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ON ALMOST PSEUDO-VALUATION DOMAINS

Gyu Whan Chang

Abstract. Let D be an integral domain, and let D̄ be the integral
closure of D. We show that if D is an almost pseudo-valuation
domain (APVD), then D is a quasi-Prüfer domain if and only if
D/P is a quasi-Prüfer domain for each prime ideal P of D, if and
only if D̄ is a valuation domain. We also show that D(X), the
Nagata ring of D, is a locally APVD if and only if D is a locally
APVD and D̄ is a Prüfer domain.

1. Introduction

Let D be an integral domain, K be the quotient field of D, and D̄ be
the integral closure of D in K. An overring of D is a ring between D
and K. As in [11], we say that a prime ideal P of D is strongly prime
if xy ∈ P and x, y ∈ K imply x ∈ P or y ∈ P , while D is a pseudo-
valuation domain (PVD) if every prime ideal of D is strongly prime;
equivalently, if D is quasi-local whose maximal ideal is strongly prime.
It is well known that D is a PVD if and only if there exists a valuation
overring V of D such that Spec(V ) = Spec(D) [11, Theorem 2.7]; so
if D is a PVD, then Spec(D) is linearly ordered under inclusion [11,
Corollary 1.3]. Let D be a PVD with maximal ideal M . It is also known
that if D is not a valuation domain, then M−1 = {x ∈ K|xM ⊆ D} is
a valuation domain such that Spec(M−1) = Spec(D) (in particular, M
is the maximal ideal of M−1) [11, Theorem 2.10].

As generalizations of “strongly prime” and “PVD”, Badawi and Hous-
ton [2] introduced the notion of “strongly primary” and “almost PVD”;
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(i) An ideal I of D is strongly primary if xy ∈ I with x, y ∈ K implies
x ∈ I or yn ∈ I for some integer n ≥ 1.

(ii) D is an almost PVD (APVD) if each prime ideal of D is strongly
primary.

Clearly, a strongly prime ideal is strongly primary, and thus a PVD is
an APVD. It is known that if D is quasi-local with maximal ideal M ,
then D is an APVD if and only if there exists a valuation overring V of
D such that M = MV and

√
MV is the maximal ideal of V [2, Theorem

3.4]. It is also known that if D is an APVD, then Spec(D) is linearly
ordered under inclusion (and hence D is quasi-local) and D̄ is a PVD [2,
Propositions 3.2 and 3.7].

Let X be an indeterminate over D, and let D[X] be the polynomial
ring over D. For each f ∈ D[X], we denote by c(f) the ideal of D
generated by the coefficients of f . Let N = {f ∈ D[X]|c(f) = D};
then N is a saturated multiplicative subset of D[X]. The quotient ring
D[X]N , denoted by D(X), is called the Nagata ring of D. It is known
that D is a Prüfer domain if and only if D(X) is a Prüfer domain [1,
Theorem 4]. As in [9], we say that D is a quasi-Prüfer domain if for each
prime ideal P of D, if Q is a prime ideal of D[X] with Q ⊆ P [X], then
Q = (Q∩D)[X]. It is well known that D is a Prüfer domain if and only
if D is integrally closed and quasi-Prüfer [10, Theorem 19.15].

Following [8], we say that D is a locally pseudo-valuation domain
(LPVD) if DM is a PVD for each maximal ideal M of D. Clearly, an
LPVD is a global part of PVDs, and thus it is natural to call D a locally
APVD (LAPVD) if DM is an APVD for each maximal ideal M of D.
Note that a PVD is an APVD, and thus an LPVD is an LAPVD. In [4,
Corollary 3.9], Chang showed that D(X) is an LPVD if and only if D
is an LPVD and D̄ is a Prüfer domain. In this paper, we study some
properties of an LAPVD. More precisely, we show that if D is an APVD
with maximal ideal M , then D is a quasi-Prüfer domain if and only if
D/P is a quasi-Prüfer domain for each prime ideal P of D, if and only
if D̄ is a valuation domain and that if M is finitely generated, then D
is a quasi-Prüfer domain. We also show that D(X) is an LAPVD if and
only if D is an LAPVD and a quasi-Prüfer domain, if and only if D is
an LAPVD and D̄ is a Prüfer domain.
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2. Almost pseudo-valuation domains

Throughout this paper D is an integral domain with quotient field
K, D̄ is the integral closure of D in K, X is an indeterminate over D,
D[X] is the polynomial ring over D, and D(X) is the Nagata ring of D.

We know that both PVDs and APVDs are quasi-local; so we will say
that (D, M) is a PVD or an APVD if D is a PVD or an APVD with
maximal ideal M . We begin this paper by recalling some known results
for APVDs and quasi-Prüfer domains (Lemmas 1-3).

Lemma 1. If D is not a valuation domain, then the following state-
ments are equivalent.

(1) D is an APVD.
(2) D has a strongly primary maximal ideal.
(3) D is quasi-local and the maximal ideal M of D is such that (M : M)

is a valuation domain with M primary to the maximal ideal of
(M : M).

(4) D is quasi-local, and there is a valuation overring of D in which
the maximal ideal of D is primary.

Proof. [2, Theorem 3.4].

Lemma 2. Let (D, M) be an APVD that is not a valuation domain,
and let P ( M be a prime ideal of D.

(1) D̄ is a PVD with maximal ideal
√

MD̄.
(2) P is a strongly prime ideal of D; so P = PDP .
(3) DP is a valuation domain; so DP = D̄D\P and P is a strongly prime

ideal of D̄.
(4) D/P is an APVD.

Proof. (1) [2, Proposition 3.7]. (2) Since P is not maximal, P is
a strongly prime of D [2, Proposition 3.2], and thus P = PDP . (3)
Since P is not maximal, DP is a valuation domain [6, Lemma 3.1]; so
DP = D̄D\P because a valuation domain is integrally closed. Hence
P = D̄ ∩ PDP , and thus P is a strongly prime ideal of D̄ by (2). (4)
This follows directly from [6, Theorem 3.4] since P = PDP and DP is a
valuation domain by (2) and (3).

Lemma 3. The following statements are equivalent:

(1) D is a quasi-Prüfer domain.
(2) D̄ is a Prüfer domain.
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(3) Each overring of D is a quasi-Prüfer domain.
(4) D(X) is a quasi-Prüfer domain.
(5) DM is a quasi-Prüfer domain for each maximal ideal M of D.

Proof. This appears in [5, Theorem 1.1].

It is known that if (D,M) is a PVD which is not a valuation domain,
then every overring of D is a PVD if and only if D̄ is a valuation domain
[12, Proposition 2.7]. Also, if each overring of D is an APVD, then D̄
is a valuation domain [2, Proposition 3.8], while D̄ being a valuation
domain does not imply that each overring of D is an APVD [2, Example
3.9]. Our next result shows that if each overring of D is an APVD, then
D is quasi-Prüfer.

Theorem 4. (cf. [4, Theorem 2.3]) The following statements are
equivalent for an APVD (D,M).

(1) D is a quais-Prüfer domain.
(2) D̄ is a valuation domain.
(3) D̄ = (M : M).
(4) Each overring of D is a quasi-Prüfer domain.
(5) There is an integral overring of D which is a quasi-Prüfer domain.
(6) D̄ is a quasi-Prüfer domain.
(7) Each integrally closed overring of D is a valuation domain.

Moreover, if dim(D) = 1, then the above conditions are equivalent to
(8) Each overring R(6= K) of D is integral over D.

Proof. Let V = (M : M). Then V is a valuation domain and M is a
primary ideal of V by Lemma 1.

(1) ⇔ (2) This is an immediate consequence of Lemma 3 because D̄

is quasi-local (Lemma 2(1)). (2) ⇒ (3) Note that
√

MD̄ is the maximal
ideal of D̄ and D̄ ⊆ V . Also, note that MD̄ ⊆ MV = M since M is an

ideal of V ; so (
√

MD̄)V ( V . Thus D̄ = V [10, Theorem 17.6]. (2) ⇒
(4) and (7) Let R be an overring of D, and let R̄ be the integral closure
of R. Then D̄ ⊆ R̄; so R̄ is a valuation domain [10, Theorem 17.6].
Thus R is a quasi-Prüfer domain by Lemma 3. (3) ⇒ (6); (4) ⇒ (5); (6)
⇒ (5); and (7) ⇒ (2) Clear. (5) ⇒ (2) Let R be a quasi-Prüfer domain
such that D ⊆ R ⊆ D̄. Then D̄ is the integral closure of R, and hence
D̄ is a valuation domain by Lemma 3. (2) ⇒ (8) Let R be an overring
of D, and let R̄ be the integral closure of R. Then D̄ ⊆ R̄, and since
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dim(D̄) = 1, we have D̄ = R̄ (cf. [10, Theorem 17.6]). (8) ⇒ (3) This
follows because D ⊆ D̄ ⊆ V .

Let (D,M) be an APVD such that D̄ is a valuation domain. Then
each overring R of D is comparable to D̄, i.e., either R ⊆ D̄ or D̄ ⊆ R.
For if R * D̄, then D̄ ( R̄, the integral closure of R, and hence R̄ is a
valuation domain [10, Theorem 17.6]. Let Q be the maximal ideal of R̄.
Then Q∩D is not a maximal ideal of D, and hence R̄ = DQ∩D (cf. [10,
Theorem 17.6] and Lemma 2(3)). Since R̄ is quasi-local, R is quasi-local
with maximal ideal Q ∩ R. Hence R̄ = DQ∩D ⊆ RQ∩R = R, and thus
D̄ ( R̄ = R. Thus if D̄ is a valuation domain, then each overring of an
APVD D is an APVD if and only if each integral overring of D is an
APVD [2, Proposition 3.10].

Corollary 5. Let (D,M) be an APVD, and let P ( M be a prime
ideal of D. Then D is a quasi-Prüfer domain if and only if D/P is a
quasi-Prüfer domain.

Proof. Note that P = PDP , P is a strongly prime ideal of both D and
D̄, DP = D̄D\P is a valuation domain, and D/P is an APVD (Lemma
2). Also, note that (D/P )P/P

∼= DP /PDP = DP /P ; hence DP /P (resp.,
D̄/P ) can be considered as the quotient field (resp., integral closure) of
D/P . Moreover, since D̄D\P is a valuation domain, it follows that D̄ is
a valuation domain if and only if D̄/P is a valuation domain [7, Lemma
4.5(v)]. Thus by Theorem 4, D is a quasi-Prüfer domain if and only if
D̄ is a valuation domain, if and only if D̄/P is a valuation domain, if
and only if D/P is a quasi-Prüfer domain.

Corollary 6. (cf. [4, Corollary 2.5]) Let (D, M) be an APVD such
that M is finitely generated, and let {Pα} be the set of prime ideals of
D properly contained in M . Then

(1) P := ∪Pα is a prime ideal of D.
(2) P ( M , and hence D/P is a one-dimensional local Noetherian

domain.
(3) D is a quasi-Prüfer domain, and hence D̄ is a valuation domain.
(4) An overring R of D has a prime ideal lying over M (if and) only if

R is integral over D.

Proof. (1) and (2) Clearly, P is a prime ideal because {Pα} is linearly
ordered under inclusion. Also, since M is finitely generated, P ( M .



190 Gyu Whan Chang

Next, note that D/P is one-dimensional quasi-local, and thus D/P is
Noetherian by Cohen’s theorem

(3) By (2), D/P is a one-dimensional local Noetherian domain, and

hence D/P is a Dedekind domain (so Prüfer domain). Also, since D/P

is an APVD by Lemma 2(4), D/P is quasi-local, and thus D/P is a
valuation domain. Thus D/P is quasi-Prüfer by Theorem 4, and so D
is quasi-Prüfer by Corollary 5.

(4) First, note that D̄ is a valuation domain by (3), and hence R̄ is
also a valuation domain [10, Theorem 17.6]. Let Q be a prime ideal of

R such that Q ∩D = M . Then M ⊆ Q ⊆ QR̄ ( R̄, and since
√

MD̄ is
a maximal ideal of D̄ by Lemma 2(1), R̄ ⊆ D̄ [10, Theorem 17.6]. Thus
R̄ = D̄.

We next give the main result of this paper.

Theorem 7. The following statements are equivalent.

(1) D is an APVD and a quasi-Prüfer domain.
(2) D is an APVD and D̄ is a valuation domain.
(3) D(X) is an APVD.

Proof. Let M be the maximal ideal of D, and note that D(X) is
quasi-local with maximal ideal M(X) = MD(X) [10, Proposition 33.1].

(1) ⇔ (2) Theorem 4.
(2) ⇒ (3) Assume that D is an APVD such that D̄ is a valuation

domain. Then M is a primary ideal of D̄ by Lemma 2(1); so the Nagata
ring D̄(X) of D̄ is a valuation domain [10, Proposition 18.7] and M(X) =
MD̄(X) is a primary ideal of D̄(X) [10, Proposition 33.1(4)]. Thus
D(X) is an APVD by Lemma 1.

(3) ⇒ (1) Let D(X) be an APVD. Then M(X) is a strongly primary
ideal of D(X) by Lemma 1, and since M(X) ∩K = M (cf. [10, Propo-
sition 33.1(4)]), M is strongly primary. Thus D is an APVD by Lemma
1.

Next, assume to the contrary that D is not a quasi-Prüfer domain.
Then, by Lemma 3, there exists a prime ideal Q of D[X] such that
Q ⊆ M [X] and (Q ∩D)[X] ( Q. Let N = {g ∈ D[X]|c(g) = D}; then
QN ( M(X), and so QN is strongly prime by Lemma 2(2). Choose
f ∈ Q \ (Q∩D)[X], and let a be a coefficient of f that is not in Q∩D.
Then a 6∈ QN and f = af

a
∈ QN , and hence f

a
∈ QN ⊆ M(X), a

contradiction.
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Corollary 8. The following statements are equivalent.

(1) D is an LAPVD and a quasi-Prüfer domain.
(2) D is an LAPVD and D̄ is a Prüfer domain.
(3) D(X) is an LAPVD.

Proof. (1) ⇔ (2) Lemma 3.
(1) ⇒ (3) Assume that D is an LAPVD and a quasi-Prüfer do-

main. Let Q be a maximal ideal of D(X); then Q = (Q ∩ D)(X)
with Q ∩ D maximal ideal of D [10, Proposition 33.1]. Note that
DQ∩D is an APVD and a quasi-Prüfer domain by Lemma 3. Thus
D(X)Q = (DQ∩D[X])QQ∩D

= DQ∩D(X), the Nagata ring of DQ∩D, is
an APVD by Theorem 7.

(3) ⇒ (1) Let P be a maximal ideal of D. Then P (X) is a maximal
ideal of D(X) [10, Proposition 33.1]. Hence (D(X))P (X) = D[X]P [X] =
DP (X), the Nagata ring of DP , is an APVD. Thus DP is an APVD and
DP is a quasi-Prüfer domain by Theorem 7. Thus D is an LAPVD and
a quasi-Prüfer domain by Lemma 3.

Proposition 9. Let P be a prime ideal of D such that P = PDP

and DP is a valuation domain. Then D/P is an LAPVD if and only if
D is an LAPVD.

Proof. First, note that P is strongly prime, and if P is a maximal
ideal, then D is a PVD. Hence we may assume that P is not maximal.
Next, note that each maximal ideal of D/P is of the form M/P for
some maximal ideal M of D such that (D/P )M/P

∼= DM/PDM and
(DM)PDM

= DP . Thus D is an LAPVD if and only if DM is an APVD
for each maximal ideal M of D, if and only if DM/PDM is an APVD
for each maximal ideal M of D [6, Theorem 3.4], if and only if D/P is
an LAPVD.

Corollary 10. Let V = F + M be a valuation domain and R =
D + M , where F is a field, M is a nonzero maximal ideal of V , and D
is a proper subring of F . Then R is an LAPVD if and only if either D
is an LAPVD with F = K or D is a field.

Proof. (⇒) Let R be an LAPVD, and assume that D is not a field.
Then M is not a maximal ideal of R. So RM = K + M is a valuation
domain by Lemma 2(3); hence F = K [3, Theroem 2.1]. Moreover, since
D ∼= R/M , D is an LAPVD by Proposition 9. (⇐) If D is a field, then R
is a PVD [7, Proposition 4.9], and hence R is an LAPVD. Next, assume
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that D is an LAPVD with F = K. Note that M = MRM , D ∼= R/M ,
and RM = K + M is a valuation domain [3, Theroem 2.1]. Thus R is
an LAPVD by Proposition 9.

We end this paper by constructing an LAPVD that is neither an
APVD nor an LPVD.

Example 11. (1) Let Q[[t]] be the power series ring over the field Q
of rational numbers, and let D = Q[[t2, t3]]. Then D is an APVD that
is not a PVD and D̄ = Q[[t]] [6, Example 2.1]. Clearly, D̄ is a valuation
domain, and thus D(X) is an APVD by Theorem 7.

(2) Let the notation be as in (1) above. Let M be the maximal
ideal of D. Let S = D[X2, X3] \ (MD[X2, X3]∪X2D[X]), and set R =
D[X2, X3]S. Then R is a one-dimensional semi-local Noetherian domain
with maximal ideals MR and X2D[X]S. Note that RMR = D(X); so
RMR is an APVD by (1). Also, note that RX2D[X]S = D[X2, X3]X2D[X];
X2D[X]X2D[X] is a maximal ideal of D[X2, X3]X2D[X]; and D[X]XD[X] is
a one-dimensional valuation domain; Note that

(X2D[X]X2D[X])D[X]XD[X] = X2D[X]XD[X];

so X2D[X]XD[X] is a primary ideal of D[X]XD[X]. Thus RX2D[X]S is an
APVD by Lemma 1. Therefore R is an LAPVD but not an LPVD.
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