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CERTAIN RESULTS ON THE q-GENOCCHI NUMBERS
AND POLYNOMIALS

Jong Jin Seo*

Abstract. In this work, we deal with q-Genocchi numbers and
polynomials. We derive not only new but also interesting prop-
erties of the q-Genocchi numbers and polynomials. Also, we give
Cauchy-type integral formula of the q-Genocchi polynomials and
derive distribution formula for the q-Genocchi polynomials. In the
final part, we introduce a definition of q-Zeta-type function which
is interpolation function of the q-Genocchi polynomials at negative
integers which we express in the present paper.

1. Preliminaries

Let p be a fixed odd prime number. Now, we need the definitions
of the some notations for this work such that let Qp be the field p-adic
rational numbers and let Cp be the completion of algebraic closure of
Qp. That is,

Qp =

{
x =

∞∑

n=−k

anpn : 0 ≤ an ≤ p− 1

}
.

Then Zp is integral domain which is defined by

Zp =

{
x =

∞∑

n=0

anpn : 0 ≤ an ≤ p− 1

}

or
Zp =

{
x ∈ Qp : |x|p ≤ 1

}
.
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We assume that q ∈ Cp with |1− q|p < 1 as an indeterminate. The
p-adic absolute value |.|p, is normally given by

|x|p = p−r

where x = pr s
t with (p, s) = (p, t) = (s, t) = 1 and r ∈ Q.

The q-extension of x with the display notation of [x]q is introduced
by

[x]q =
1− qx

1− q
.

We note that limq→1 [x]q = x (see[1-22]).
Also, we use notation N∗ which means the combinations of zero and

Natural numbers.
We consider that η is a uniformly differentiable function at a point

a ∈ Zp, if the difference quotient

Φη (x, y) =
η (x)− η (y)

x− y
,

have a limit ή (a) as (x, y) → (a, a) and denote this by η ∈ UD (Zp).
Then, for η ∈ UD (Zp), we can discuss the following

1
[pn]q

∑

0≤ξ<pn

η (ξ) qξ =
∑

0≤ξ<pn

η (ξ) µq (ξ + pnZp) ,

which represents as a p-adic q-analogue of Riemann sums for η. The
integral of η on Zp will be defined as the limit (n →∞) of these sums,
when it exists. The p-adic q-integral of function η ∈ UD (Zp) is defined
by T. Kim in [7], [11], [16] by

(1.1) Iq (η) =
∫

Zp

η (ξ) dµq (ξ) = lim
n→∞

1
[pn]q

pn−1∑

ξ=0

η (ξ) qξ.

The bosonic integral is considered as a bosonic limit q → 1, I1 (η) =
limq→1 Iq (η). Similarly, the fermionic p-adic integral on Zp is introduced
by T. Kim as follows:

(1.2) I−q (η) =
∫

Zp

η (ξ) dµ−q (ξ)

(for more details, see [16-18]).
From (1.2), it is well-known equality

(1.3) qI−q (η1) + I−q (η) = [2]q η (0) ,

where η1 (x) = η (x + 1) (for details, see[2-4, 11-14, 16-22]).
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The q-Genocchi polynomials with wegiht 0 are given by Araci et al.,
as follows:

(1.4)
G̃n+1,q (x)

n + 1
=

∫

Zp

(x + ξ)n dµ−q (ξ) .

From (1.4), we have

G̃n,q (x) =
n∑

l=0

(
n

l

)
xlG̃n−l,q

where G̃n,q(0) := G̃n,q are called q-Genocchi numbers with weight 0.
Then, q-Genocchi numbers are defined as

G̃0,q = 0 and q
(
G̃q + 1

)n
+ G̃n,q =

{
[2]q , if n = 1
0, if n 6= 1,

with the usual convention about replacing
(
G̃q

)n
by G̃n,q is used (for

details, see [4]).
In [8], Kim and Lee derived some properties for the q-Euler num-

bers and polynomials. In [4], Araci also studied not only new but also
interesting properties of the q-Genocchi numbers and polynomials with
weight 0. Actually, Genocchi numbers and polynomials, Euler numbers
and polynomials and their q-extensions have been studied in several dif-
ferent ways for a long time (for details, see [1-21]). Our aim in this paper
is to present some new interesting properties of the q-Genocchi numbers
and polynomials. Our applications for the q-Genocchi polynomials will
seem to be useful in mathematics for engineerings.

2. Some poperties of q-Genocchi numbers and polynomials
with weight 0

Let η (x) = et(x+ξ). Then, by using (1.3), we see that

t

∫

Zp

et(x+ξ)dµ−q (ξ) =
[2]q t

qet + 1
ext.
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From the last equality and (1.4), we get Araci, Acikgoz and Qi’s
q-Genocchi polynomials with weight 0 in [3] as follows:

t

∫

Zp

et(x+ξ)dµ−q (ξ) =
∞∑

n=0

G̃n,q (x)
tn

n!

=
[2]q t

qet + 1
ext, |log q + t| < π.

(2.1)

Substituting x → x + y into (2.1), then we can write
∞∑

n=0

G̃n,q (x + y)
tn

n!
=

[2]q t

qet + 1
e(x+y)t

=

( ∞∑

n=0

G̃n,q (x)
tn

n!

)( ∞∑

n=0

yn tn

n!

)

=
∞∑

n=0

(
n∑

k=0

(
n

k

)
G̃k,q (x) yn−k

)
tn

n!

From the above applications, we can easily express the following the-
orem:

Theorem 2.1. The following holds:

(2.2) G̃n,q (x + y) =
n∑

k=0

(
n

k

)
G̃k,q (x) yn−k.

By (2.2), we consider the following

G̃n,q (x + y) = nyn−1 +
n∑

k=2

(
n

k

)
G̃k,q (x) yn−k.

From this, it follows that

G̃n,q (x + y)− nyn−1 =
n∑

k=2

(
n

k

)
G̃k,q (x) yn−k

can be derived and so we reach the following theorem:

Theorem 2.2. For n ∈ N∗, one has
n∑

k=0

(
n
k

)

(k + 2) (k + 1)
G̃k+2,q (x) yn−k(2.3)

=
G̃n+2,q (x + y)− (n + 2) yn+1

(n + 2) (n + 1)
.
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Replacing y by −y into (2.3), then we get

G̃n+2,q (x− y)− (n + 2) (−1)n+1 yn+1

(n + 2) (n + 1)
(2.4)

=
n∑

k=0

(
n
k

)
(−1)n−k

(k + 2) (k + 1)
G̃k+2,q (x) yn−k.

By (2.4), it follows that
n∑

k=0

(
n
k

)
(−1)k

(k + 2) (k + 1)
G̃k+2,q (x) yn−k(2.5)

=
(−1)n G̃n+2,q (x− y) + (n + 2) yn+1

(n + 1) (n + 2)
.

Therefore, from the expressions of (2.3) and (2.5), we procure the
following theorem:

Theorem 2.3. The following holds true:

[n
2 ]∑

k=0

(
n
2k

)

(k + 1) (2k + 1)
G̃2k+2,q (x) yn−2k(2.6)

=
(−1)n G̃n+2,q (x− y) + G̃n+2,q (x + y)

(n + 1) (n + 2)

where [.] is Gauss’ symbol.

By (2.4), we have the following identity
n∑

k=2

(
n
k

)
(−1)k

k (k − 1)
G̃k,q (x) yn−k(2.7)

=
(−1)n G̃n,q (x− y) + nyn−1

n (n− 1)
.

By (2.4), (2.5) and (2.7), then we have the following theorem:

Theorem 2.4. For n ∈ N∗, we get

(−1)n G̃n+2,q (x− y) + G̃n+2,q (x + y)
(n + 2) (n + 1)

(2.8)

=
[n+1

2 ]∑

k=0

(
n
2k

)

(k + 1) (2k + 1)
G̃2k+2,q (x) yn−2k.
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Taking y = 1 into (2.3), it follows that

(2.9) q
n∑

k=0

(
n
k

)

(k + 2) (k + 1)
G̃k+2,q (x) =

qG̃n+2,q (x + 1)
(n + 1) (n + 2)

− q

n + 1
.

We need the following for sequel of this paper:

∞∑

n=0

(
qG̃n,q (x + 1) + G̃n,q (x)

) tn

n!
=

∞∑

n=0

(
[2]q xn

) tn+1

n!
,

from the above, we easily develop the following:

(2.10) qG̃n+1,q (x + 1) + G̃n+1,q (x) = (n + 1) [2]q xn.

By (2.9) and (2.10), we state the following theorem:

Theorem 2.5. The following holds:

n∑

k=0

(
n
k

)

(k + 2) (k + 1)
G̃k+2,q (x)(2.11)

=
[2]q xn+1

qn + q
− G̃n+2,q (x)

(qn + q) (n + 2)
− 1

qn + q
.

On account of the equality limq→1 G̃n,q (x) = G̃n,1 (x) := Gn (x),
where Gn (x) are known as Genocchi polynomials which are defined by
means of the following exponential generating function:

∞∑

n=0

Gn (x)
tn

n!
=

2t

et + 1
ext (|t| < π) ,

(see [1-4, 12, 13, 21]). As an application, as q → 1 in (2.11), we
discover the following corollary:

Corollary 2.6. The following

n∑

k=0

(
n
k

)

(k + 2) (k + 1)
Gk+2 (x)

=
2xn+1

n + 1
− Gn+2 (x)

(n + 1) (n + 2)
− 1

n + 1

is true.
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Let us take y = 1 and n → 2n into (2.6), becomes

n∑

k=0

(
2n
2k

)

(k + 1) (2k + 1)
G̃2k+2,q (x)

(2.12)

=
G̃2n+2,q (x− 1) + G̃2n+2,q (x + 1)

(2n + 1) (2n + 2)

=
1
q

(
qG̃2n+2,q (x + 1) + G̃2n+2,q (x)

)
+ qG̃2n+2,q (x) + G̃2n+2,q (x− 1)

(2n + 1) (2n + 2)

− G̃2n+2,q (x)
q (2n + 1) (2n + 2)

− qG̃2n+2,q (x)
(2n + 1) (2n + 2)

=
(n + 2) [2]q xn+1

(2n + 1) (2n + 2)
+

(n + 2) [2]q (x− 1)n+1

(2n + 1) (2n + 2)
− G̃2n+2,q (x)

q (2n + 1) (2n + 2)

− qG̃2n+2,q (x)
(2n + 1) (2n + 2)

After these applications, we conclude with the following theorem:

Theorem 2.7. The following identity

n∑

k=0

(
2n
2k

)

(k + 1) (2k + 1)
G̃2k+2,q (x)(2.13)

=
(n + 2) [2]q xn+1

(2n + 1) (2n + 2)
+

(n + 2) [2]q (x− 1)n+1

(2n + 1) (2n + 2)

− G̃2n+2,q (x)
q (2n + 1) (2n + 2)

− qG̃2n+2,q (x)
(2n + 1) (2n + 2)

is true.

Now, we analyse as q → 1 for the equation (2.13) and so we readily
state the following corollary which seems to be interesting property for
the Genocchi polynomials.
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Corollary 2.8. The following equality holds:

n∑

k=0

(
2n
2k

)

(k + 1) (2k + 1)
G2k+2 (x)(2.14)

=
2 (n + 2)xn+1

(2n + 1) (2n + 2)
+

2 (n + 2) (x− 1)n+1

(2n + 1) (2n + 2)

− G2n+2 (x)
(2n + 1) (2n + 2)

− G2n+2 (x)
(2n + 1) (2n + 2)

.

Substituting n → 2n + 1 and y = 1 into (2.8), we compute
n∑

k=0

(
2n+1

2k

)

(k + 1) (2k + 1)
G̃2k+2,q (x)

=
G̃2n+3,q (x + 1)− G̃2n+3,q (x− 1)

(2n + 3) (2n + 2)

=
1
q

(
qG̃2n+3,q (x + 1) + G̃2n+3,q (x)

)
−

(
G̃2n+3,q (x) + G̃2n+3,q (x− 1)

)

(2n + 3) (2n + 2)

+
(

q − 1
q

)
G̃2n+3,q (x)

(2n + 3) (2n + 2)

=
[2]q x2n+2

q (2n + 2)
− [2]q (x− 1)2n+2

(2n + 2)
+

(
q − 1

q

)
G̃2n+3,q (x)

(2n + 3) (2n + 2)
.

Therefore, we obtain the following theorem:

Theorem 2.9. The following equality holds:

n∑

k=0

(
2n+1

2k

)

(k + 1) (2k + 1)
G̃2k+2,q (x)

=
[2]q x2n+2

q (2n + 2)
− [2]q (x− 1)2n+2

(2n + 2)
+

(
q − 1

q

)
G̃2n+3,q (x)

(2n + 3) (2n + 2)
.

As q → 1 in the above theorem, then we easily derive the following
corollary:

Corollary 2.10. For n ∈ N∗, then we have

n∑

k=0

(
2n+1

2k

)

(k + 1) (2k + 1)
G2k+2,q (x) =

2x2n+2

(2n + 2)
− 2 (x− 1)2n+2

(2n + 2)
.



Certain results on the q-Genocchi numbers and polynomials 239

3. Further remarks

In this final part, we remember the definition of the generating func-
tion of the q-Genocchi polynomials, as follows:

(3.1) Fq (x, t) =
[2]q t

qet + 1
ext =

∞∑

n=0

G̃n,q (x)
tn

n!
.

Applying k-th derivative to (3.1), then we attain the following

(3.2)
dk

dtk

( [2]q t

qet + 1
ext

)
=

dk

dtk

( ∞∑

n=0

G̃n,q (x)
tn

n!

)
.

Taking limt→0 on the both sides in (3.2), then we arrive at the fol-
lowing theorem:

Theorem 3.1. The following equality

(3.3) G̃k,q (x) = lim
t→0

[
dk

dtk

( [2]q t

qet + 1
ext

)]

is true.

We now consider Cauchy-type integral formula of the q-Genocchi
polynomials which is a vital and important in complex analysis, is an
important statement about line integrals for holomorphic functions in
the complex plane. So, by using equation of (3.3), we can develop the
following theorem:

Theorem 3.2. The following Cauchy-type integral holds true:

G̃n,q (x) =
n!
2πi

∫

C
Fq (x, t)

dt

tn+1

where C is a loop which starts at −∞, encircles the origin once in the
positive direction, and the returns −∞.
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Distribution formula for the special polynomials is important to study
regarding p-adic Measure theory. That is,
∫

Zp

(x + y)n dµ−q (y) = lim
n→∞

1
[dpn]−q

dpn−1∑

ξ=0

(−1)ξ (x + ξ)n qξ

=
dn

[d]−q

d−1∑

a=0

(−1)a qa


 lim

n→∞
1

[pn]−qd

pn−1∑

ξ=0

(−1)ξ

(
x + a

d
+ ξ

)n

qdξ




=
dn

[d]−q

d−1∑

a=0

(−1)a qa G̃n+1,q

(
x+a

d

)

n + 1
.

As a result, we obtain the following theorem.

Theorem 3.3. For n ∈ N∗, then we have

[d]−q G̃n,q (dx) = dn−1
d−1∑

a=0

(−1)a qaG̃n,q

(
x +

a

d

)
.

By using definition of the geometric series in (3.1), we easily see that
∞∑

m=0

G̃m,q (x)
tm

m!
=

∞∑

m=0

(
[2]q (m + 1)

∞∑

n=0

(−1)n qnnm

)
tm+1

(m + 1)!
,

by comparing the coefficients on the both sides, then we have, for
m ∈ N

(3.4)
G̃m+1,q (x)

m + 1
= [2]q

∞∑

n=1

(−1)n qnnm.

By (3.4), we define q-Zeta-type function as follows: For s ∈ C and
<e (s) > 1,

(3.5) ζ̃ (s, x : q) = [2]q

∞∑

n=1

(−1)n qn

ns
.

As q → 1 in (3.5), it leads to the following

lim
q→1

ζ̃ (s, x : q) = ζ̃ (s, x : 1) := ζ (s, x) = 2
∞∑

n=1

(−1)n

ns

which is well-known Euler-Zeta function (see [7]). By (3.4) and (3.5),
we get

ζ̃ (−n, x : q) =
G̃n+1,q (x)

n + 1
.
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