References
- J. Arnold, On the ideal theory of the Kronecker function ring and the domain D(X), Canad. J. Math. 21(1969), 558-563. https://doi.org/10.4153/CJM-1969-063-4
- A. Badawi and E. G. Houston, Powerful ideals, strongly primary ideals, almost pseudo-valuation domains, and conductive domains, Comm. Algebra 30(2002), 1591-1606. https://doi.org/10.1081/AGB-120013202
- E. Bastida and R. Gilmer, Overrings and divisorial ideals of the form D + M, Michigan Math. J. 20(1973), 79-95. https://doi.org/10.1307/mmj/1029001014
-
G. W. Chang, Locally pseudo-valuation domain of the form
${D[X]_N}_{v}$ , J. Korean Math. Soc. 45(2008), 1405-1416. https://doi.org/10.4134/JKMS.2008.45.5.1405 - G. W. Chang and M. Fontana Uppers to zero in polynomial rings and prufer-like domains, Comm. Algebra 37(2009), 164-192. https://doi.org/10.1080/00927870802243564
- G. W. Chang, H. Nam and J. Park, Strongly primary ideals, in Arithmetical Properties of Commutative Rings and Monoids, Lecture Notes in Pure and Appl. Math., Chapman and Hall, 241(2005), 378-386.
- D. E. Dobbs, Coherence, ascent of going-down, and pseudo-valuation domains, Houston J. Math. 4(1978), 551-567.
- D. E. Dobbs and M. Fontana, Locally pseudo-valuation domains, Ann. Mat. Pura Appl.(4) 134(1983), 147-168. https://doi.org/10.1007/BF01773503
- M. Fontana, J. A. Huckaba and I. J. Papick, Prufer domains, Marcel Dekker, New York, 1997.
- R. Gilmer, Multiplicative Ideal Theory, Marcel Dekker, New York, 1972.
- J. R. Hedstrom and E. G. Housotn, Pseudo-valuation domains, Pacific J. Math. 75(1978), 137-147. https://doi.org/10.2140/pjm.1978.75.137
- J. R. Hedstrom and E. G. Housotn, Pseudo-valuation domains (II), Houston J. Math. 4(1978), 199-207.