
J. Appl. & Pure Math. Vol. 6(2024), No. 1 - 2, pp. 1 - 11

https://doi.org/10.23091/japm.2024.001

ON FULLY MODIFIED q-POLY-EULER NUMBERS

AND POLYNOMIALS

C.S. RYOO

Abstract. In this paper, we define a new fully modified q-poly-Euler num-
bers and polynomials of the first type by using q-polylogarithm function.

We derive some identities of the modified polynomials with Gaussian bino-
mial coefficients. We also explore several relations that are connected with

the q-analogue of Stirling numbers of the second kind.
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1. Introduction

Throughout this paper, we use the following notations : N denotes the set of
natural numbers, Z+ denotes the set of nonnegative integers, Z denotes the set
of integers, R denotes the set of real numbers, and C denotes the set of complex
numbers, respectively.

For n, q ∈ R, the q-number is defined by

[x]q =
1− qx

1− q
, (q ̸= 1).

We note that limq→1[x]q = x. The q-factorial of n of order k is defined as

[n](k)q = [n]q[n− 1]q · · · [n− k + 1]q, (k = 1, 2, 3, · · · ),

where [n]q is q-number(see[?]-[8]). Specially, when k = n, it is reduced the
q-factorial

[n]q! = [n]q[n− 1]q · · · [1]q. (1.1)
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The q-analogues of the binomial coefficients that are called the Gaussian binomial
coefficients are given by[

n
k

]
q

=
[n]q!

[k]q![n− k]q!
, (n ≥ k) (1.2)

with q-factorial [n]q! = [n]q[n − 1]q · · · [2]q[1]q. For k ∈ Z, the q-analogue of
polylogarithm function Lik,q is known by

Lik,q(x) =

∞∑
n=1

xn

[n]kq
(see [2],[5],[6]). (1.3)

In [7], the q-exponential functions are defined as:

eq(t) =

∞∑
n=0

tn

[n]q!
, Eq(t) =

∞∑
n=0

q(
n
2) tn

[n]q!
. (1.4)

Definition 1.1. For n ∈ Z+, k ∈ Z and 0 < q < 1, q-Euler polynomials is
defined by

[2]q
eq(t) + 1

eq(xt) =

∞∑
n=0

En,q(x)
tn

n!
,

When x = 0, En,q = En,q(0) are called q-Euler numbers.

A few of them are

E0,q(x) =
1 + q

2
,

E1,q(x) = −1

4
− q

4
+

x

2
+

qx

2
,

E2,q(x) = − 1

8(1− q)
+

q

8(1− q)
+

q2

8(1− q)
− q3

8(1− q)
− x

4(1− q)

− qx

4(1− q)
+

q2x

4(1− q)
+

q3x

4(1− q)
+

x2

2(1− q)
− q2x2

2(1− q)
.

The (q, r, w)-Stirling numbers of the second kind Sq,r,w(n + r + w,m + r + w)
are defined by the following generating function

∞∑
n=m

Sq,r,w(n+ r + w,m+ r + w)
tn

[n]q!
=

(eq(t)− 1)m

[m]q!
eq(rt)Eq(wt), (1.5)

where n,m ∈ Z+ with n ≥ m ≥ 0(see [1],[3],[4]). Setting r = w = 0, we get

∞∑
n=m

Sq(n,m)
tn

[n]q!
=

(eq(t)− 1)m

[m]q!
. (1.6)
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In the following section, we define the fully modified q-poly-Euler numbers and
polynomials of first type with Gaussian binomial coefficients. We also derive sev-
eral identities with each other and investigate some properties that are concerned
with (q, r, w)-Stirling numbers of the second kind, Sq,r,w(n+r+w, k+r+w). In
addition, we find the relationship with the generating function of the q-Stirling
numbers of the second kind.

2. New fully modified q-poly-Euler polynomials

In this section, we construct a new fully modified q-poly-Euler polynomials

Ẽ
(k)
n,q(x) of the first type. Using the generating functions of the polynomials,

we derive some identities that are related with the q-analogue of ordinary Euler
polynomials.

Definition 2.1. For n ∈ Z+, k ∈ Z and 0 < q < 1, we define fully modified

q-poly-Euler polynomials Ẽ
(k)
n,q(x) of the first type by

[2]qLik,q(1− eq(−t))

t(eq(t) + 1)
eq(xt) =

∞∑
n=0

Ẽ(k)
n,q(x)

tn

[n]q!
. (2.1)

When x = 0, Ẽ
(k)
n,q = Ẽ

(k)
n,q(0) are called fully modified q-poly-Euler numbers of

the first type.

Corollary 2.2. If we set q → 1 in definition 2.1, then we get the poly-Euler

polynomials E
(k)
n (x) and

2Lik(1− e−t)

t(et + 1)
ext =

∞∑
n=0

E(k)
n (x)

tn

n!
.

Theorem 2.3. Let n ∈ Z+, k ∈ Z and 0 < q < 1. Then we have

Ẽ(k)
n,q(x) =

n∑
l=0

[
n
l

]
q

Ẽ
(k)
l,q xn−l. (2.2)

Using the q-exponential functions, we introduce the following fully modified
q-poly-Euler polynomials of the first type with two variables.

Definition 2.4. Let n ∈ Z+, k ∈ Z and 0 < q < 1. We define the fully modified

q-poly-Euler polynomials Ẽ
(k)
n,q(x, y) of the first type with two variables as below

[2]qLik,q(1− eq(−t))

t(eq(t)− 1)
eq(xt)Eq(yt) =

∞∑
n=0

Ẽ(k)
n,q(x, y)

tn

[n]q!
. (2.3)

Theorem 2.5. For n ∈ Z+, k ∈ Z and 0 < q < 1, then we have

Ẽ(k)
n,q(x, y) =

n∑
l=0

[
n
l

]
q

q(
n−l
2 )Ẽ

(k)
l,q (x)y

n−l.
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Proof. Let n be a nonnegative integer, k ∈ Z and 0 < q < 1. Then we get
∞∑

n=0

Ẽ(k)
n,q(x, y)

tn

[n]q!
=

[2]qLik,q(1− eq(−t))

t(eq(t) + 1)
eq(xt)Eq(yt)

=

∞∑
n=0

(
n∑

l=0

[
n
l

]
p,q

Ẽ
(k)
l,q (x)q

(n−l
2 )yn−l

)
tn

[n]q!
.

Therefore, we have

Ẽ(k)
n,q(x, y) =

n∑
l=0

[
n
l

]
q

q(
n−l
2 )Ẽ

(k)
l,q (x)y

n−l.

□

The fully modified q-poly Euler polynomials of the first type with two vari-
ables is represented by the following formula.

Theorem 2.6. For n ∈ N, k ∈ Z and 0 < q < 1, we derive

Ẽ(k)
n,q(x, y)− Ẽ(k)

n,q(x) =

n−1∑
l=0

[
n
l

]
q

q(
n−l
2 )yn−l Ẽ

(k)
l,q (x).

Proof. Let n ∈ Z+, k ∈ Z and 0 < q < 1. Using (2.1), we have
∞∑

n=0

Ẽ(k)
n,q(x, y)

tn

[n]q!
−

∞∑
n=0

Ẽ(k)
n,q(x)

tn

[n]q!

=
[2]qLik,q(1− eq(−t))

t(eq(t) + 1)
eq(xt)(Eq(yt)− 1)

=

∞∑
n=0

Ẽ
(k)
l,q (x)

tn

[n]q!

∞∑
n=0

q(
n+1
2 )yn+1 tn+1

[n+ 1]q!

=

∞∑
n=1

n−1∑
l=0

[
n
l

]
q

q(
n−l
2 )yn−l Ẽ

(k)
l,q (x)

tn

[n]q!
.

Comparing the coefficients of tn

[n]q !
, it is obvious the above result for n ∈ N. □

Specially, in the case y = 1, we get

Ẽ(k)
n,q(x, 1)− Ẽ(k)

n,q(x) =

n−1∑
l=0

[
n
l

]
q

q(
n−l
2 ) Ẽ

(k)
l,q (x).

Using (1.5), the modified q-Euler polynomials of the first type of two variables
are represented by the q-Euler numbers and the (q, r, w)-Stirling numbers.

Theorem 2.7. For n ∈ Z+, k ∈ Z and q ∈ R such that 0 < q < 1, we get

Ẽ(k)
n,q(x, y) =

n∑
a=0

a+1∑
l=1

[
n
a

]
q

(−1)l+a+1[l − 1]q!

[l]k−1
q [a+ 1]q

Sq,x,y(a+1+x+ y, l+x+ y)En−a,q.
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Proof. For n ∈ Z+, k ∈ Z and 0 < q < 1, we have
∞∑

n=0

Ẽ(k)
n,q(x, y)

tn

[n]q!
=

[2]qLik,q(1− eq(−t))

t(eq(t) + 1)
eq(xt)Eq(yt)

=

∞∑
n=0

n+1∑
l=1

(−1)l+n+l[l]q!

[l]kq

Sq,x,y(n+ 1 + x+ y, l + x+ y)

[n+ 1]q

tn

[n]q!

∞∑
n=0

En,q
tn

[n]q!

=

∞∑
n=0

n∑
a=0

a+1∑
l=1

[
n
a

]
q

(−1)l+a+1[l − 1]q!

[l]k−1
q

Sq,x,y(a+ 1 + x+ y, l + x+ y)

[a+ 1]q
En−a,q

tn

[n]q!
.

□

The modified q-polylogarithm function is represented by q-Stirling numbers
as below

1

t
Lik,q(1− eq(−t)) =

1

t

∞∑
l=1

(1− eq(−t))l

[l]kq

=

∞∑
n=0

n+1∑
l=1

(−1)l+n+1[l − 1]q!

[l]k−1
q [n+ 1]q

Sq(n+ 1, l)
tn

[n]q!
.

(2.4)

Using (2.4), we can find the equation that contain the q-Euler polynomials and
the q-Stirling numbers of the second kind.

Theorem 2.8. Let n ∈ Z+, k ∈ Z and 0 < q < 1. Then we have

Ẽ(k)
n,q(x) =

n∑
a=0

a+1∑
l=1

[
n
a

]
q

(−1)l+a+1[l − 1]q!

[l]k−1
q

Sq(a+ 1, l)

[a+ 1]q
En−a,q(x).

Proof. For n ∈ Z+, k ∈ Z and 0 < q < 1, the modified q-polylogarithm function
is expressed with the q-Stirling numbers of the second kind. Then we get
∞∑

n=0

Ẽ(k)
n,q(x)

tn

[n]q!
=

[2]qLik,q(1− eq(−t))

t(eq(t) + 1)
eq(xt)

=

∞∑
n=1

n+1∑
l=1

(−1)l+n+l[l]q!

[l]kp,q[n+ 1]q
Sq(n+ 1, l)

tn

[n]q!

∞∑
n=0

En,q(x)
tn

[n]q!

=

∞∑
n=0

n∑
a=0

a+1∑
l=1

[
n
a

]
q

(−1)l+a+1[l − 1]q!

[l]k−1
q

Sq(a+ 1, l)

[a+ 1]q
En−a,q(x)

tn

[n]q!
.

□
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3. Zeros of the fully modified q-poly-Euler polynomials

This section aims to demonstrate the benefit of using numerical investigation
to support theoretical prediction and to discover new interesting pattern of the

zeros of the fully modified q-poly-Euler polynomials Ẽ
(k)
n,q(x). The fully modified

q-poly-Euler polynomials Ẽ
(k)
n,q(x) can be determined explicitly.

A few of them are

Ẽ
(k)
1,q (x) = −3

4
− q

4
+

1

2[2]k−1
q

+
x

2
+

qx

2
,

Ẽ
(k)
2,q (x) =

1

8(1− q)
+

q

8(1− q)
− q2

8(1− q)
− q3

8(1− q)
− 1

4(1− q)[2]k−1
q

+
q2

4(1− q)[2]k−1
q

− 1

(1− q)(1 + q)[2]k−1
q

+
q2

(1− q)(1 + q)[2]k−1
q

+
1

2(1− q)(1 + q + q2)
− q2

2(1− q)(1 + q + q2)
+

1

2(1− q)2(1 + q + q2)[3]k−1
p,q

− q2

(1− q)2(1 + q + q2)[3]k−1
p,q

+
q4

2(1− q)2(1 + q + q2)[3]k−1
p,q

− 3x

4(1− q)

− qx

4(1− q)
+

3q2x

4(1− q)
+

q3x

4(1− q)
+

x

2(1− q)[2]k−1
q

− q2x

2(1− q)[2]k−1
q

+
x2

2(1− q)
− q2x2

2(1− q)
.
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We investigate the zeros of the fully modified q-poly-Euler polynomials Ẽ
(k)
n,q(x)

by using a computer. We plot the zeros of the q-poly-Euler polynomials Ẽ
(k)
n,q(x)

for n = 20 and x ∈ C(Figure 1). In Figure 1(top-left), we choose n = 20, q =

-10 -8 -6 -4 -2 0 2
-1.5
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-0.5

0.0

0.5

1.0

1.5

Re(x)

Im(x)

-10 -8 -6 -4 -2 0 2
-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

Re(x)

Im(x)

-10 -8 -6 -4 -2 0 2
-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

Re(x)

Im(x)

-10 -8 -6 -4 -2 0 2
-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

Re(x)

Im(x)

Figure 1. Zeros of Ẽ
(k)
n,q(x) = 0

1/10, and k = −5. In Figure 1(top-right), we choose n = 20, q = 1/10, and
k = −10. In Figure 1(bottom-left), we choose n = 20, q = 1/10, and k = −15.
In Figure 1(bottom-right), we choose n = 20, q = 1/10, and k = −20.
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We investigate the zeros of the fully modified q-poly-Euler polynomials Ẽ
(k)
n,q(x)

by using a computer. We plot the zeros of the (p, q)-poly-tangent polynomi-

als Ẽ
(k)
n,q(x) for n = 20 and x ∈ C(Figure 1). In Figure 2(top-left), we choose

-2 -1 0 1 2
-2

-1

0

1

2

Re(x)

Im(x)

-2 -1 0 1 2
-2

-1

0

1

2

Re(x)

Im(x)

-2 -1 0 1 2
-2

-1

0

1

2

Re(x)

Im(x)

-2 -1 0 1 2
-2

-1

0

1

2

Re(x)

Im(x)

Figure 2. Zeros of Ẽ
(k)
n,q(x) = 0

n = 20, q = 7/10, and k = 1. In Figure 2(top-right), we choose n = 20, q = 7/10,
and k = 10. In Figure 2(bottom-left), we choose n = 20, q = 7/10, and k = 20.
In Figure 2(bottom-right), we choose n = 20, q = 7/10, and k = 30.
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The plot of real zeros of Ẽ
(k)
n,q(x) = 0 for 1 ≤ n ≤ 20 structure are pre-

sented(Figure 3).

Figure 3. Real zeros of Ẽ
(k)
n,q(x) = 0 for 1 ≤ n ≤ 20

In Figure 3(top-left), we choose q = 7/10, and k = −5. In Figure 3(top-right),
we choose q = 7/10, and k = −10. In Figure 3(bottom-left), we choose q = 7/10,
and k = −15. In Figure 3(bottom-right), we choose q = 7/10, and k = −20.
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Next, we calculated an approximate solution satisfying q-poly-Euler polyno-

mials Ẽ
(k)
n,q(x) = 0 for x ∈ R. The results are given in Table 1.

Table 1. Approximate solutions of Ẽ
(−5)
n,q (x) = 0, q = 1/10

degree n x

1 0.78817

2 −1.1546, 0.93306

3 −1.3359, 0.41789, 0.69447

4 −1.4488, 1.0410

5 −1.4936, 0.61005, 0.87766

6 −1.51721.0396

7 −1.5286, 0.70853, 0.93062

8 −1.5346, 1.0290

9 −1.5377, 0.74775, 0.95948

10 −1.5392, 1.0193

Conflicts of interest : The author declares no conflict of interest.

Data availability : Not applicable
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