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ON FULLY MODIFIED ¢-POLY-EULER NUMBERS
AND POLYNOMIALS
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ABSTRACT. In this paper, we define a new fully modified g-poly-Euler num-
bers and polynomials of the first type by using g-polylogarithm function.
We derive some identities of the modified polynomials with Gaussian bino-
mial coefficients. We also explore several relations that are connected with
the g-analogue of Stirling numbers of the second kind.
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1. Introduction

Throughout this paper, we use the following notations : N denotes the set of
natural numbers, Z, denotes the set of nonnegative integers, Z denotes the set
of integers, R denotes the set of real numbers, and C denotes the set of complex
numbers, respectively.

For n,q € R, the g-number is defined by

1—4q"

ey = J 0 (a# 1),

We note that lim,_,1[x], = z. The g-factorial of n of order k is defined as
[n]z(IE) = [n]q[n - 1]11 e [TL —k+ 1]qv (k = 172737 o ')7

where [n], is g-number(see[?]-[8]). Specially, when k = n, it is reduced the
g-factorial

[n]q! = [n]g[n — 1]g - - [Llg (1.1)
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The g-analogues of the binomial coefficients that are called the Gaussian binomial
coefficients are given by

n [n]q!
= -, n 2 k ]..2
a2 2
with g-factorial [n],! = [n]4[n — 1]4---[2]4[1]4. For k € Z, the g-analogue of
polylogarithm function Liy, 4 is known by
. = 2"
Ligg(z) = Tt (see [2],[5],[6]). (1.3)
n=1 q
In [7], the g-exponential functions are defined as:
) =Y B =3 ¥ —. (1.4)
"0 [n]q! 70 [n]q!

Definition 1.1. For n € Z,,k € Z and 0 < ¢ < 1, ¢-Euler polynomials is
defined by

24 c- "

0 (at) =3 B g(2)

e (t) + 16q<$ ) ngo ’q(x)n!

)

q
When z =0, E, 4 = E, 4(0) are called g-Euler numbers.

A few of them are

1+g¢
E07q(1’) = T7
1 gq qr
By q(x) = 1 4Tt
1 q ¢ ¢ i
E = - - B
2.4(7) 81-q) 81-q 81-9 B81-q i1-4q
qr qzx q3x x? (12302

TIi-q IM-¢g i1-¢ "20-9 20-9

The (g, r, w)-Stirling numbers of the second kind Sy, w(n + 7+ w,m + 1 + W)
are defined by the following generating function

= tn e t _
z:Sq,nw(n—|—7“—l—11),771—1—7“—&-10)[n]|:(q(731 '
nem a q!

where n,m € Z; with n > m > 0(see [1],[3],[4]). Setting r = w = 0, we get

1)m

eq(rt)Eq(wt),  (1.5)

oo

tr eq(t
5 syt = el

—1)m
Jo! mlg! .

(1.6)

n=m
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In the following section, we define the fully modified ¢-poly-Euler numbers and
polynomials of first type with Gaussian binomial coefficients. We also derive sev-
eral identities with each other and investigate some properties that are concerned
with (g, 7, w)-Stirling numbers of the second kind, Sy rw(n+7r+w,k+r+w). In
addition, we find the relationship with the generating function of the ¢-Stirling
numbers of the second kind.

2. New fully modified ¢-poly-Euler polynomials

In this section, we construct a new fully modified g-poly-Euler polynomials

E,%(x) of the first type. Using the generating functions of the polynomials,
we derive some identities that are related with the g-analogue of ordinary Euler
polynomials.

Definition 2.1. For n € Z;,k € Z and 0 < ¢ < 1, we define fully modified
g-poly-Euler polynomials Er(Lk,?,(x) of the first type by

[Q]qLik,q(l_eq(_t))e ot) — S EF) (4 i
tleq(t) +1) a(t) ;EM( )[n]q!'

When z = 0, Eﬁf; = Eg’iﬁ(o) are called fully modified g-poly-Euler numbers of
the first type.

(2.1)

Corollary 2.2. If we set ¢ — 1 in definition 2.1, then we get the poly-Euler
polynomials EP (z) and

2Lip(1—e™) ., ~= o, 1"
SR T T et EE) ()
t(et + 1) e 7;) n (x) n|

Theorem 2.3. Letn € Zy,k€Z and 0 < g < 1. Then we have

n

~ n| =k) p—
Eé’f;(x):Z[J B g, (2.2)
=0 q

Using the g-exponential functions, we introduce the following fully modified
g-poly-Euler polynomials of the first type with two variables.

Definition 2.4. Let n € Z .,k € Z and 0 < ¢ < 1. We define the fully modified

g-poly-Euler polynomials E,S’“;(:c, y) of the first type with two variables as below
(2] Lik,q(1 — eq(—1)) o = k) t"
: eq(wt)Eq(yt) = )  Epg(@,y) - (2.3)
t(eq(t) — 1) ! ! ,;) ’ [n]q!

Theorem 2.5. Forn € Z,k €Z and 0 < q < 1, then we have

~(k - n n=l) ~(f n—
EF) (x,y)=> M "2V E® (2)yn .
=0 q
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Proof. Let n be a nonnegative integer, k € Z and 0 < ¢ < 1. Then we get
= " 2] Lik,g(1 — eq(—1))

oo

=0 Ba(e:) Ml T e,y al@DE)
S (S e
n=0 \1=0 Pq [n]q!

Therefore, we have

0

The fully modified g-poly Euler polynomials of the first type with two vari-
ables is represented by the following formula.

Theorem 2.6. Forn e N, k€ Z and 0 < q < 1, we derive
n—1
~ ~ n n—1 1 =(k
B - B = X [7] o020 B o)
1=0 q
Proof. Let n € Zy, k € Z and 0 < g < 1. Using (2.1), we have

=~ tn =~ t
E¥ )z, y)— = EY¥)(2)——
2 Enie g - 2 BL@ g

_ [2]qLik7q(1 - eq(_t))e - B

tn 0 tn+1

=2 Bl ;qmyw RSN
-Y [L O g

[n]q!

n—

1=0
Comparing the coefficients of n ]n 7, it is obvious the above result for n € N. [
Specially, in the case y = 1, we get
n—1
~ ~ n n—1 -~ k
B - B =3 1] o) B @)
1=0 a
Using (1.5), the modified g-Euler polynomials of the first type of two variables
are represented by the g-Euler numbers and the (g, r, w)-Stirling numbers.

Theorem 2.7. Forn € Z,,k € Z and q € R such that 0 < ¢ < 1, we get

n atl l+a+1[l —1],!
E(k) ZZ[ :| k 1[a+1] = SQ; 7y(a+1+x+y7l+x+y)En—a7q.
a=0 =1 q l]
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Proof. For n € Z+,k € Z and 0 < g < 1, we have

Z E(k) _ [2]qLi,q(1 — eq(it))eq(xt)Eq(yt)
e T
7%% l+n+l 'Sq,z,y(n+1+:r+y,l+x+y) tn iEn n
n=0 [=1 [n + 1]‘1 [n]q| n=0 “ [n]q'

_ii«f{] Dt 1], Syay(a+1+a+y, l+2+y) £

JoN——
et [a+1], “nly!
O

The modified g-polylogarithm function is represented by ¢-Stirling numbers
as below

1. 1 & 1—eq(—t L
hikall =ea(-0) = 73 o

=iz

n=0 =1 g+ 1],

n=0a=0 [=1

2.4
l+n+1 l _ 1] n ( )

t
~Sq(n+1,1)——.
[n]q!

Using (2.4), we can find the equation that contain the ¢g-Euler polynomials and
the ¢-Stirling numbers of the second kind.

Theorem 2.8. Letn € Z,,k €7Z and 0 < g < 1. Then we have

n atl 1t — 1], Sy(a+1,1)
B =23 [o] e e )

a=0[1=1

Proof. Forn € Z,,k € Z and 0 < ¢ < 1, the modified g-polylogarithm function
is expressed with the ¢-Stirling numbers of the second kind. Then we get

i E(k)(x) t" _ [Z]QLik,q(l — eq(_t))eq(xt)

g

2 Enat T teq () + 1)

0 "*1( 1)) !

:;l; [k n+ 1], [n],! 4

oo mn a+l nl (—1 l+a+1l,1q!5‘qa+1,l tn
ZZZ[aL( | m’;[l -t )E"—“’q(f”)T'

n=0a=0 =1 [a + 1]‘1
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3. Zeros of the fully modified ¢-poly-Euler polynomials

This section aims to demonstrate the benefit of using numerical investigation
to support theoretical prediction and to discover new interesting pattern of the
zeros of the fully modified ¢-poly-Euler polynomials E}ﬁ;(aj) The fully modified
g-poly-Euler polynomials Eﬁk,,?,(x) can be determined explicitly.

A few of them are

~ 3 1 T x
E§f“q)(x)=—1—%+W+§+%,
o1 P ¢ ¢ 1
2 8(1—q)  8(1—q) 8(1-q) 8(1—q) 4(1—q)2+"
N q2 B 1 N q2
41—l Q-+l Q-9 +g2"
1 q> 1

_|_ —

-0 +a+d) 201-9U+a+d)  20-2(0+q+ )3

qz i q4 _ 3z
(1-q2(1+q+a)Blhe"  20-921+q+¢)35," 40-q)

qr 3¢%x s x
-9 T10-9 T10-9 20— g~
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. . . 1 (k

We investigate the zeros of the fully modified ¢g-poly-Euler polynomials ]?flg(x)
by using a computer. We plot the zeros of the ¢-poly-Euler polynomials E,(Lk;(:r)
for n = 20 and = € C(Figure 1). In Figure 1(top-left), we choose n = 20,¢ =

15 r r T T - 15
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FIGURE 1. Zeros of Eﬁkg(m) =0

1/10, and &k = —5. In Figure 1(top-right), we choose n = 20,¢ = 1/10, and
k = —10. In Figure 1(bottom-left), we choose n = 20,¢q = 1/10, and k = —15.
In Figure 1(bottom-right), we choose n = 20,9 = 1/10, and k = —20.



8 C.S. Ryoo

We investigate the zeros of the fully modified ¢g-poly-Euler polynomials E,(Lkg(x)
by using a computer. We plot the zeros of the (p,¢)-poly-tangent polynomi-

als E,S’“&(x) for n = 20 and = € C(Figure 1). In Figure 2(top-left), we choose
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ab ®geo Al ®go
-2

Re(x)
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.
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FIGURE 2. Zeros of Ey(Lk,?,(x) =0

n =20,q = 7/10, and k = 1. In Figure 2(top-right), we choose n = 20, ¢ = 7/10,
and k = 10. In Figure 2(bottom-left), we choose n = 20,q = 7/10, and k = 20.
In Figure 2(bottom-right), we choose n = 20,q = 7/10, and k = 30.
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The plot of real zeros of E,(Lk%(x) = 0 for 1 < n < 20 structure are pre-
sented (Figure 3).
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FIGURE 3. Real zeros of Eﬁ,k;(x) =0for1<n<20

In Figure 3(top-left), we choose ¢ = 7/10, and k = —5. In Figure 3(top-right),
we choose ¢ = 7/10, and k = —10. In Figure 3(bottom-left), we choose ¢ = 7/10,
and k = —15. In Figure 3(bottom-right), we choose ¢ = 7/10, and k = —20.
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Next, we calculated an approximate solution satisfying g-poly-Euler polyno-
mials E,(Lkg(x) = 0 for z € R. The results are given in Table 1.

Table 1. Approximate solutions of Ey(L,_qE)) (£) =0,¢g=1/10

degree n T

—_

0.78817
—1.1546, 0.93306
—1.3359, 0.41789, 0.69447
—1.4488, 1.0410
—1.4936, 0.61005, 0.87766
—1.51721.0396
—1.5286, 0.70853, 0.93062
—1.5346, 1.0290
—1.5377, 0.74775, 0.95948
—1.5392, 1.0193
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