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ON THE NUMBER OF SEMISTAR OPERATIONS OF SOME

CLASSES OF PRÜFER DOMAINS

Abdeslam Mimouni

Abstract. The purpose of this paper is to compute the number of semis-

tar operations of certain classes of finite dimensional Prüfer domains.
We prove that |SStar(R)| = |Star(R)| + |Spec(R)| + |Idem(R)| where

Idem(R) is the set of all nonzero idempotent prime ideals of R if and
only if R is a Prüfer domain with Y -graph spectrum, that is, R is a

Prüfer domain with exactly two maximal ideals M and N and Spec(R) =

{(0) ( P1 ( · · · ( Pn−1 ( M,N |Pn−1 ( N}. We also character-
ize non-local Prüfer domains R such that |SStar(R)| = 7, respectively

|SStar(R)| = 14.

1. Introduction

Let R be an integral domain with quotient field K, F(R) the set of nonzero
fractional ideals of R, and F̄(R) the set of nonzero R-submodules of K.

A mapping ∗ : F̄(R)→ F̄(R), E 7→ E∗, is called a semistar operation on R
if the following conditions hold for all a ∈ K \ {0} and E,F ∈ F̄(R):

(I) (aE)∗ = aE∗;
(II) E ⊆ E∗; if E ⊆ F , then E∗ ⊆ F ∗; and

(III) (E∗)∗ = E∗.

In case where R∗ = R, the restriction ∗|F(R) is a star operation. The simplest

semistar operations are the d-operation defined by Ed = E for every E ∈ F̄(R),
the e-operation defined by Ee = K for every E ∈ F̄(R); and the v-operation
defined by Ev = (R : (R : E)) for every E ∈ F̄(R). The notion of semistar
operations was introduced by Okabe and Matsuda in [37] as a generalization
of star operations introduced by Krull in [18, Section 6.43] and developed in
Gilmer’s book [9]. Since then, many investigations of semistar operations have
been done and tens of papers were published. Two well-studied problems in
the literature of semistar operations are: (1) Compute the cardinality of the
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spectrum.
The author was supported by KFUPM under research project RG 1413.

c©2019 Korean Mathematical Society

1485



1486 A. MIMOUNI

set SStar(R) of all semistar operations on an integral domain R (see [19–32,
34–36]).

(2) Study ring-theoretic properties of integral domains subject to some spe-
cific conditions on the lattice of their semistar operations, see for instance
[1, 2, 5–8,10,33,38].

The author of this paper, together with E. Houston and M. H. Park, has
studied some ring-theoretic properties of integral domains having only finitely
many star operations in different contexts of integral domains, see [12–16]. The
purpose of this paper is to continue the investigation of both the cardinality
of the set of all semistar operations and the ring-theoretic properties of cer-
tain classes of Prüfer domains. Firstly, we prove that for a non-local Prüfer
domain R, |SStar(R)| ≥ |Star(R)| + |Spec(R)| + |Idem(R)|, where Star(R)
is the set of all star operations on R and Idem(R) is the set of all nonzero
idempotent prime ideals of R, and the equality holds if and only if R has a
Y -graph spectrum, that is, R has exactly two maximal ideals M and N and
Spec(R) = {(0) ( P1 ( · · · ( Pn−1 ( M,N |Pn−1 ( N} (Theorem 1). In
particular if R is an n-dimensional non-local Prüfer domain with n ≥ 2 and
finite prime spectrum, then |SStar(R)| = |Star(R)| + |Spec(R)| if and only
if R is a strongly discrete Prüfer domain with two maximal ideals and Y -
graph spectrum (Corollary 3). Secondly, we deal with ring-theoretic properties
of some classes of Prüfer domains R such that |SStar(R)| = 7 respectively
|SStar(R)| = 14. First, notice that in [32], Matsuda proved that if R is a
one-dimensional Prüfer domain with exactly two maximal ideals M and N ,
then |SStar(R)| ∈ {7, 14, 30} depending on whether both maximal ideals are
divisorial (|SStar(R)| = 7), or one maximal ideal is divisorial and the other
one is non-divisorial (|SStar(R)| = 14) or both maximal ideals are not diviso-
rial (|SStar(R)| = 30). Also notice that Elliot proved (separately) that if R
is a Dedekind domain with exactly two maximal ideals, then |SStar(R)| = 7,
[4, Table 1, page 238]. In this vein, our objective is to seek for possible char-
acterizations of Prüfer domains R such that |SStar(R)| ∈ {7, 14, 30}. First,
we prove that for a Prüfer domain R, |SStar(R)| = 7 if and only if R is a
Dedekind domain with exactly two maximal ideals (equivalently, R is a one-
dimensional Prüfer domain with exactly two maximal ideals and both are di-
visorial) (Theorem 4). Second, we characterize non-local Prüfer domains R
such that |SStar(R)| = 14. It turns out that a non-local Prüfer domain R
has exactly 14 semistar operations if and only if one of the following con-
ditions holds: (1) R is a one-dimensional Prüfer domain with exactly two
maximal ideals M and N , M is invertible and N is idempotent. (2) R is
a two-dimensional strongly discrete Prüfer domain with exactly two maximal
ideals and Spec(R) = {(0) ( P ( M,N,P 6⊆ N}. (3) R has exactly two max-
imal ideals and Y -graph spectrum, 7 ≤ |Spec(R)| ≤ 10, 0 ≤ |Idem(R)| ≤ 3
and |Spec(R)| + |Idem(R)| = 10. However, the case of a Prüfer domain with
|SStar(R)| = 30 seems more difficult to characterize and left open in this pa-
per. It is worth to mention that recently, D. Spirito has developed the study
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of semilocal Prüfer domains with finitely many semistar operations by linking
it to the concept of Jaffard family, see [38].

Finally, notice that each star operation ∗ on R can be extended (but not in
a unique way) to a semistar operation ∗̄ on R by setting E∗̄ = E∗ if E ∈ F(R)
and E∗̄ = K if E ∈ F̄(R) \ F(R). Also if T is a proper overring of R, then T
induced a semistar operation on R denoted by ∗T and defined by E∗T = ET
for every E ∈ F̄ (R). In particular, if P is a nonzero prime ideal of R, ∗P (or
∗RP

) will denote the semistar operation induced by the overring RP . Moreover,
if ∗ is a semistar operation of T , then ∗ induces a semistar operation ∗̃ on R
defined by E∗̃ = (ET )∗ for every E ∈ F̄ (R). We denote by:

(1) Star(R) = {∗̄ | ∗ ∈ Star(R)}.
(2) If T is a proper overring of R, Star(T ) = {∗̄ | ∗ ∈ Star(T )}, ˜SStar(T ) =

{∗̃ | ∗ ∈ SStar(T )}; and ˜Star(T ) = {˜̄∗ | ∗ ∈ Star(T )}.

2. Main result

Our next Theorem characterizes Prüfer domains R such that |SStar(R)| =
|Star(R)| + |Spec(R)| + |Idem(R)|, where Idem(R) is the set of all non-zero
prime idempotent ideals of R. Recall that a domain R is conducive if (R : T ) 6=
0 for every overring T 6= K of R (equivalently, (R : V ) 6= 0 for some valuation
overring V of R, [3, Theorem 3.2]). In this case, F̄(R) = F(R) ∪ {K}.

Theorem 1. Let R be an n-dimensional non-local Prüfer domain with n ≥
2 and with finite prime spectrum; and let Idem(R) be the set of all nonzero
idempotent prime ideals of R. Then |SStar(R)| ≥ |Star(R)| + |Spec(R)| +
|Idem(R)|; and the equality holds if and only if R has exactly two maximal
ideals M and N and Y -graph spectrum, that is, Spec(R) = {(0) = P0 ⊂ P1 ⊂
· · · ⊂ Pn−1,M,N} with Pn−1 ⊆M ∩N .

Proof. It is clear that for every ∗ ∈ Star(R), Q ∈ Spec(R) and P ∈ Idem(R),
R∗̄ = R ⊂ RQ = R∗Q ; R∗̄ = R ⊂ RP = RṽP ; P ṽP = (PRP )vP = RP . If
P * Q, then P ∗Q = PRQ = RQ 6= RP = P ṽP . If P ⊆ Q, then P ∗Q =
PRQ = PRP ( RP = P ṽP . Thus ∗̄ 6= ∗Q, ∗̄ 6= ṽP and ∗Q 6= ṽP . Hence

Star(R)∪̇{∗Q|Q ∈ Spec(R)}∪̇{ṽP |P ∈ Idem(R)} ⊆ SStar(R) and therefore
|SStar(R)| ≥ |Star(R)|+ |Spec(R)|+ |Idem(R)|.
⇒) Assume that |SStar(R)| = |Star(R)|+ |Spec(R)|+ |Idem(R)|, and sup-

pose that R has at least three maximal ideals M1, M2 and M3. Set T1 = RM2∩
RM3 , T2 = RM1 ∩RM3 and T3 = RM1 ∩RM2 ; and let ∗i = ∗Ti be the semistar
operation induced by Ti for i = 1, 2, 3. Since R∗i = Ti 6= RQ = R∗Q , ∗i 6= ∗Q for
every Q ∈ Spec(R) and since ∗i|F (R) 6∈ Star(R), ∗i 6= ∗̄ for every ∗ ∈ Star(R).

Also since R∗i = Ti 6= RP = RṽP , ∗i 6= ṽP for every P ∈ Idem(R). Thus

Star(R)}∪̇{∗Q|Q ∈ Spec(R)}∪̇{ṽP |P ∈ Idem(R)∪̇{∗1, ∗2, ∗3} ⊆ SStar(R).
Hence |SStar(R)| ≥ |Star(R)| + |Spec(R)| + |Idem(R)| + 3, which is absurd.
Thus R must have at most two maximal ideal and since R is not local, then R
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has exactly two maximal ideals M and N . Similarly if R has two non-maximal
non-comparable prime ideals P1 and Q1, set T = RP1

∩RQ1
and let ∗T be the

semistar operation induced by T . Then

Star(R)}∪̇{∗Q |Q ∈ Spec(R)}∪̇{ṽP |P ∈ Idem(R)}∪̇{∗T } ⊆ SStar(R);

and so |SStar(R)| ≥ |Star(R)|+ |Spec(R)|+ |Idem(R)|+ 1, which is again a
contradiction. Thus every non-maximal prime ideals of R are comparable and
therefore R has Y -graph spectrum.
⇐) First notice that R must be conducive. Indeed, let P be a nonmaximal

prime ideal of R. Then P−1 = (P : P ) = RP ([17, Theorem 3.8]). Hence
(R : RP ) = Pv = P 6= (0) ([17, Proposition 3.10]) and so R is conducive. Since
RP is a valuation domain Star(RP ) = {dP } (the trivial star operation of RP )
if P is not idempotent and Star(RP ) = {dP , vP } (vP is the v-operation on RP )
if P is idempotent. Now let ∗ be any semistar operation on R and set T = R∗.
If T = R, then ∗|F (R) is a star operation on R and so ∗ = ∗|F (R) (the extension
of ∗|F (R) as R is conducive). So we may assume that R ⊂ T ⊂ K = qf(R)
(notice that if T = K, then ∗ = e = ∗(0)). Since R has Y -graph spectrum,
T = RP for some nonzero prime ideal P of R. In this case ∗|F (RP ) is a star
operation on RP and so it is either equal to dP or equal vP (depending on
whether P is idempotent or not). Thus ∗ = ∗P or ∗ = ṽP . Hence |SStar(R)| =
|Star(R)|+ |Spec(R)|+ |Idem(R)|. �

Example 2. ([14, Example 5.5]) Let R be a Prüfer domain with exactly two
maximal ideals M,N , and exactly one nonzero prime ideal P with P ⊂M ∩N .

(1) If M and N are invertible, then |Star(R)| = 4,
|SStar(R)| = 8 if P is not idempotent and |SStar(R)| = 9 if P is
idempotent.

(2) If M is not invertible but N is invertible, then |Star(R)| = 10,
|SStar(R)| = 15 if P is not idempotent and |SStar(R)| = 16 if P is
idempotent.

(3) If neither M nor N is invertible, then |Star(R)| = 25,
|SStar(R)| = 31 if P is not idempotent and |SStar(R)| = 32 if P is
idempotent.

Recall that a Prüfer domain R is said to be strongly discrete if R has no non-
zero idempotent prime ideal, equivalently, Idem(R) = φ. Our next corollary
characterizes Prüfer domains R such that |SStar(R)| = |Star(R)|+ |Spec(R)|.

Corollary 3. Let R be an n-dimensional non-local Prüfer domain with n ≥ 2
and finite prime spectrum. Then |SStar(R)| = |Star(R)| + |Spec(R)| if and
only if R is a strongly discrete Prüfer domain with two maximal ideals and
Y -graph spectrum.

Next, we consider a one-dimensional Prüfer domain R with Y -graph spec-
trum, that is R is a one-dimensional Prüfer domain with exactly two maximal
ideals M and N . In [32], Matsuda proved that |SStar(R)| = 7 if both M
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and N are divisorial, equivalently, R is a Dedekind domain with exactly two
maximal ideals. The same result was obtained separately by Elliot in [4, Table
1, page 238]. Our first result shows that this is in fact a characterization of
such Prüfer domains.

Theorem 4. Let R be a non-local integrally closed domain of finite dimension.
Then |SStar(R)| = 7 (if and) only if R is a Dedekind domain with exactly two
maximal ideals.

Proof. By [14, Theorem 3.1], R is a Prüfer domain. If R has more than three
maximal ideals, say M1,M2 and M3, then set T1 = RM2

∩RM3
, T2 = RM1

∩RM3

and T3 = RM1
∩RM2

. So {e, d, ∗M1
, ∗M2

, ∗M3
, ∗T1

, ∗T2
, ∗T3
} ⊆ SStar(R), which

is absurd. Hence R has exactly two maximal ideals, say M and N . We claim
that dimR = 1. By way of contradiction, suppose that htM = dimR ≥ 2. Let
P be a height-one prime ideal contained in M . Two cases are then possible.

Case 1. Spec(R) contains a nonzero prime ideal Q that is not in {P,M,N}.
Suppose that P 6⊆ N and set T = RP ∩RN . If Q 6⊆M , set S = RQ∩RM . Then
{e, d, ∗P , ∗Q, ∗M , ∗N , ∗T , ∗S} ⊆ SStar(R), which is absurd. Hence Q (M and
since htP = 1, P ( Q. But since P 6⊆ N , Q 6⊆ N . Again set S = RQ ∩ RN .
Then {e, d, ∗P , ∗Q, ∗M , ∗N , ∗T , ∗S} ⊆ SStar(R), which is a contradiction too.
Hence P ( N and so P ⊆ M ∩N . Thus PRP = P and by [11, Theorem 5.1],
R is not divisorial. Thus, SStar(R) = {d, e, v, ∗P , ∗Q, ∗M , ∗N}, which implies
that Q ⊆M ∩N . Hence Spec(R) must of the form {(0) ( P ( Q ( M ∩N}.
By [16, Theorem 4.3], |Star(R)| ≥ 4 and by Theorem 1, 7 = |SStar(R)| =
|Star(R)|+ |Spec(R)|+ |Idem(R)| ≥ 4+5+ |idem(R)| which is a contradiction.

Case 2. Spec(R) = {(0) ( P ( M,N}. If P 6⊆ N , then R is not conducive
and so d 6= d̄. Since RP , RM and RN are valuation domains, F̄(RP ) = F(RP )∪
{K}, F̄(RM ) = F(RM ) ∪ {K} and F̄(RN ) = F(RN ) ∪ {K}. Also notice that
since the largest prime ideal contained in M and N is the zero prime ideal,
RPRN = RMRN = K. Now define ∗1, ∗2 and ∗3 by E∗1 = E if ERP ∈ F (RP )
and E∗1 = K if ERR = K; E∗2 = E if ERM ∈ F (RM ) and E∗2 = K if
ERM = K; and E∗3 = E if ERN ∈ F (RN ) and E∗3 = K if ERN = K.
Then it is easy to check that ∗1, ∗2 and ∗3 are semistar operations on R;
∗3 6= ∗i, i = 1, 2 and so {d, d̄, e, ∗P , ∗M , ∗N , ∗1, ∗2, ∗3} ⊆ SStar(R), which is
absurd. Thus P ⊂ N and so R has a Y -graph spectrum of the form Spec(R) =
{(0) ( P ( M ∩ N}. By [16, Theorem 4.3] |Star(R)| ≥ 4, and Theorem 1,
7 = |SStar(R)| = |Star(R)|+ |Spec(R)|+ |Idem(R)| ≥ 4+4+ |idem(R)| which
is a contradiction.

It follows that dimR = 1 and Spec(R) = {(0),M,N}. Now, by [32, Theorem
1], M and N must be invertible and therefore R is a Dedekind domain. �

Next, we deal with the case where R is a non-local Prüfer domain with
two maximal ideals M and N and |SStar(R)| = 14. We continue to use d
for the trivial semistar operation, v the v-operation on R, v̄ it extension to a
semistar operation, and if Q is a nonzero prime ideal of R, we use dQ to denote
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the d-(semi)star operation on RQ and vQ the v-operation on RQ. Also recall
that if Q is a prime ideal of a Prüfer domain R, then Star(RQ) = {dQ} if
Q is not idempotent and Star(RQ) = {dQ, vQ} if Q is idempotent. Finally
ṽQ will denote the extension of vQ to a semistar operation on R, that is,
EṽQ = (ERQ)vQ ; and since K∗ = K for any semistar operation ∗ on R,
we will always assume that E ( K whenever E is in F̄ (R). Also notice that
if E ∈ F̄ (R) − F (R), then either ERM = K or ERN = K. But since E =
ERM ∩ ERN , either E = ERN or E = ERM .

Lemma 5. Let R be a two-dimensional strongly discrete Prüfer domain with
exactly two maximal ideals M and N and Spec(R) = {(0) ( P ( M,N |P 6⊆
N}. Then |SStar(R)| = 14.

Proof. Clearly R is divisorial ([11, Theorem 5.1]) but not conducive. Moreover,
it is easy to check that the following operations are semistar operations on R.

(1) ?1 defined by E?1 = E if ERM ∈ F(RM ), and E?1 = K if ERM = K.
(2) ?2 defined by E?2 = E if ERN ∈ F(RN ), and E?2 = K if ERN = K.

(3) ?3 defined by


E?3 = E if E ∈ F(R),
E?3 = E if E ∈ F̄(R) \ F(R), ERP = K and

ERN ⊂ K,
E?3 = ERP if E ∈ F̄(R) \ F(R), ERP ⊂ K and

ERN = K.

(4) ?4 defined by

 E?4 = E if E ∈ F(R),
E?4 = K if E ∈ F̄(R) \ F(R), ERM = K,
E?4 = ERP if E ∈ F̄(R) \ F(R), ERM ⊂ K.

Since (RM )?1 = RM , (RM )?2 = K, (RM )?3 = RP , (RM )?4 = RP , (RN )?3 =
RN and (RN )?4 = K, ?1, ?2, ?3 and ?4 are distinct semistar operations of R.
Let T = RP ∩ RN . Since T is a Dedekind domain with exactly two maximal
ideals, |SStar(T )| = 7. Now, let ∗ ∈ SStar(R). If R∗ = K, then ∗ = e. If R∗ ∈
{T,RN , RP }, then ∗ ∈ ˜SStar(T ). Indeed, if R∗ = T , then ∗|F̄(T ) ∈ SStar(T )
(for if E ∈ F̄(T ), then E∗T = E∗R∗ ⊆ (E∗R∗)∗ = (ER)∗ = E∗ and so E∗ ∈
F̄(T )). Moreover, for every E ∈ F̄(R), E∗ = (ER)∗ = (ER∗)∗ = (ET )∗ =

(ET )∗|F̄(T ) and so ∗ = ∗̃|F̄(T ). Assume that R∗ = RQ, Q = P,N . Then
∗|F(RQ) ∈ Star(RQ) = {dQ} since RQ is a strongly discrete valuation domain.
Now Define ? on T by E? = ERQ for every E ∈ F̄(T ). Then let E ∈ F̄(R).
If ERQ 6= K, then E∗ = (ER)∗ = (ER∗)∗ = (ERQ)∗ = ERQ = (ET )RQ =

(ET )? = E?̃. If ERQ = K, then E∗ = (ER)∗ = (ER∗)∗ = (ERQ)∗ = K∗ = K

and E?̃ = (ET )RQ = ERQ = K. Thus ∗ = ?̃, as desired. If R∗ = RM , then
∗ = ∗RM

. Thus we may assume that R∗ = R. Then ∗|F (R) ∈ Star(R). But
since R is divisorial ∗|F (R) = d. Thus for every E ∈ F (R), E∗ = E. Since
[RM ,K] = {RM , RP ,K} and [RN ,K] = {RN ,K}, there are six possibilities:
Case 1. (RM )∗ = RM and (RN )∗ = RN . Then ∗|F (RM ) = dRM

and ∗|F (RN ) =

dRN
. In this case ∗ = d. Indeed, let E ∈ F̄ (R) − F (R). If E = ERM , then
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E∗ = (ERM )∗ = ERM = E and similarly if E = ERN , then E∗ = (ERN )∗ =
ERN = E.
Case 2. (RM )∗ = RM and (RN )∗ = K. Then ∗|F (RM ) = dRM

. Let E ∈
F̄ (R)− F (R). If E = ERM , then E∗ = (ERM )∗ = ERM = E. If ERM = K,
then E = ERN and so E∗ = (ERN )∗ = (E(RN )∗)∗ = (EK)∗ = K. Hence
∗ = ?1.
Case 3. (RM )∗ = K and (RN )∗ = RN . Then ∗|F (RN ) = dRN

. Let E ∈
F̄ (R) − F (R). If E = ERN , then E∗ = (ERN )∗ = ERN = E. If ERN = K,
then E = ERM and so E∗ = (ERM )∗ = (E(RM )∗)∗ = (EK)∗ = K. Hence
∗ = ?2.
Case 4. (RM )∗ = K, (RN )∗ = K. Let E ∈ F̄ (R) − F (R). If E = ERM ,
then E∗ = (ERM )∗ = (E(RM )∗)∗ = (EK)∗ = K; and if E = ERN , then
E∗ = (ERN )∗ = (E(RN )∗)∗ = (EK)∗ = K. Thus ∗ = d.
Case 5. (RM )∗ = RP , (RN )∗ = RN . Then (RP )∗ = (RM )∗∗ = (RM )∗ = RP

and so ∗|F (RP ) = dRP
. Let E ∈ F̄ (R)− F (R). If ERP = K and ERN ( RN ,

necessarily ERM = K and so E = ERN . Thus E∗ = (ERN )∗ = ERN = E.
If ERP ( K and ERN = K, necessarily E = ERM . Then E∗ = (ERM )∗ =
(E(RM )∗)∗ = (ERP )∗ = ERP . Thus ∗ = ?3.
Case 6. (RM )∗ = RP and (RN )∗ = K. Let E ∈ F̄ (R) − F (R). If ERP ( K,
then ERM ( K and so E = ERM . Thus E∗ = (ERM )∗ = (E(RM )∗)∗ =
(ERP )∗ = ERP . Assume that ERP = K. If E = ERM , then E∗ = (ERM )∗ =
(E(RM )∗)∗ = (ERP )∗ = K∗ = K; and if E = ERN , then E∗ = (ERN )∗ =
(E(RN )∗)∗ = (EK)∗ = K∗ = K. ∗ = ?4.

It follows that SStar(R) = ˜SStar(T )
⋃̇
{d, d, ∗RM

, ?1, ?2, ?3, ?4}. Therefore
|SStar(R)| = 14, as desired. �

Theorem 6. Let R be a non-local Prüfer domain. Then |SStar(R)| = 14 if
and only if one of the following conditions holds:

(1) R is a one-dimensional Prüfer domain with exactly two maximal ideals
M and N , M is invertible and N is idempotent.

(2) R is a two-dimensional strongly discrete Prüfer domain with exactly two
maximal ideals and Spec(R) = {(0) ( P (M,N |P 6⊆ N}.

(3) R has exactly two maximal ideals and Y -graph spectrum, 7 ≤ |Spec(R)| ≤
10, 0 ≤ |Idem(R)| ≤ 3 and |Spec(R)|+ |Idem(R)| = 10.

Proof. Assume that |SStar(R)| = 14. If |Max(R)| ≥ 4, then let M1,M2,M3

and M4 be maximal ideals of R. For i, j ∈ {1, 2, 3, 4} with i 6= j, set Tij =

RMi ∩RMj and for each k = 1, 2, 3, 4, set Sk =
⋂i=4

i=1,i6=k RMi . Then

{∗RMi
, ∗Tij

, ∗Sk
, e, d} ⊆ SStar(R)

and so 16 = 4+6+4+2 ≤ |SStar(R)|, a contradiction. Hence 2 ≤ |Max(R)| ≤
3. Suppose that |Max(R)| = 3 and set Max(R) = {M1,M2,M3}. Suppose that
dimR = 1. If all Mi are invertible, R is a Dedekind domain with exactly
three maximal ideals and by [4, Theorem 1.2], |SStar(R)|=61, a contradiction.
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Hence at least one maximal ideal Mi of R is not invertible, say M1. Set
T = RM1

∩ RM2
. Then T is a one-dimensional Prüfer domain with exactly

two maximal ideals such that at least one maximal ideal is non-invertible (so

non-divisorial). By [32], |SStar(T )| ∈ {14, 30}. Since ˜SStar(T )
⋃̇
{∗RM3

} ⊆
SStar(R), 15 ≤ |SStar(R)|, a contradiction. It follows that dimR ≥ 2.

If the Jacobson radical J(R) contains a nonzero prime ideal P of R, then
for each i = 1, 2, 3, let Pi ⊆ Mi be a prime ideal of R containing P such
that ht(Pi/P ) = 1 and set T = RP1

∩ RP2
∩ RP3

. By [16, Theorem 3.5],

|SStarR| ≥ | ˜Star(T )| = |Star(T )| = 45, a contradiction. Hence J(R) does
not contain any nonzero prime ideal. Now for every i 6= j, let Pi,j = Mi ∧Mj

be the largest prime ideal of R contained in Mi ∩ Mj . If for each i 6= j,
Pi,j = (0), then let Pi be a height-one prime ideal of R contained in Mi and set
T = RP1

∩RP2
∩RP3

. Then T is a one-dimensional Prüfer domain with exactly
three maximal ideals and so |SStar(R)| ≥ |SStar(T )| ≥ 15, a contradiction.
Hence there is i 6= j such that Pij 6= (0). Without loss of generality, we may
assume that P = P1,2 = M1 ∧M2 6= (0). Necessarily P 6⊆M3 and clearly R is
not divisorial and R is not conducive (so d 6= d̄). Set T = RM1 ∩RM2 . Then T
is a Prüfer domain with exactly two maximal ideals and P = PT ⊆ J(T ), by
[16, Theorem 4.3], |Star(T )| ≥ 4. Since

˜Star(T )
⋃̇
{∗RP

, ∗RM1
, ∗RM2

, ∗RM3
, ∗RP∩RM3

, ∗RM1
∩RM3

, ∗RM2
∩RM3

, e, d, d̄, v},

15 ≤ |SStar(R)|, which absurd. It follows that |Max(R)| = 2.
Now, assume that Max(R) = {M,N}. If dimR = 1, then (1) of the theorem

is satisfied by [32]. Assume that dimR ≥ 2 and without loss of generality, we
may assume that htM = dimR = n ≥ 2. If M ∧ N = (0), let P and Q be
height-one prime ideals such that P ( M and Q ⊆ N and set T = RP ∩ RQ.
Since T is a one-dimensional Prüfer domain with exactly two maximal ideals,
by [32], SStar(T ) ∈ {7, 14, 30}. If |SStar(T )| ≥ 14, then |SStar(R)| ≥ 15

since ˜SStar(T )∪̇{∗RM
} ⊆ SStar(R), which is absurd. Hence T must be a

Dedekind domain, |SStar(T )| = 7 and P and Q are strongly discrete. If
dim(R) = htM ≥ 3, then let (0) ( P ( P2 ( M with htP2 = 2 and set
S = RP2 ∩ RQ. Then S is a two-dimensional Prüfer domain with exactly
two maximal ideals and Spec(S) = {(0) ( PS ( P2S,QS |PS 6⊆ QS}. If
P2S is not divisorial, then by Lemma 5, |SStar(S)| ≥ 14 (|SStar(S)| = 14
if P2S is strongly discrete and |SStar(S)| ≥ 14 if P2S is not divisorial in S).

Since ˜SStar(S)∪̇{∗RM
} ⊆ SStar(R), |SStar(R)| ≥ 15, which is absurd. Hence

dimR = 2. If htN ≥ 2, let Q2 ⊆ N such that htQ2 = 2 and set S′ = RP ∩RQ2

again by Lemma 5, |SStar(S′)| ≥ 14 and since ˜SStar(S′)∪̇{∗RM
} ⊆ SStar(R),

|SStar(R)| ≥ 15, which is absurd. Hence htN = 1 and so N = Q. Therefore
Spec(R) = {(0) ( P ( M,N |P 6⊆ N}. Finally, if M is idempotent, then M

is not divisorial and so ˜SStar(T )
⋃̇
{d, d, ∗RM

, ∗1, ∗2, ∗3, ∗4, vRM
} ⊆ SStar(R)
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where T = RP ∩ RN and vRM
is the v-operation on RM , which is absurd.

Hence M is strongly discrete and therefore (2) of the theorem holds.
Assume that M ∧N = P 6= (0). Then R is not divisorial and R is conducive.

Let m1, n1 (respectively, m2, n2) be the numbers of non-idempotent (respec-
tively idempotent) prime ideals strictly between P andM (respectively between
P and N). If M or N is not divisorial, for instance M is not divisorial, by

[16, Theorem 4.3], |Star(R)| ≥ 10. Since Star(R)
⋃̇
{∗RM

, ∗RN
, ∗RP

, e, vRM
} ⊆

SStar(R), 15 ≤ |SStar(R)|, which is a contradiction. Hence M and N are
divisorial. Now, suppose that n1 ≥ 1 or n2 ≥ 1, for instance, n1 ≥ 1. Let P1 be
an idempotent prime ideal strictly between P and M . By [16, Theorem 4.3 (1)],

|Star(R)| ≥ 8, and so Star(R)
⋃̇
{∗RM

, ∗RN
, ∗RP

, ∗RP1
, ∗RP1

∩RN
, e, vRP1

} ⊆
SStar(R). Hence 15 ≤ |SStar(R)|, which is a contradiction. Thus n1 =
n2 = 0, equivalently there are no idempotent primes strictly between P and
M and strictly between P and N . Again suppose that m1 ≥ 1 or m2 ≥ 1,
for instance, m1 ≥ 1. Let Q be a non-idempotent prime strictly between
P and M and set T = RQ ∩ RN . By [16, Theorem 4.3], |Star(R)| ≥ 6

and |Star(T )| ≥ 4. But since Star(R)
⋃̇ ˜Star(T )

⋃̇
{∗RM

, ∗RN
, ∗RP

, ∗RQ
, e} ⊆

SStar(R), 15 ≤ |SStar(R)|, which is absurd. Thus m1 = m2 = 0, and there-
fore there are no primes strictly between P and M and strictly between P
and N , equivalently, ht(M/P ) = ht(N/P ) = 1. By [16, Theorem 4.3(1)],
|Star(R)| = 4 and by Theorem 1, 14 = |SStar(R)| = |Star(R)|+ |Spec(R)|+
|Idem(R)| = 4 + |Spec(R)| + |Idem(R)|. Thus |Spec(R)| + |Idem(R)| = 10.
Since M and N are divisorial, then M and N are not idempotent. Thus
|Idem(R)| ≤ |Spec(R)| − 3. Thus |Spec(R)| ≥ 7 and |Idem(R)| ≤ 3, with
|Spec(R)|+ |Idem(R)| = 10, as desired.

Conversely, if (1) is satisfied, |SStar(R)| = 14 by [32]. If (2) holds, then
|SStar(R)| = 14 by Lemma 5. Assume that (3) is satisfied. Then by [16,
Theorem 4.3 (1)], |Star(R)| = 4 and by Theorem 1, |SStar(R)| = |Star(R)|+
|Spec(R)|+ |Idem(R)| = 4 + 10 = 14. �
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