• 제목/요약/키워드: Pr$\ddot{u}$fer domain

검색결과 26건 처리시간 0.022초

UPPERS TO ZERO IN POLYNOMIAL RINGS OVER GRADED DOMAINS AND UMt-DOMAINS

  • Hamdi, Haleh;Sahandi, Parviz
    • 대한수학회보
    • /
    • 제55권1호
    • /
    • pp.187-204
    • /
    • 2018
  • Let $R={\bigoplus}_{{\alpha}{\in}{\Gamma}}\;R_{\alpha}$ be a graded integral domain, H be the set of nonzero homogeneous elements of R, and ${\star}$ be a semistar operation on R. The purpose of this paper is to study the properties of $quasi-Pr{\ddot{u}}fer$ and UMt-domains of graded integral domains. For this reason we study the graded analogue of ${\star}-quasi-Pr{\ddot{u}}fer$ domains called $gr-{\star}-quasi-Pr{\ddot{u}}fer$ domains. We study several ring-theoretic properties of $gr-{\star}-quasi-Pr{\ddot{u}}fer$ domains. As an application we give new characterizations of UMt-domains. In particular it is shown that R is a $gr-t-quasi-Pr{\ddot{u}}fer$ domain if and only if R is a UMt-domain if and only if RP is a $quasi-Pr{\ddot{u}}fer$ domain for each homogeneous maximal t-ideal P of R. We also show that R is a UMt-domain if and only if H is a t-splitting set in R[X] if and only if each prime t-ideal Q in R[X] such that $Q{\cap}H ={\emptyset}$ is a maximal t-ideal.

ON THE NUMBER OF SEMISTAR OPERATIONS OF SOME CLASSES OF PRUFER DOMAINS

  • Mimouni, Abdeslam
    • 대한수학회보
    • /
    • 제56권6호
    • /
    • pp.1485-1495
    • /
    • 2019
  • The purpose of this paper is to compute the number of semistar operations of certain classes of finite dimensional $Pr{\ddot{u}}fer$ domains. We prove that ${\mid}SStar(R){\mid}={\mid}Star(R){\mid}+{\mid}Spec(R){\mid}+ {\mid}Idem(R){\mid}$ where Idem(R) is the set of all nonzero idempotent prime ideals of R if and only if R is a $Pr{\ddot{u}}fer$ domain with Y -graph spectrum, that is, R is a $Pr{\ddot{u}}fer$ domain with exactly two maximal ideals M and N and $Spec(R)=\{(0){\varsubsetneq}P_1{\varsubsetneq}{\cdots}{\varsubsetneq}P_{n-1}{\varsubsetneq}M,N{\mid}P_{n-1}{\varsubsetneq}N\}$. We also characterize non-local $Pr{\ddot{u}}fer$ domains R such that ${\mid}SStar(R){\mid}=7$, respectively ${\mid}SStar(R){\mid}=14$.

A NOTE ON GORENSTEIN PRÜFER DOMAINS

  • Hu, Kui;Wang, Fanggui;Xu, Longyu
    • 대한수학회보
    • /
    • 제53권5호
    • /
    • pp.1447-1455
    • /
    • 2016
  • In this note, we mainly discuss the Gorenstein $Pr{\ddot{u}}fer$ domains. It is shown that a domain is a Gorenstein $Pr{\ddot{u}}fer$ domain if and only if every finitely generated ideal is Gorenstein projective. It is also shown that a domain is a PID (resp., Dedekind domain, $B{\acute{e}}zout$ domain) if and only if it is a Gorenstein $Pr{\ddot{u}}fer$ UFD (resp., Krull domain, GCD domain).

ON ALMOST PSEUDO-VALUATION DOMAINS

  • Chang, Gyu Whan
    • Korean Journal of Mathematics
    • /
    • 제18권2호
    • /
    • pp.185-193
    • /
    • 2010
  • Let D be an integral domain, and let ${\bar{D}}$ be the integral closure of D. We show that if D is an almost pseudo-valuation domain (APVD), then D is a quasi-$Pr{\ddot{u}}fer$ domain if and only if D=P is a quasi-$Pr{\ddot{u}}fer$ domain for each prime ideal P of D, if and only if ${\bar{D}}$ is a valuation domain. We also show that D(X), the Nagata ring of D, is a locally APVD if and only if D is a locally APVD and ${\bar{D}}$ is a $Pr{\ddot{u}}fer$ domain.

CHARACTERIZATIONS OF GRADED PRÜFER ⋆-MULTIPLICATION DOMAINS

  • Sahandi, Parviz
    • Korean Journal of Mathematics
    • /
    • 제22권1호
    • /
    • pp.181-206
    • /
    • 2014
  • Let $R={\bigoplus}_{\alpha{\in}\Gamma}R_{\alpha}$ be a graded integral domain graded by an arbitrary grading torsionless monoid ${\Gamma}$, and ⋆ be a semistar operation on R. In this paper we define and study the graded integral domain analogue of ⋆-Nagata and Kronecker function rings of R with respect to ⋆. We say that R is a graded Pr$\ddot{u}$fer ⋆-multiplication domain if each nonzero finitely generated homogeneous ideal of R is ⋆$_f$-invertible. Using ⋆-Nagata and Kronecker function rings, we give several different equivalent conditions for R to be a graded Pr$\ddot{u}$fer ⋆-multiplication domain. In particular we give new characterizations for a graded integral domain, to be a $P{\upsilon}MD$.

KRONECKER FUNCTION RINGS AND PRÜFER-LIKE DOMAINS

  • Chang, Gyu Whan
    • Korean Journal of Mathematics
    • /
    • 제20권4호
    • /
    • pp.371-379
    • /
    • 2012
  • Let D be an integral domain, $\bar{D}$ be the integral closure of D, * be a star operation of finite character on D, $*_w$ be the so-called $*_w$-operation on D induced by *, X be an indeterminate over D, $N_*=\{f{\in}D[X]{\mid}c(f)^*=D\}$, and $Kr(D,*)=\{0\}{\cup}\{\frac{f}{g}{\mid}0{\neq}f,\;g{\in}D[X]$ and there is an $0{\neq}h{\in}D[X]$ such that $(c(f)c(h))^*{\subseteq}(c(g)c(h))^*$}. In this paper, we show that D is a *-quasi-Pr$\ddot{u}$fer domain if and only if $\bar{D}[X]_{N_*}=Kr(D,*_w)$. As a corollary, we recover Fontana-Jara-Santos's result that D is a Pr$\ddot{u}$fer *-multiplication domain if and only if $D[X]_{N_*} = Kr(D,*_w)$.

GRADED INTEGRAL DOMAINS IN WHICH EACH NONZERO HOMOGENEOUS IDEAL IS DIVISORIAL

  • Chang, Gyu Whan;Hamdi, Haleh;Sahandi, Parviz
    • 대한수학회보
    • /
    • 제56권4호
    • /
    • pp.1041-1057
    • /
    • 2019
  • Let ${\Gamma}$ be a nonzero commutative cancellative monoid (written additively), $R={\bigoplus}_{{\alpha}{\in}{\Gamma}}$ $R_{\alpha}$ be a ${\Gamma}$-graded integral domain with $R_{\alpha}{\neq}\{0\}$ for all ${\alpha}{\in}{\Gamma}$, and $S(H)=\{f{\in}R{\mid}C(f)=R\}$. In this paper, we study homogeneously divisorial domains which are graded integral domains whose nonzero homogeneous ideals are divisorial. Among other things, we show that if R is integrally closed, then R is a homogeneously divisorial domain if and only if $R_{S(H)}$ is an h-local $Pr{\ddot{u}}fer$ domain whose maximal ideals are invertible, if and only if R satisfies the following four conditions: (i) R is a graded-$Pr{\ddot{u}}fer$ domain, (ii) every homogeneous maximal ideal of R is invertible, (iii) each nonzero homogeneous prime ideal of R is contained in a unique homogeneous maximal ideal, and (iv) each homogeneous ideal of R has only finitely many minimal prime ideals. We also show that if R is a graded-Noetherian domain, then R is a homogeneously divisorial domain if and only if $R_{S(H)}$ is a divisorial domain of (Krull) dimension one.

GRADED INTEGRAL DOMAINS AND PRÜFER-LIKE DOMAINS

  • Chang, Gyu Whan
    • 대한수학회지
    • /
    • 제54권6호
    • /
    • pp.1733-1757
    • /
    • 2017
  • Let $R={\oplus}_{{\alpha}{\in}{\Gamma}}R_{\alpha}$ be an integral domain graded by an arbitrary torsionless grading monoid ${\Gamma}$, ${\bar{R}}$ be the integral closure of R, H be the set of nonzero homogeneous elements of R, C(f) be the fractional ideal of R generated by the homogeneous components of $f{\in}R_H$, and $N(H)=\{f{\in}R{\mid}C(f)_v=R\}$. Let $R_H$ be a UFD. We say that a nonzero prime ideal Q of R is an upper to zero in R if $Q=fR_H{\cap}R$ for some $f{\in}R$ and that R is a graded UMT-domain if each upper to zero in R is a maximal t-ideal. In this paper, we study several ring-theoretic properties of graded UMT-domains. Among other things, we prove that if R has a unit of nonzero degree, then R is a graded UMT-domain if and only if every prime ideal of $R_{N(H)}$ is extended from a homogeneous ideal of R, if and only if ${\bar{R}}_{H{\backslash}Q}$ is a graded-$Pr{\ddot{u}}fer$ domain for all homogeneous maximal t-ideals Q of R, if and only if ${\bar{R}}_{N(H)}$ is a $Pr{\ddot{u}}fer$ domain, if and only if R is a UMT-domain.

ON CHARACTERIZATIONS OF PRÜFER v-MULTIPLICATION DOMAINS

  • Chang, Gyu Whan
    • Korean Journal of Mathematics
    • /
    • 제18권4호
    • /
    • pp.335-342
    • /
    • 2010
  • Let D be an integral domain with quotient field K,$\mathcal{I}(D)$ be the set of nonzero ideals of D, and $w$ be the star-operation on D defined by $I_w=\{x{\in}K{\mid}xJ{\subseteq}I$ for some $J{\in}\mathcal{I}(D)$ such that J is finitely generated and $J^{-1}=D\}$. The D is called a Pr$\ddot{u}$fer $v$-multiplication domain if $(II^{-1})_w=D$ for all nonzero finitely generated ideals I of D. In this paper, we show that D is a Pr$\ddot{u}$fer $v$-multiplication domain if and only if $(A{\cap}(B+C))_w=((A{\cap}B)+(A{\cap}C))_w$ for all $A,B,C{\in}\mathcal{I}(D)$, if and only if $(A(B{\cap}C))_w=(AB{\cap}AC)_w$ for all $A,B,C{\in}\mathcal{I}(D)$, if and only if $((A+B)(A{\cap}B))_w=(AB)_w$ for all $A,B{\in}\mathcal{I}(D)$, if and only if $((A+B):C)_w=((A:C)+(B:C))_w$ for all $A,B,C{\in}\mathcal{I}(D)$ with C finitely generated, if and only if $((a:b)+(b:a))_w=D$ for all nonzero $a,b{\in}D$, if and only if $(A:(B{\cap}C))_w=((A:B)+(A:C))_w$ for all $A,B,C{\in}\mathcal{I}(D)$ with B, C finitely generated.

KRULL DIMENSION OF HURWITZ POLYNOMIAL RINGS OVER PRÜFER DOMAINS

  • Le, Thi Ngoc Giau;Phan, Thanh Toan
    • 대한수학회보
    • /
    • 제55권2호
    • /
    • pp.625-631
    • /
    • 2018
  • Let R be a commutative ring with identity and let R[x] be the collection of polynomials with coefficients in R. There are a lot of multiplications in R[x] such that together with the usual addition, R[x] becomes a ring that contains R as a subring. These multiplications are from a class of functions ${\lambda}$ from ${\mathbb{N}}_0$ to ${\mathbb{N}}$. The trivial case when ${\lambda}(i)=1$ for all i gives the usual polynomial ring. Among nontrivial cases, there is an important one, namely, the case when ${\lambda}(i)=i!$ for all i. For this case, it gives the well-known Hurwitz polynomial ring $R_H[x]$. In this paper, we completely determine the Krull dimension of $R_H[x]$ when R is a $Pr{\ddot{u}}fer$ domain. Let R be a $Pr{\ddot{u}}fer$ domain. We show that dim $R_H[x]={\dim}\;R+1$ if R has characteristic zero and dim $R_H[x]={\dim}\;R$ otherwise.