DOI QR코드

DOI QR Code

A NOTE ON GORENSTEIN PRÜFER DOMAINS

  • Hu, Kui (College of Science Southwest University of Science and Technology) ;
  • Wang, Fanggui (College of Mathematics and Software Science Sichuan Normal University) ;
  • Xu, Longyu (College of Mathematics and Software Science Sichuan Normal University)
  • Received : 2015.09.17
  • Published : 2016.09.30

Abstract

In this note, we mainly discuss the Gorenstein $Pr{\ddot{u}}fer$ domains. It is shown that a domain is a Gorenstein $Pr{\ddot{u}}fer$ domain if and only if every finitely generated ideal is Gorenstein projective. It is also shown that a domain is a PID (resp., Dedekind domain, $B{\acute{e}}zout$ domain) if and only if it is a Gorenstein $Pr{\ddot{u}}fer$ UFD (resp., Krull domain, GCD domain).

Keywords

References

  1. E. Enochs and O. Jenda, Gorenstein injective and projective modules, Math. Z. 220 (1995), no. 4, 611-633. https://doi.org/10.1007/BF02572634
  2. E. Enochs, O. Jenda, and B. Torrecillas, Gorenstein flat modules, Nanjing Daxue Xuebao Shuxue Bannian Kan 10 (1993), no. 1, 1-9.
  3. Z. Gao and F. Wang, All Gorenstein hereditary rings are coherent, J. Algebra Appl. 13 (2014), no. 4, 1350140, 5 pages.
  4. B. G. Kang, On the converse of a well-known fact about Krull domains, J. Algebra 124 (1989), no. 2, 284-299. https://doi.org/10.1016/0021-8693(89)90131-2
  5. I. Kaplansky, Commutative Rings, Revised Edition, Univ. Chicago Press, Chicago, 1974.
  6. H. Kim, Module-theoretic characterizations of t-linkative domains, Comm. Algebra 36 (2008), no. 5, 1649-1670. https://doi.org/10.1080/00927870701872513
  7. N. Mahdou and M. Tamekkante, On (strongly) Gorenstein (semi)hereditary rings, Arab. J. Sci. Eng. 36 (2011), no. 3, 431-440. https://doi.org/10.1007/s13369-011-0047-7
  8. L. Qiao and F. Wang, A Gorenstein analogue of a result of Bertin, J. Algebra Appl. 14 (2015), no. 2, 1550019, 13 pages.
  9. J. J. Rotman, An Introduction to Homological Algebra, Second Ed., New York: Springer Science+Business Media, LLC, 2009.
  10. F. Wang, Commutative Rings and Star-Operation Theory, Beijing: Sicence Press. (in Chinese), 2006.
  11. F. Wang and R. L. McCasland, On w-modules over strong Mori domains, Comm. Algebra 25 (1997), no. 4, 1285-1306. https://doi.org/10.1080/00927879708825920
  12. F. Wang and R. L. McCasland, On strong Mori domains, J. Pure Appl. Algebra 135 (1999), no. 2, 155-165. https://doi.org/10.1016/S0022-4049(97)00150-3
  13. F. Wang, L. Qiao, and H. Kim, Super finitely presented modules and Gorenstein projective modules, Comm. Algebra. to appear.
  14. L. Xu, K. Hu, S. Zhao, and F. Wang, A chcaracterization of Prufer domains, Comm. Algebra 44 (2016), no. 1, 135-140. https://doi.org/10.1080/00927872.2014.974246
  15. D. C. Zhou and F. Wang, The direct and inverse limits of w-modules, Comm. Algebra. to appear.

Cited by

  1. Quasi-strongly Gorenstein projective modules pp.1793-6829, 2018, https://doi.org/10.1142/S0219498819501822
  2. -Flat Modules and Dimensions vol.25, pp.02, 2018, https://doi.org/10.1142/S1005386718000147
  3. Generalized coherent domains of self-weak injective dimension at most one pp.1532-4125, 2019, https://doi.org/10.1080/00927872.2018.1524006