
Bull. Korean Math. Soc. 53 (2016), No. 5, pp. 1447–1455
http://dx.doi.org/10.4134/BKMS.b150760
pISSN: 1015-8634 / eISSN: 2234-3016

A NOTE ON GORENSTEIN PRÜFER DOMAINS

Kui Hu, Fanggui Wang, and Longyu Xu

Abstract. In this note, we mainly discuss the Gorenstein Prüfer do-
mains. It is shown that a domain is a Gorenstein Prüfer domain if and
only if every finitely generated ideal is Gorenstein projective. It is also
shown that a domain is a PID (resp., Dedekind domain, Bézout domain)
if and only if it is a Gorenstein Prüfer UFD (resp., Krull domain, GCD
domain).

1. Introduction

Throughout this note, all rings are commutative with identity element and
all modules are unitary. Since the concept of Gorenstein homological algebra
has been introduced, it has been attempted to prove the following (provable)
meta-theorem:

Meta-theorem. Every result in classical homological algebra has a counterpart

in Gorenstein homological algebra.

In this vein, it is proved in [3, Theorem 2.6] that a ring R is G-semihereditary
if and only if every finitely generated submodule of any projective R-module
is G-projective. Also it is shown in [8, Theorem 4.2] that a domain is a G-
Prüfer domain if and only if it is coherent and any finitely generated ideal
is G-projective. However the latter one is not a perfect counterpart to the
well-known fact that a domain is a Prüfer domain if and only if any finitely
generated ideal is projective. One of purposes of this paper is to show that the
coherence condition in [8, Theorem 4.2] is superfluous. In order to do so, we
first prove that if any finitely generated ideal of a domain R is G-projective,
then R is coherent. So, it can be seen that the notion of G-Prüfer domains
is a natural generalization of that of Prüfer domains and hence also a natural
generalization of that of Dedekind domains [9].

On the other hand, it is well known that a PID is necessarily a UFD and
a UFD is necessarily a GCD domain. It is also well known that a Dedekind
domain is a UFD if and only if it is a PID [9, Theorem 4.26], a domain is a
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Bézout domain if and only if it is a Prüfer GCD domain. As a generalization
of Dedekind domains, are there any similar results about G-Prüfer domains?
Thus the others are to show that three results in classical ideal theory have
counterparts in “Gorenstein ideal theory”. More precisely, it is also shown
that a domain is a PID (resp., Dedekind domain, Bézout domain) if and only
if it is a Gorenstein Prüfer UFD (resp, Krull domain, GCD domain).

Next we introduce some definitions and notations. For an R-module M , the
dual module HomR(M,R) and the double dual module HomR(HomR(M,R), R)
are denoted by M∗ and M∗∗ respectively. Recall that an R-module M is called
Gorenstein projective (G-projective for short) in [1] if there exists an exact
sequence

· · · → P1 → P0 → P 0 → P 1 → · · ·

of projective R-modules with M = ker(P 0 → P 1) such that HomR(−, Q)
leaves the sequence exact whenever Q is a projective module. An R-module M
is called Gorenstein flat [2] if there exists an exact sequence

· · · → F1 → F0 → F 0 → F 1 → · · ·

of flat R-modules with M = ker(F 0 → F 1) such that E ⊗R − leaves the
sequence exact whenever E is an injective R-module.

A ring R is called coherent (resp. semihereditary) if every finitely generated
ideal of R is finitely presented (resp., projective). Then it is well known that a
ring R is a semihereditary ring if and only if every finitely generated submodule
of any projective R-module is projective. A semihereditary domain is called a
Prüfer domain, in other words, a domain is a Prüfer domain if and only if every
finitely generated ideal is projective. Recall from [7] that a ring R is called
Gorenstein semihereditary (G-semihereditary for short) if it is coherent and
every submodule of a flat R-module is Gorenstein flat. Similarly, an integral
domain R is called a Gorenstein Prüfer domain (G-Prüfer domain for short) [8]
if it is a G-semihereditary domain. The definition of a greatest common divisor

domain (GCD domain for short) and a unique factorization domain (UFD for
short) can be found in [5]. A domain R is called a principal ideal domain [9]
(PID for short) if every ideal of R is principal. If any finitely generated ideal
of R is principal, then R is called a Bézout domain [5].

2. A characterization of G-Prüfer domains

We say that a ∈ R is a zero divisor [9] if there is a nonzero element b ∈ R
such that ab = 0; in the case a 6= 0 we say that a is a nontrivial zero divisor. If
a is not a zero divisor, we say a to be a regular element [9]. An ideal I of R is
called regular if it contains a regular element. It can be seen that any nonzero
ideal of a domain is regular.

Lemma 2.1. Let R be a ring and I be a regular ideal of R. Then I∗ =
HomR(I, R) is isomorphic to an ideal of R.
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Proof. Since I is regular, it must contain a regular element, say a. Consider
the following homomorphism θ : I∗ = HomR(I, R) → R which is defined by
θ(f) = f(a) for f ∈ I∗. If f(a) = 0, then for any element b ∈ I, we have
f(ab) = af(b) = bf(a) = 0. Because a is regular, we surely have f(b) = 0, this
means that θ is a monomorphism. So I∗ is isomorphic to the image of θ which
is an ideal of R. �

Lemma 2.2. Let R be a ring and let M be a finitely generated G-projective

R-module. Then there exists the following short exact sequence 0 −→ M −→
F −→ G −→ 0, where F is a finitely generated projective module and G is

G-projective.

Proof. Just see [13, Proposition 2.6]. �

Now, we consider the following evaluation map µM : M → M∗∗, which is
defined by µM (x)(f) = f(x) for x ∈ M and f ∈ M∗. Then M is called reflexive

if µM is an isomorphism.

Lemma 2.3. Let R be a ring, 0 −→ M −→ P −→ C −→ 0 be a short exact

sequence such that P is a finitely generated projective R-module and C is a G-

projective R-module. Then both M and C are reflexive. In particular, finitely

generated G-projective R-modules are reflexive.

Proof. Taking into consideration of Lemma 2.2, we only need to prove the first
claim. Since G-projective modules are projective resolving, both M and C are
G-projective modules. So, by [13, Lemma 3.1], both M and C are reflexive. �

Theorem 2.4. Let R be a ring such that every finitely generated ideal of R
is G-projective. If I is a finitely generated regular ideal of R, then I is finitely

presented.

Proof. Since I is finitely generated, I is G-projective from the assumption.
So, by Lemma 2.3, I ∼= I∗∗. Also notice that I∗ is finitely generated by [13,
Proposition 2.6]. Because I is regular, I∗ = HomR(I, R) is isomorphic to an
ideal of R by Lemma 2.1. Therefore I∗ is a finitely generated G-projective
R-module. Thus, by Lemma 2.2, we have the following short exact sequence:

0 −→ I∗ −→ F ′ −→ G′ −→ 0,

where F ′ is finitely generated free, G′ is a finitely generated G-projective R-
module, and Ext1R(G

′, R) = 0. Further, by applying the functor HomR(−, R)
to this sequence, we get the following exact sequence:

0 −→ G′∗ −→ F ′∗ −→ I∗∗ −→ 0.

Since I ∼= I∗∗, we surely have an exact sequence:

0 −→ G′∗ −→ F ′∗ −→ I −→ 0.

Since by [13, Proposition 2.6], G′∗ is finitely generated, it can be seen from this
short exact sequence that I is finitely presented. �
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Trivially we have the following:

Corollary 2.5. Let R be a domain such that every finitely generated ideal of

R is G-projective. Then R is coherent.

Corollary 2.6. Let R be a domain. Then R is a G-Prüfer domain if and only

if every finitely generated ideal of R is G-projective.

Proof. Just notice that, by [8, Theorem 4.2], a domain is a G-Prüfer domain if
and only if it is coherent and every finitely generated ideal is G-projective. �

It is worth to point out that, by [8, Theorem 4.2] and [14, Theorem 1.5],
a domain is a Prüfer domain if and only if it is an integral closed G-Prüfer
domain.

3. G-Prüfer domains and UFDs

It is well known that a Dedekind domain is a UFD if and only if it is a
PID. In this section, we will prove that a domain is a PID (resp., Dedekind
domain, Bézout domain) if and only if it is a Gorenstein Prüfer UFD (resp.,
Krull domain, GCD domain).

Let R be a domain with quotient field K and I be a fractional ideal of R.
Then I−1 is defined as follow:

I−1 = {x ∈ K|xI ⊂ R}.

An ideal J of R is called a Glaz-Vasconcelos ideal (for short, GV-ideal, denoted
by J ∈ GV (R)) if J is a finitely generated ideal of R with J−1 = R. A
torsion-free R-module M is called a w-module if Jx ⊂ M for J ∈ GV (R) and
x ∈ M ⊗ K imply that x ∈ M . It is easy to see that free modules are w-
modules. For a torsion-free R-module M , Wang and McCasland defined the
w-envelope of M in [11] as follows:

Mw = {x ∈ M ⊗K|Jx ⊂ M for some J ∈ GV (R)}.

So, a torsion-free module M is a w-module if and only if M = Mw. A torsion-
free module M is said to be of finite type if there exists a finitely generated
submodule N of M such that Mw = Nw. In particular, if I is a nonzero
fractional ideal of R, then

Iw = {x ∈ K|Jx ⊂ I for some J ∈ GV (R)}.

The canonical map I → Iw on F (R) (the set of fractional ideals of R) is a star-
operation, denoted by w. An ideal I is called a w-ideal if and only if I = Iw .
It can be seen that if J ∈ GV (R), then Jw = R.

Lemma 3.1. Let R be a GCD domain and a1, . . . , an ∈ R (n ≥ 2). If

a1, . . . , an are relatively prime, then the ideal J = (a1, . . . , an) is a GV-ideal

and any finitely generated ideal which contains J is also a GV-ideal.
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Proof. It will suffice to prove that J−1 = R. Let u
v
∈ J−1 (where u, v ∈ R are

relatively prime). Then u
v
ai ∈ R and this means that v|ai for each i = 1, . . . , n.

So v is a common divisor of a1, . . . , an and must be a unit. Therefore u
v
∈ R. �

An R-module M is called GV-torsion-free if for any J ∈ GV (R) and x ∈ M ,
Jx = 0 implies x = 0. It can be seen that a torsion-free module is GV-torsion-
free. The following lemma is [10, Theorem 8.2.5].

Lemma 3.2. Let M be a torsion-free module. The following statements are

equivalent.

(1) M is a w-module.

(2) For any exact sequence 0 −→ M −→ F −→ N −→ 0 where F is a

w-module, N is GV-torsion-free.

(3) There exists an exact sequence 0 −→ M −→ F −→ N −→ 0 such that

F is a w-module and N is GV-torsion-free.

Since free modules are w-modules, it can be seen from this theorem that
projective modules are w-modules.

Proposition 3.3. If R is a G-Prüfer domain, then any finitely generated ideal

I of R is a w-ideal.

Proof. It will suffice to prove that I is a w-module. Since R is a G-Prüfer
domain and I is finitely generated, I must be G-projective. Therefore there
exists a short exact sequence 0 −→ I −→ P −→ G −→ 0 such that P is
projective and G is G-projective. Because projective modules are w-modules
and G is GV-torsion-free (as a submodule of a free module), by Lemma 3.2, I
is a w-module. �

Corollary 3.4. If R is a G-Prüfer domain, then any ideal I of R is a w-ideal.

Proof. Let J ∈ GV (R) and x ∈ K, the quotient field of R, such that Jx ⊂ I.
Since J is finitely generated, Jx is a finitely generated ideal. So it must be
a w-ideal. Therefore Jx = (Jx)w = x(J)w = (x). Hence x ∈ Jx ⊂ I. This
means that I is a w-ideal. �

Remark that an alternative proof of Corollary 3.4 can be given by Corollary
3.3 and the facts that every ideal of R is the direct limit of its finitely generated
subideals and [15] the direct limit commutes with w-operation.

Recall that a domain R is called a Krull domain if RP is a DVR for each
P ∈ X(1)(R), the set of height-one prime ideals of R, R =

⋂

P∈X(1)(R) RP ,

and each nonzero r ∈ R is a unit in all but a finite number of RP ’s (i.e., the
intersection is “locally finite”). The following result strengthens the well-known
result that a domain R is a Dedekind domain if and only if R is a Prüfer Krull
domain.

Corollary 3.5. A domain R is a Dedekind domain if and only if R is a G-

Prüfer Krull domain.
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Proof. Clearly a Dedekind domain is both a G-Prüfer and a Krull domain.
Conversely assume that R is a G-Prüfer Krull domain. By Corollary 3.4, d = w.
Now the assertion follows from the fact that R is a Krull domain if and only
if every nonzero ideal of R is w-invertible, i.e., (II−1)w = R for any nonzero
ideal I of R [12, Theorem 2.8]. �

Let R be a domain. Recall that for any fractional ideal I of R, Iv := (I−1)−1

and It :=
⋃

{Jv | J is a finitely generated subideal of I}. Also recall that for
∗ = v or t, a fractional ideal I of R is called a ∗-ideal if I∗ = I and R is called
a Prüfer v-multiplication domain (PvMD for short) if (AA−1)t = R for any
finitely generated ideal A of R.

In the rest, we will show that (i) a domain R is a UFD if and only if any
w-ideal of R is principal and (ii) if R is a GCD domain, then every w-ideal of R
of finite type is principal. These can be proved easily by using the facts that (i)
a domain R is a UFD if and only if any t-ideal of R is principal [4], (ii) every
t-ideal is a w-ideal (Actually in a PvMD, t = w), (iii) a GCD domain (and
hence a UFD) is a PvMD, and (iv) if R is a GCD domain, then every v-ideal
of R of finite type is principal. However we give their proofs in the w-theoretic
context.

Lemma 3.6. If R is a UFD, then every prime w-ideal P of R is principal.

Proof. We can assume that P is nonzero. Let a be a nonzero element of P .
Then a = up1 · · · pn where u is a unit and pi is an irreducible element for each
i = 1, . . . , n. Since P is a prime ideal, one of the p′is, say, p1 must be contained
in P . If (p1) 6= P , there exists some b ∈ P but b is not inside (p1). So p1 and
b are relatively prime and the ideal (p1, b) is a GV-ideal contained in P . This
contradicts the fact that P is a w-ideal. Therefore P = (p1) is principal. �

Lemma 3.7 ([6, Corollary 2.2]). Let R be a domain and a ∈ R is a nonzero

element. If I is a w-ideal of R, then the ideal (I : a) = {x ∈ R | ax ∈ I} is also

a w-ideal.

Proof. First, we prove that the module R
I
is GV-torsion-free. Just notice the

short exact sequence 0 −→ I −→ R −→ R
I

−→ 0. Since I and R are w-

modules, by Lemma 3.2, the module R
I
is GV-torsion-free. Secondly, we look

at the short exact sequence 0 −→ (I : a) −→ R −→ Ra+I
I

−→ 0. Since R

is a w-module and Ra+I
I

is GV-torsion-free (as a submodule of R
I
), the ideal

(I : a) = {x ∈ R|ax ∈ I} is also a w-ideal by Lemma 3.2. �

Theorem 3.8. Let R be a domain. If any prime w-ideal of R is principal,

then any w-ideal of R is principal.

Proof. Let Γ be the set of non-principal w-ideals of R. We will prove that the
set Γ is empty. Suppose that A1 ⊆ A2 ⊆ · · · ⊆ An ⊆ · · · is an ascending chain
in Γ. The ideal

⋃

Ai is also a w-ideal. Further, it is also non-principal. By
Zorn’s lemma, Γ has a maximal element. Let P be a maximal element in Γ and
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r, s ∈ R. Suppose that rs ∈ P and s is not inside P . By Lemma 3.7, the ideal
(P : r) is a w-ideal. Since P & (P : r) (s ∈ (P : r) but s is not inside P ) and
P is maximal in Γ, (P : r) must be a principal ideal of R, say, (P : r) = (q).
Therefore, P ⊆ (q) and P

q
is also a non-principal w-ideal. By the maximality

of P , we get that P = P
q
. Since rq ∈ P , we have r ∈ P

q
= P . This means that

P is a prime ideal and must be principal. This contradiction shows that the
set Γ must be empty. �

A domain R is said to satisfy ACCP (the ascending chain condition on
principal ideals) if every ascending chain of principal ideals is stationary, that
is, if (a1) ⊆ (a2) ⊆ (a3) ⊆ · · · ⊆ (an) ⊆ · · · is any chain of principal ideals,
then there is a positive integer m such that (an) = (am) for all m 6 n.

Theorem 3.9. A domain R is a UFD if and only if any w-ideal of R is

principal.

Proof. The “only if” part of the proof can be seen from Lemma 3.6 and The-
orem 3.8. For the “if” part, we prove two facts: (1) R satisfies ACCP; (2) R
is a GCD domain. So, by [10, Theorem 1.7.6], R is a UFD. If (a1) ⊆ (a2) ⊆
(a3) ⊆ · · · ⊆ (an) ⊆ · · · is an ascending chain of principal ideals in R, then this
chain is also a chain of w-ideals. So the ideal

⋃

(ai) is also a w-ideal and must
be principal, say,

⋃

(ai) = (b). Therefore, b ∈ (aj) for some j. This leads to the
fact that (aj) = (aj+1) = · · · = (b), that is, this chain is stationary. For the
second fact, let (a) and (b) be any two principal ideals of R. Then (a) ∩ (b) is
a w-ideal (as an intersection of w-ideals). From the condition, (a) ∩ (b) is also
principal. Therefore, by [10, Theorem 1.7.3], R is a GCD domain. �

The following result strengthens the well-known result that a domain R is a
Prüfer UFD if and only if it is a PID.

Theorem 3.10. A domain R is a G-Prüfer UFD if and only if it is a PID.

Proof. The fact that a PID is a UFD is well known. Since every ideal of a PID
is a free module, a PID must be a G-Prüfer domain. For the “only if” part, by
Lemma 3.4, every ideal of R is a w-ideal. If R is a UFD, then every w-ideal of
R is principal by Theorem 3.9. Therefore, every ideal of R is principal and R
is a PID. �

Lemma 3.11. If R is a GCD domain, then every w-ideal of R of finite type

is principal.

Proof. Let I be a w-ideal of finite type. We can assume that I = (a1, . . . , an)w .
Let the greatest common divisor of a1, . . . , an is d. So ai = dbi for some bi ∈ R
and i = 1, . . . , n. b1, . . . , bn are relatively prime. By Lemma 3.1, the ideal
(b1, . . . , bn) is a GV-ideal of R. So I = (a1, . . . , an)w = d(b1, . . . , bn)w = (d) is
principal. �
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Recall that a domain is called a Bézout domain if every finitely generated
ideal is principal. The following result strengthens the well-known result that
a domain R is a Prüfer GCD domain if and only if R is a Bézout domain.

Theorem 3.12. A domain R is a G-Prüfer GCD domain if and only if R is

a Bézout domain.

Proof. Since principal ideals are free modules, every finitely generated ideal of
a Bézout domain is free and must be G-projective. Therefore a Bézout domain
is a G-Prüfer domain. If a, b are any two nonzero elements of a Bézout domain
R, then the ideal (a, b) is principal, say, (a, b) = (c) for some c ∈ R. It can
be seen that c is the greatest common divisor of a, b. So a Bézout domain is
also a GCD domain. For the “only if” part, by Lemma 3.4, every ideal of R
is a w-ideal. If R is a GCD domain, then every w-ideal of R of finite type
is principal by Lemma 3.11. Therefore, every finitely generated ideal of R is
principal, and so R is a Bézout domain. �
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