), we choose $q=7 / 10$, and $k=-5$. In Figure 3(top-right), we choose $q=7 / 10$, and $k=-10$. In Figure 3(bottom-left), we choose $q=7 / 10$, and $k=-15$. In Figure 3(bottom-right), we choose $q=7 / 10$, and $k=-20$.

Next, we calculated an approximate solution satisfying q-poly-Euler polynomials $\widetilde{E}_{n, q}^{(k)}(x)=0$ for $x \in \mathbb{R}$. The results are given in Table 1.

Table 1. Approximate solutions of $\widetilde{E}_{n, q}^{(-5)}(x)=0, q=1 / 10$

degree n	x		
1	0.78817		
2	$-1.1546, \quad 0.93306$		
3	$-1.3359, \quad 0.41789, \quad 0.69447$		
4	$-1.4488, \quad 1.0410$		
5	$-1.4936, \quad 0.61005, \quad 0.87766$		
6	-1.51721 .0396		
7	$-1.5386,0.70853, \quad 0.93062$		
8	$-1.5392, \quad 1.0290$		
9			
10			

Conflicts of interest : The author declares no conflict of interest.

Data availability : Not applicable

References

1. Yue Cai, Margaret A. Readdy, q-Stirling numbers, Advances in Applied Mathematics 86 (2017), 50-80.
2. Mehmet Cenkcia, Takao Komatsub, Poly-Bernoulli numbers and polynomials with a q parameter, Journal of Number Theory 152 (2015), 38-54.
3. L. Carlitz, Weighted Stirling numbers of the first kind and second kind-I, Fibonacci Quart 18 (1980), 147-162.
4. U. Duran, M. Acikoz, S. Araci, On (q, r, w)-stirling numbers of the second kind, Journal of Inequalities and Special Functions 9 (2018), 9-16.
5. K.W. Hwang, B.R. Nam, N.S. Jung, A note on q-analogue of poly-Bernoulli numbers and polynomials, J. Appl. Math. \& Informatics 35 (2017), 611-621.
6. Burak Kurt, Some identities for the generalized poly-Genocchi polynomials with the parameters a, b, and c, Journal of Mathematical Analysis 8 (2017), 156-163.
7. Toufik Mansour, Identities for sums of a q-analogue of polylogarithm functions, Letters in Mathematical Physics 87 (2009), 1-18.
8. C.S. Ryoo, On degenerate q-tangent polynomials of higher order, J. Appl. Math. \& Informatics 35 (2017), 113-120.
9. Charalambos A. Charalambides, discrete q-distribution, Wiley, 2016.
C.S. Ryoo received Ph.D. degree from Kyushu University. His research interests focus on the numerical verification method, scientific computing, p-adic functional analysis, and analytic number theory. More recently, he has been working with differential equations, dynamical systems, quantum calculus, and special functions.
Department of Mathematics, Hannam University, Daejeon 306-791, Korea.
e-mail: ryoocs@hnu.kr

[^0]: Received April 28, 2023. Revised February 27, 2024. Accepted March 4, 2024.

