ON ALMOST PSEUDO-VALUATION DOMAINS

  • Received : 2010.04.28
  • Accepted : 2010.06.07
  • Published : 2010.06.30

Abstract

Let D be an integral domain, and let ${\bar{D}}$ be the integral closure of D. We show that if D is an almost pseudo-valuation domain (APVD), then D is a quasi-$Pr{\ddot{u}}fer$ domain if and only if D=P is a quasi-$Pr{\ddot{u}}fer$ domain for each prime ideal P of D, if and only if ${\bar{D}}$ is a valuation domain. We also show that D(X), the Nagata ring of D, is a locally APVD if and only if D is a locally APVD and ${\bar{D}}$ is a $Pr{\ddot{u}}fer$ domain.

Keywords

References

  1. J. Arnold, On the ideal theory of the Kronecker function ring and the domain D(X), Canad. J. Math. 21(1969), 558-563. https://doi.org/10.4153/CJM-1969-063-4
  2. A. Badawi and E. G. Houston, Powerful ideals, strongly primary ideals, almost pseudo-valuation domains, and conductive domains, Comm. Algebra 30(2002), 1591-1606. https://doi.org/10.1081/AGB-120013202
  3. E. Bastida and R. Gilmer, Overrings and divisorial ideals of the form D + M, Michigan Math. J. 20(1973), 79-95. https://doi.org/10.1307/mmj/1029001014
  4. G. W. Chang, Locally pseudo-valuation domain of the form ${D[X]_N}_{v}$, J. Korean Math. Soc. 45(2008), 1405-1416. https://doi.org/10.4134/JKMS.2008.45.5.1405
  5. G. W. Chang and M. Fontana Uppers to zero in polynomial rings and prufer-like domains, Comm. Algebra 37(2009), 164-192. https://doi.org/10.1080/00927870802243564
  6. G. W. Chang, H. Nam and J. Park, Strongly primary ideals, in Arithmetical Properties of Commutative Rings and Monoids, Lecture Notes in Pure and Appl. Math., Chapman and Hall, 241(2005), 378-386.
  7. D. E. Dobbs, Coherence, ascent of going-down, and pseudo-valuation domains, Houston J. Math. 4(1978), 551-567.
  8. D. E. Dobbs and M. Fontana, Locally pseudo-valuation domains, Ann. Mat. Pura Appl.(4) 134(1983), 147-168. https://doi.org/10.1007/BF01773503
  9. M. Fontana, J. A. Huckaba and I. J. Papick, Prufer domains, Marcel Dekker, New York, 1997.
  10. R. Gilmer, Multiplicative Ideal Theory, Marcel Dekker, New York, 1972.
  11. J. R. Hedstrom and E. G. Housotn, Pseudo-valuation domains, Pacific J. Math. 75(1978), 137-147. https://doi.org/10.2140/pjm.1978.75.137
  12. J. R. Hedstrom and E. G. Housotn, Pseudo-valuation domains (II), Houston J. Math. 4(1978), 199-207.