
Bull. Korean Math. Soc. 56 (2019), No. 4, pp. 1041–1057

https://doi.org/10.4134/BKMS.b180870

pISSN: 1015-8634 / eISSN: 2234-3016

GRADED INTEGRAL DOMAINS IN WHICH EACH

NONZERO HOMOGENEOUS IDEAL IS DIVISORIAL

Gyu Whan Chang, Haleh Hamdi, and Parviz Sahandi

Abstract. Let Γ be a nonzero commutative cancellative monoid (written
additively), R =

⊕
α∈Γ Rα be a Γ-graded integral domain with Rα 6= {0}

for all α ∈ Γ, and S(H) = {f ∈ R |C(f) = R}. In this paper, we study ho-
mogeneously divisorial domains which are graded integral domains whose

nonzero homogeneous ideals are divisorial. Among other things, we show

that if R is integrally closed, then R is a homogeneously divisorial domain
if and only if RS(H) is an h-local Prüfer domain whose maximal ideals

are invertible, if and only if R satisfies the following four conditions: (i) R
is a graded-Prüfer domain, (ii) every homogeneous maximal ideal of R is

invertible, (iii) each nonzero homogeneous prime ideal of R is contained
in a unique homogeneous maximal ideal, and (iv) each homogeneous ideal

of R has only finitely many minimal prime ideals. We also show that if

R is a graded-Noetherian domain, then R is a homogeneously divisorial
domain if and only if RS(H) is a divisorial domain of (Krull) dimension

one.

0. Introduction

Let R be a commutative ring with identity and M be a unitary R-module.
Then HomR(M,R), called the dual of M , is an R-module, and there is a natural
R-module homomorphism ϕ from M into HomR(HomR(M,R), R) given by
ϕ(m)(f) = f(m) for all m ∈ M and f ∈ HomR(M,R). An R-module M is
said to be reflexive if ϕ is bijective. We say that R is a reflexive ring if every
submodule of a finitely generated R-module is reflexive [11, page 6]. It is known
that if R is a Noetherian domain, then R is reflexive if and only if every ideal
of R is reflexive [11, Theorem 3.8]. Also, let D be an integral domain with
quotient field K, and note that if I is a nonzero ideal of D, then HomD(I,D)
is naturally isomorphic to I−1 = {x ∈ K |xI ⊆ D}; hence I is reflexive if and
only if (I−1)−1 = I.

Let F (D) be the set of all nonzero fractional ideals of D. An ideal of D
means a fractional ideal I of D with I ⊆ D. For I, J ∈ F (D), let (I :K
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J) = {x ∈ K |xJ ⊆ I}; then (I :K J) ∈ F (D). Also, I−1 = (D :K I) and
Iv = (I−1)−1. It is known that if {Aα} ⊆ F (D) with

⋂
αAα 6= (0), then⋂

α(Aα)v = (
⋂
α(Aα)v)v. Also, (IJ)v = (IvJ)v = (IvJv)v and (aD)v = aD for

all I, J ∈ F (D) and 0 6= a ∈ K. We say that I is a divisorial ideal or a v-ideal
if Iv = I. Note that if A is a nonzero fractional ideal of D, then there exists
a nonzero element a ∈ D such that aA ⊆ D, and since (aA)v = a(Av), A is
divisorial if and only if aA is divisorial. Hence, every nonzero fractional ideal
of D is divisorial if and only if every nonzero ideal of D is divisorial. We say
that D is a divisorial domain if every nonzero ideal of D is divisorial. Hence,
if D is Noetherian, then D is divisorial if and only if D is reflexive.

Divisorial domains have been studied by many researchers (see, for example,
[5,7,11]). In [7], Heinzer showed that (i) if D is a divisorial domain, then D is
an h-local domain (i.e., every nonzero ideal of D is contained in only finitely
many maximal ideals and every nonzero prime ideal of D is contained in a
unique maximal ideal) and (ii) if D is integrally closed, then D is a divisorial
domain if and only if D is a Prüfer domain whose nonzero maximal ideals are
invertible, each nonzero prime ideal of D is contained in a unique maximal
ideal and each ideal of D has only finitely many minimal prime ideals. Matlis
[11] studied a larger class of domains, the class of reflexive domains, where a
nonzero ideal of D that is D-reflexive is just the divisorial ideal. Among other
things, he showed that D is a Noetherian divisorial domain if and only if D
has (Krull) dimension one and M−1 is two generated for all maximal ideals
M of D [11, Theorem 3.8]. In [5, Proposition 5.4], Bazzoni and Salce proved
that D is a divisorial domain if and only if D is an h-local domain and DM is
a divisorial domain for every maximal ideal M of D. In this paper, we study
homogeneously divisorial domains which are graded integral domains whose
nonzero homogeneous ideals are divisorial. (Definitions related with graded
integral domains will be reviewed in the sequel.)

Let Γ be a nonzero torsionless grading monoid, R =
⊕

α∈ΓRα be a Γ-graded
integral domain with Rα 6= {0} for all α ∈ Γ, H be the saturated multiplicative
set of nonzero homogeneous elements of R, and S(H) = {f ∈ R |C(f) = R}.
In Section 1, we show that if R is a homogeneously divisorial domain, then
every nonzero homogeneous ideal (resp., homogeneous prime ideal) of R is
contained in only finitely many homogeneous maximal ideals (resp., a unique
homogeneous maximal ideal) and RH\P is a homogeneously divisorial domain
for all P ∈ h-Max(R). In Section 2, among other things, we prove that if R
is integrally closed, then R is a homogeneously divisorial domain if and only
if RS(H) is a divisorial domain, if and only if R satisfies the following four
conditions: (i) R is a graded-Prüfer domain, (ii) every homogeneous maximal
ideal of R is invertible, (iii) each nonzero homogeneous prime ideal of R is
contained in a unique homogeneous maximal ideal, and (iv) each homogeneous
ideal of R has only finitely many minimal prime ideals. Suppose that R is
a gr-Noetherian domain. In Section 3, we show that R is a homogeneously
divisorial domain if and only if RH\P is a homogeneously divisorial domain
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for all P ∈ h-Max(R), if and only if RS(H) is a divisorial domain of (Krull)
dimension one, if and only if each nonzero homogeneous prime ideal of R has
height-one and M−1 is generated by two elements for every M ∈ h-Max(R).

Definitions related to graded integral domains. Let Γ be a nonzero
torsionless grading monoid, that is, Γ is a commutative cancellative monoid
(written additively) and 〈Γ〉 = {a− b | a, b ∈ Γ} be the quotient group of Γ; so
〈Γ〉 is a torsionfree abelian group. It is well known that a cancellative monoid is
torsionless if and only if it can be given a total order compatible with the monoid
operation [12, page 123]. By a (Γ-)graded integral domain R =

⊕
α∈ΓRα, we

mean an integral domain graded by Γ. That is, each nonzero x ∈ Rα has degree
α, i.e., deg(x) = α, and deg(0) = 0. Thus, each nonzero f ∈ R can be written
uniquely as f = xα1

+ · · ·+xαn
with deg(xαi

) = αi and α1 < · · · < αn. Clearly,
Supp(R) = {α ∈ Γ |Rα 6= {0}} is a submonoid of Γ because R is an integral
domain. Hence, by replacing Γ with Supp(R), we may assume that Rα 6= {0}
for all α ∈ Γ. A nonzero x ∈ Rα for every α ∈ Γ is said to be homogeneous.

Let H =
⋃
α∈Γ(Rα \{0}); so H is the saturated multiplicative set of nonzero

homogeneous elements of R. Then RH , called the homogeneous quotient field
of R, is a 〈Γ〉-graded integral domain whose nonzero homogeneous elements
are units. We say that an overring E of R is a homogeneous overring of R
if E =

⊕
α∈〈Γ〉(E ∩ (RH)α); so E is a 〈Γ〉-graded integral domain such that

R ⊆ E ⊆ RH . Clearly, if Λ = {α ∈ 〈Γ〉 |E ∩ (RH)α 6= {0}}, then Λ is a
torsionless grading monoid such that Γ ⊆ Λ ⊆ 〈Γ〉 and E =

⊕
α∈Λ(E∩(RH)α).

It is obvious that RS is a homogeneous overring of R for a multiplicative set
S of nonzero homogeneous elements of R (with deg(ab ) = deg(a) − deg(b) for
a ∈ H and b ∈ S). For a fractional ideal A of R with A ⊆ RH , let A∗

be the fractional ideal of R generated by homogeneous elements in A. The
A is said to be homogeneous if A∗ = A. Clearly, A∗ ⊆ A; and if A is a
prime ideal, then A∗ is a prime ideal; in particular, the minimal prime ideals
of a nonzero homogeneous ideal are homogeneous. The letter R will denote
a graded integral domain henceforth. A homogeneous ideal of R is called a
homogeneous maximal ideal if it is maximal among proper homogeneous ideals
of R. It is easy to see that each proper homogeneous ideal of R is contained in
a homogeneous maximal ideal of R. Let h-Max(R) be the set of homogeneous
maximal ideals of R. It is known that if A is a homogeneous ideal of R, then
A =

⋂
{ARH\P |P ∈ h-Max(R)} [16, Proposition 2.6]. For f ∈ RH , let C(f)

denote the fractional ideal of R generated by the homogeneous components of
f . It is well known that if f, g ∈ RH , then C(f)n+1C(g) = C(f)nC(fg) for
some integer n ≥ 1 ([12] or [2, Lemma 1.1]); so if S(H) = {f ∈ R |C(f) = R},
then S(H) is a saturated multiplicative subset of R.

We say that R is a graded-Prüfer domain if each nonzero finitely generated
homogeneous ideal of R is invertible. R is a graded-valuation domain (gr-
valuation domain) if either aR ⊆ bR or bR ⊆ aR for all a, b ∈ H; equivalently,
if R is a graded-Prüfer domain with unique homogeneous maximal ideal. We



1044 G. W. CHANG, H. HAMDI, AND P. SAHANDI

call R a graded-Noetherian domain (gr-Noetherian domain) if R satisfies the
ascending chain condition on homogeneous ideals. Clearly, R is a gr-Noetherian
domain if and only if each homogeneous ideal of R is finitely generated, if and
only if each homogeneous prime ideal of R is finitely generated [15, Lemma
2.3].

Notation. Throughout this paper, Γ denotes a nonzero torsionless grading
monoid (written additively), R =

⊕
α∈ΓRα is a Γ-graded integral domain with

Rα 6= {0} for all α ∈ Γ, h-Max(R) is the set of homogeneous maximal ideals of
R, H is the saturated multiplicative set of nonzero homogeneous elements of
R, and S(H) = {f ∈ R |C(f) = R}. In order to avoid a trivial case, we always
assume that R ( RH .

1. Some results in the general case

Let R =
⊕

α∈ΓRα be a graded integral domain. We will say that R is a
homogeneously divisorial domain if each nonzero homogeneous ideal of R is
divisorial. We begin this section with an example of graded integral domains R
such that R is a homogeneously divisorial domain but not a divisorial domain.

Example 1.1. Let D be an integral domain with quotient field K and R =
D[X,X−1] be the Laurent polynomial ring over D. Then R is a Z-graded
integral domain with deg(aXn) = n for 0 6= a ∈ D and an integer n ∈ Z, and
H = {aXn | 0 6= a ∈ D and n ∈ Z}; so RH = K[X,X−1].

(1) If D 6= K, then (a, 1 + X) ( (a, 1 + X)v = R for any nonzero nonunit
a ∈ D. Hence, R is a divisorial domain if and only if D = K.

(2) Note that each nonzero homogeneous element of R is of the form aXn

for some 0 6= a ∈ D and n ∈ Z. Note also that aXnR = aR. Hence, a nonzero
ideal A of R is homogeneous if and only if A = IR for some nonzero ideal I of
D. In this case, Av = IvR [8, Proposition 2.2], IR ∩D = I and IvR ∩D = Iv.
Thus, R is a homogeneously divisorial domain if and only if D is a divisorial
domain.

(3) Let D = Z be the ring of integers. Then, R is a homogeneously divisorial
domain by (2), while there is a nonzero ideal of R that is not divisorial (for
example, (2, 1 +X) ( (2, 1 +X)v = R).

The next result appears in [1, Proposition 2.5] which is essential in the
subsequent arguments, and we use it without citation.

Lemma 1.2. Let R =
⊕

α∈ΓRα be a graded integral domain with quotient
field K. If I and J are homogeneous fractional ideals of R, then (I :K J) is
also a homogeneous fractional ideal and (I :K J) = (I :RH

J). Thus if I is a
homogeneous fractional ideal of R, then both I−1 and Iv are homogeneous.

Let I be a nonzero fractional ideal of an integral domain D. Then Iv is
the intersection of all principal fractional ideals of D containing I [6, Theorem
34.1]. The next result is a graded integral domain analog.



HOMOGENEOUSLY DIVISORIAL DOMAINS 1045

Lemma 1.3. Let R =
⊕

α∈ΓRα be a graded integral domain. If I is a homoge-
neous fractional ideal of R, then Iv is the intersection of the set of homogeneous
principal fractional ideals of R containing I.

Proof. Assume that {(ξλ)}λ∈Λ is the set of homogeneous principal fractional
ideals of R which contain I. If λ ∈ Λ, then I ⊆ (ξλ), and hence Iv ⊆ (ξλ)v =
(ξλ). Thus, Iv ⊆

⋂
λ∈Λ(ξλ). For the reverse containment, let x ∈ RH \Iv. Then

xI−1 * R, and hence xa /∈ R for some homogeneous element a ∈ I−1. Thus,
x /∈ (a−1), but I ⊆ (a−1) because a ∈ I−1. Consequently,

⋂
λ∈Λ(ξλ) ⊆ Iv. �

Lemma 1.4 (cf. [7, Lemma 2.1]). Let R =
⊕

α∈ΓRα be a homogeneously
divisorial domain and {Aα} be a set of homogeneous fractional ideals of R
such that

⋂
αAα 6= (0). Then (

⋂
αAα)−1 =

∑
αA
−1
α .

Proof. Note that
⋂
αAα ⊆ Aα for each α; so A−1

α ⊆ (
⋂
αAα)−1, and hence∑

αA
−1
α ⊆ (

⋂
αAα)−1 and

∑
αA
−1
α is a homogeneous fractional divisorial

ideal. For the reverse containment, let A =
∑
αA
−1
α . Then A−1

α ⊆ A im-
plies that A−1 ⊆ (A−1

α )−1 = Aα for each α. Thus, A−1 ⊆
⋂
αAα, and hence

(
⋂
αAα)−1 ⊆ (A−1)−1 =

∑
αA
−1
α . �

Lemma 1.5 (cf. [7, Lemma 2.2]). Let R =
⊕

α∈ΓRα be a homogeneously

divisorial domain and P be a homogeneous maximal ideal of R. Then R ( P−1

and P−1 = R+ xR for all homogeneous elements x ∈ P−1\R.

Proof. Note that P = (P−1)−1; so R ( P−1, and since P−1 is homogeneous,
the homogeneous elements of P−1\R is non empty. Set F = xR + R for a
homogeneous element x ∈ P−1 \ R. Then R ( F ⊆ P−1, and hence P =
(P−1)−1 ⊆ F−1 ( R; so P = F−1. Thus, P−1 = (F−1)−1 = F . �

Lemma 1.6 (cf. [7, Lemma 2.3]). Let R =
⊕

α∈ΓRα be a homogeneously
divisorial domain, A be a nonzero proper homogeneous ideal of R, and P be a
homogeneous maximal ideal of R containing A. If {Bα} is the set of homoge-
neous ideals of R which contain A and are not contained in P , then B =

⋂
αBα

is not contained in P . Hence, A ( B.

Proof. If B1 ∈ {Bα}, then B1 * P , and hence B1 + P = R because P is a
homogeneous maximal ideal and B1 + P is homogeneous. Thus, R = (B1 +
P )−1 = B−1

1 ∩P−1. Choose a homogeneous element x ∈ P−1\R. If {Bi}ni=1 is
a finite subset of {Bα}, then

⋂n
i=1Bi is a homogeneous ideal of R which is not

contained in P ; so
⋂n
i=1Bi ∈ {Bα}. Thus, x /∈ (

⋂n
i=1Bi)

−1 =
∑n
i=1B

−1
i by

Lemma 1.4 because (
⋂n
i=1Bi)

−1 ∩ P−1 = R by the second sentence above. It
follows that x /∈

∑
αB
−1
α = (

⋂
αBα)−1. Hence, P−1 * (

⋂
αBα)−1, and thus⋂

αBα * P . �

Let D be an integral domain, Max(D) be the set of maximal ideals of D,
and {Dλ} be a set of overrings of D such that D =

⋂
λDλ. We say that the

intersection
⋂
λDλ is locally finite if each nonzero nonunit of D is a unit in Dλ
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for all but a finitely many Dλ of {Dλ}. Following [10], we call D an h-local do-
main if (i) each nonzero prime ideal of D is contained in a unique maximal ideal
and (ii) D has finite character, i.e., the intersection

⋂
M∈Max(D)DM is locally

finite. As a graded integral domain analog, we will say that R =
⊕

α∈ΓRα
is homogeneously h-local if (i) each nonzero homogeneous prime ideal of R is
contained in a unique homogeneous maximal ideal and (ii) the intersection⋂
M∈h-Max(R)RH\M is locally finite.

We next give a graded integral domain analog of [7, Theorems 2.4 and 2.5]
(or [11, Theorem 2.7]) that D is an h-local domain when every nonzero ideal
of D is divisorial.

Theorem 1.7. Let R =
⊕

α∈ΓRα be a homogeneously divisorial domain. Then
R is a homogeneously h-local domain.

Proof. (1) Let Q be a nonzero homogeneous prime ideal of R, and assume that
there exist two distinct homogeneous maximal ideals P1 and P2 of R which
contain Q. Let {Bα} be the set of all homogeneous ideals of R such that
Q ⊆ Bα * P1, and set B =

⋂
αBα. Then B is a homogeneous ideal of R

with B * P1 by Lemma 1.6. Choose a homogeneous element y ∈ B\P1. Then
y2 /∈ P1, and hence Q + (y2) ∈ {Bα}. Hence, y ∈ Q + (y2); so y = q + ry2

for some q ∈ Q and r ∈ R. Thus, y(1 − ry) = q ∈ Q. Note that y /∈ Q; so
1− ry ∈ Q. However, note also that P2 ∈ {Bα} because Q ⊆ P2 and P2 * P1;
so y ∈ B ⊆ P2. Thus, 1 = (1− ry) + ry ∈ P2, a contradiction.

(2) Let A be a nonzero homogeneous ideal of R, and let {Pα |α ∈ Λ} be the
set of homogeneous maximal ideals of R which contain A. For each α ∈ Λ, let
Fα be the intersection of homogeneous integral ideals of R which contain A but
are not contained in Pα. By Lemma 1.6, Fα is not contained in Pα. Hence,
A ⊆

∑
Fα and

∑
Fα * Pβ for all β ∈ Λ. Thus,

∑
Fα = R and 1 =

∑n
i=1 ti

for some ti ∈ Fi ∈ {Fα}. Hence,
∑n
i=1 Fi = R, and thus {Pα} = {Pi}ni=1.

Indeed, if Pα /∈ {P1, . . . , Pn}, then A ⊆ Pα and Pα * Pi for i = 1, . . . , n.
Hence, Fi ⊆ Pα for i = 1, . . . , n, and therefore R =

∑n
i=1 Fi ⊆ Pα ( R, a

contradiction. �

Corollary 1.8. Let R =
⊕

α∈ΓRα be a homogeneously divisorial domain and
S(H) = {f ∈ R |C(f) = R}.

(1) Max(RS(H)) = {QS(H) |Q ∈ h-Max(R)}.
(2) RS(H) has finite character.
(3) Every maximal ideal of RS(H) is divisorial.

Proof. Clearly, S(H) = {f ∈ R |C(f)v = R}. Also, by Theorem 1.7, the inter-
section

⋂
Q∈h-Max(R)RQ is locally finite. Thus, Max(RS(H)) = {QS(H) |Q ∈ h-

Max(R)} [2, Proposition 1.4 and Lemma 2.2]. Hence, RS(H) =
⋂
Q∈h-Max(R)RQ,

and thus RS(H) has finite character. Also, if Q ∈ h-Max(R), then (QRS(H))v =
QvRS(H) = QRS(H) [2, Proposition 1.3]. �
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We next give in Theorem 1.13 a graded integral domain analog of [5, Propo-
sition 5.4] that D is a divisorial domain if and only if D is h-local and DM is
a divisorial domain for all M ∈ Max(D). We prove this result by a series of
lemmas.

Lemma 1.9 (cf. [7, Lemma 3.4]). Let R =
⊕

α∈ΓRα be a homogeneously
divisorial domain, P be a homogeneous maximal ideal of R, and A be a nonzero
proper homogeneous ideal of R such that ARH\P ∩R = A. Then P is a unique
homogeneous maximal ideal of R containing A.

Proof. Note that ARH\P ∩ R = A implies
√
A =

√
ARH\P ∩ R. Clearly,√

ARH\P is the intersection of all homogeneous prime ideals of RH\P contain-

ing ARH\P . Hence,
√
A =

⋂
αQα where {Qα} is the set of minimal primes of

A that are contained in P . Note that each Qα is homogeneous; so if P1 is a ho-
mogeneous maximal ideal of R distinct from P , then Qα * P1 by Theorem 1.7.

Hence,
√
A =

⋂
αQα * P1 by Lemma 1.6. Thus, P is a unique homogeneous

maximal ideal of R containing A. �

Lemma 1.10 (cf. [7, Lemma 3.5]). Let R =
⊕

α∈ΓRα be a graded integral
domain, P be a homogeneous maximal ideal of R, and A be a homogeneous
ideal of R such that P is a unique homogeneous maximal ideal of R containing
A. Then ARH\P ∩R = A.

Proof. Since A is homogeneous,

A =
⋂
{ARH\Q |Q ∈ h-Max(R)}

= ARH\P ∩ (
⋂
{ARH\Q |Q ∈ h-Max(R) with Q 6= P})

= ARH\P ∩R
(see [16, Proposition 2.6] for the first equality). �

Lemma 1.11 (cf. [7, Theorem 3.6]). Let R =
⊕

α∈ΓRα be a homogeneously
divisorial domain and P be a homogeneous maximal ideal of R. Then RH\P is
a homogeneously divisorial domain.

Proof. Let A′ be a nonzero homogeneous ideal of RH\P and A = A′∩R. Then
A is a homogeneous ideal of R such that A′ = ARH\P and ARH\P ∩ R = A.
Next, let B = (ARH\P )v ∩R. Then B is homogeneous, BRH\P = (ARH\P )v,
and A ⊆ B. Choose y ∈ H \ A. Since A is homogeneous, Av = A, and hence
there exists a homogeneous element x ∈ RH such that A ⊆ xR and y /∈ xR by
Lemma 1.3. If E = xR ∩ R, then E is homogeneous, y /∈ E, and A ⊆ E, and
since ARH\P ∩ R = A, by Lemma 1.9, P is a unique homogeneous maximal
ideal of R containing E. Hence, by Lemma 1.10, ERH\P ∩R = E. Moreover,
E = xR∩R implies ERH\P = xRH\P∩RH\P which is a homogeneous divisorial
ideal of RH\P and contains ARH\P . Thus, (ARH\P )v = BRH\P ⊆ ERH\P ,
and hence B ⊆ BRH\P ∩ R ⊆ E. We conclude that y /∈ B; so A = B.
Therefore, A′ = ARH\P = BRH\P = (ARH\P )v = (A′)v. �
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Lemma 1.12 (cf. [5, Lemma 2.3]). Let R =
⊕

α∈ΓRα be a homogeneously
h-local domain, M be a homogeneous maximal ideal of R, and A be a nonzero
homogeneous fractional ideal of R. Then

(ARH\M )−1 = A−1RH\M and (ARH\M )v = AvRH\M .

Proof. It suffices to show that (ARH\M )−1 = A−1RH\M because A−1 is ho-
mogeneous. Note that

(R : A) = (
⋂

N∈h-Max(R)

RH\N ) : A

=
⋂

N∈h-Max(R)

(RH\N : A)

=
⋂

N∈h-Max(R)

(RH\N : AH\N )

= (RH\M : AH\M ) ∩ (
⋂
N 6=M

(RH\N : AH\N )).

Also, if N is a homogeneous maximal ideal of R with N 6= M , then (RH\N )H\M
= RH because each nonzero homogeneous prime ideal of R is contained in a
unique homogeneous maximal ideal. Note that if A * R, then there is an x ∈ H
such that xA ⊆ R and xA is homogeneous; so we may assume that A ⊆ R.
Hence, RH =

⋂
N 6=M (RH\N )H\M ⊆

⋂
N 6=M (RH\N : AH\N )H\M ⊆ RH . Thus,

A−1RH\M = (R : A)H\M

= (RH\M : AH\M ) ∩ (
⋂
N 6=M

(RH\N : AH\N )H\M )

= (RH\M : AH\M ) ∩RH
= (RH\M : AH\M )

= (ARH\M )−1,

where the second equality follows because each nonzero nonunit of R is con-
tained in only finitely many homogeneous maximal ideals of R. �

Theorem 1.13. Let R =
⊕

α∈ΓRα be a graded integral domain. Then R is a
homogeneously divisorial domain if and only if R is homogeneously h-local and
RH\M is a homogeneously divisorial domain for every M ∈ h-Max(R).

Proof. If R is a homogeneously divisorial domain, then R is homogeneously h-
local by Theorem 1.7 and RH\M is a homogeneously divisorial domain for every
M ∈ h-Max(R) by Lemma 1.11. For the reverse implication, let A be a nonzero
homogeneous ideal of R. Then ARH\M = (ARH\M )v = AvRH\M for all M ∈
h-Max(R) by assumption and Lemma 1.12. Thus, A =

⋂
{ARH\M |M ∈

h-Max(R)} =
⋂
{AvRH\Q |Q ∈ h-Max(R)} = Av [16, Proposition 2.6]. �
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2. Integrally closed graded integral domains

In this section, we completely characterize integrally closed homogeneously
divisorial domains. We first need a gr-valuation domain analog of [7, Lemma
5.2] that if V is a valuation domain with maximal ideal M , then M is principal
if and only if every nonzero ideal of V is divisorial.

Lemma 2.1. Let V =
⊕

α∈Γ Vα be a gr-valuation domain with homogeneous
maximal ideal M . Then the following statements are equivalent.

(1) M is principal.
(2) V be a homogeneously divisorial domain.
(3) M is divisorial, i.e., Mv = M .

Proof. (1) ⇒ (2) Let x ∈ V be a homogeneous element such that M = xV ,
and A be a homogeneous ideal of V . If y ∈ V \ A is a homogeneous element,
then A ( yV , and hence 1

yA ( V . Hence, 1
yA ⊆ xV , and thus A ⊆ xyV ( yV .

Thus, Av ⊆ xyV and y /∈ Av. Therefore, A = Av.
(2)⇒ (3) Clear.
(3) ⇒ (1) Note that V (M−1 and M−1 is homogeneous; so we can choose

a homogeneous element a ∈ M−1 \ V . Then 1
a ∈ V , and thus M = Mv =

(1, a)−1 = V ∩ 1
aV = 1

aV . �

We next give a complete characterization of integrally closed graded integral
domains in which each nonzero homogeneous ideal is divisorial.

Theorem 2.2 (cf. [7, Theorem 5.1]). Let R =
⊕

α∈ΓRα be an integrally closed
graded integral domain. Then the following statements are equivalent.

(1) R is a homogeneously divisorial domain.
(2) R satisfies the following four conditions.

(a) R is a graded-Prüfer domain.
(b) Each homogeneous maximal ideal of R is invertible.
(c) Each nonzero homogeneous prime ideal of R is contained in a

unique homogeneous maximal ideal.
(d) Each homogeneous ideal of R has only finitely many minimal prime

ideals.
(3) R is a homogeneously h-local graded-Prüfer domain in which each ho-

mogeneous maximal ideal is invertible.

Proof. (1)⇒ (2): (a) This follows from [17, Corollary 3.4].
(b) Let P be a homogeneous maximal ideal of R. Then Pv = P , and hence

there are homogeneous elements a, b ∈ R such that P = (1, ba )−1 by Lemma

1.5. Note that (1, ba ) is homogeneous; so P−1 = (1, ba )v = (1, ba ) by (1). Thus,
P is invertible by (a).

(c) This follows from Theorem 1.7.
(d) Let A be a nonzero homogeneous ideal of R and {Pα} be the set of

minimal prime ideals of A. (Note that each Pα is homogeneous because A is
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homogeneous.) Then by Theorem 1.7, A is contained in only finitely many ho-
mogeneous maximal ideals of R, say {M1, . . . ,Mn}. Since R is a graded-Prüfer
domain, the homogeneous prime ideals of R contained in a fixed homogeneous
maximal ideal are linearly ordered with respect to inclusion. Thus, |{Pα}| ≤ n.

(2) ⇒ (1) Let A be a nonzero homogeneous ideal of R and P be a ho-
mogeneous maximal ideal of R. Then RH\P is a gr-valuation domain with
homogeneous maximal ideal PRH\P by (a) and [16, Lemma 4.3 and Theorem
4.4]. Also, PRH\P is principal because P is finitely generated by (b). Hence,
each nonzero homogeneous ideal of RH\P is divisorial by Lemma 2.1. Thus,
ARH\P is divisorial, and hence ARH\P =

⋂
α xαRH\P for some homogeneous

elements xα ∈ R (because each homogeneous element of RH\P is of the form
a
b with a ∈ H and b ∈ H \ P ). Hence, if each xαRH\P ∩ R is divisorial, then
ARH\P ∩ R =

⋂
α(xαRH\P ∩ R) is divisorial [6, Theorem 32.2]. Also, since

A =
⋂
{ARH\Q∩R |Q ∈ h-Max(R)} [16, Proposition 2.6], A is divisorial. Thus,

it suffices to show that aRH\P ∩R is divisorial for each nonzero homogeneous
element a ∈ R.

Let J = aRH\P ∩ R. If a 6∈ P , then aRH\P = RH\P , and hence J = R is
divisorial. Next, assume that a ∈ P . Then a is contained in only finitely many
homogeneous maximal ideals of R by (c) and (d), say {P,M1, . . . ,Mn}. Since
RH\P is a gr-valuation domain,

√
aRH\P is a homogeneous prime ideal, and

hence
√
J ⊆ P is a nonzero homogeneous prime ideal of R because

√
aRH\P ∩

R =
√
J . Therefore,

√
J , and hence J is contained in no Mi by (c). Choose

a homogeneous element yi ∈ J \Mi for each i, and let I = (a, y1, . . . , yn)R.
Then P is a unique homogeneous maximal ideal of R containing I. Note that
a ∈ I ⊆ J ; so

I = IRH\P ∩R = aRH\P ∩R = J.

Thus, J is a finitely generated homogeneous ideal of R, and since R is a graded-
Prüfer domain, J is invertible; so J is divisorial [6, Lemma 32.17].

(2) ⇔ (3) This follows because (d) is equivalent to that each nonzero ho-
mogeneous ideal of R is contained in only finitely many homogeneous maximal
ideals of R by (a) and (c). �

Corollary 2.3. Let R =
⊕

α∈ΓRα be an integrally closed graded integral do-
main and S(H) = {f ∈ R |C(f) = R}. Then the following statements are
equivalent.

(1) R is a homogeneously divisorial domain.
(2) RS(H) is a divisorial domain.
(3) RS(H) is an h-local Prüfer domain whose maximal ideals are invertible.

Proof. (1)⇒ (2) Clearly, S(H) = {f ∈ R |C(f)v = R}, and since Max(RS(H))
= {QS(H) |Q ∈ h-Max(R)} by Corollary 1.8, every ideal of RS(H) is extended
from a homogeneous ideal of R by Theorem 2.2 and [2, Corollary 1.10]. Hence,
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if A′ is a nonzero ideal of RS(H), then A′ = ARS(H) for some nonzero homoge-
neous ideal A of R. Thus, (A′)v = (ARS(H))v = AvRS(H) = ARS(H) = A′ (cf.
[2, Proposition 1.3] for the second equality).

(2)⇒ (1) Note that RS(H) is integrally closed; so RS(H) is a Prüfer domain
[7, Theorem 5.1]. Hence, if Q ∈ h-Max(R), then QS(H) ( RS(H), and thus
RQ = (RS(H))QS(H)

is a valuation domain. Thus, R is a graded-Prüfer do-

main [4, Theorem 2.1] and S(H) = {f ∈ R |C(f)v = R}. Let A be a nonzero
homogeneous ideal of R. Then ARS(H) = (ARS(H))v = AvRS(H) [2, Propo-
sition 1.3], and since both A and Av are homogeneous, A = ARS(H) ∩ R =
AvRS(H) ∩R = Av [3, Lemma 2].

(2)⇔ (3) [7, Theorem 5.1]. �

We recall that R =
⊕

α∈ΓRα is a graded-Dedekind domain (gr-Dedekind
domain) if R is a gr-Noetherian and graded-Prüfer domain. Hence, R is a
gr-Dedekind domain if and only if each nonzero homogeneous ideal of R is in-
vertible, if and only if each nonzero homogeneous prime ideal of R is invertible.
In [3, Corollary 7], Anderson and Chang showed that if Γ ∩ (−Γ) = {0}, then
R is a gr-Dedekind domain if and only if R is a Dedekind domain, if and only
if R is a PID.

Theorem 2.4 (cf. [7, Proposition 5.5]). Let R =
⊕

α∈ΓRα be a completely
integrally closed graded integral domain and S(H) = {f ∈ R |C(f) = R}. Then
the following statements are equivalent.

(1) R is a homogeneously divisorial domain.
(2) R is a gr-Dedekind domain.
(3) RS(H) is a Dedekind domain.
(4) RS(H) is a PID.
(5) R is a gr-Noetherian domain in which each homogeneous maximal ideal

is invertible.

Proof. (1) ⇒ (2) Let A be a nonzero homogeneous ideal of R. Since R is
completely integrally closed, (AA−1)v = R [6, Theorem 34.3], and since AA−1

is homogeneous, (AA−1)v = AA−1. Thus, AA−1 = R.
(2) ⇒ (1) If R is a gr-Dedekind domain, then each nonzero homogeneous

ideal of R is invertible. Thus, R is a homogeneously divisorial domain.
(2) ⇔ (3) ⇔ (4) ⇒ (5) [3, Theorem 4].
(5) ⇒ (2) It suffices to show that RH\P is a gr-valuation domain for all

P ∈ h-Max(R). Let M be a homogeneous maximal ideal of R. Then MRH\M
is invertible by (5), and hence MRH\M is principal. Also, since RH\M is gr-
Noetherian, MRH\M is a unique nonzero homogeneous prime ideal of RH\M .
Hence, RH\M is a gr-Dedekind domain with a unique homogeneous maximal
ideal. Thus, RH\M is a gr-valuation domain. �

Corollary 2.5. Let R =
⊕

α∈ΓRα be a completely integrally closed graded
integral domain such that Γ ∩ (−Γ) = {0}. Then R is a divisorial domain if
and only if R is a homogeneously divisorial domain.
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Proof. If R is a homogeneously divisorial domain, then R is a gr-Dedekind
domain by Theorem 2.4, and thus R is a Dedekind domain [3, Corollary 7].
Hence, R is a divisorial domain [7, Proposition 5.5]. The converse is trivial. �

3. Graded-Noetherian domains

In this section, we study gr-Noetherian domains which are also homoge-
neously divisorial domains.

Lemma 3.1 (cf. [7, Corollary 3.2]). Let R =
⊕

α∈ΓRα be a graded integral
domain, S be a multiplicative set of nonzero homogeneous elements of R, and
A be a finite intersection of principal homogeneous fractional ideals of R. Then
ARS is a homogeneous divisorial ideal.

Proof. Let A =
⋂n
i=1 xiR be a finite intersection of nonzero principal homoge-

neous ideals of R. Then ARS =
⋂n
i=1 xiRS [7, Lemma 3.1], and thus ARS is a

homogeneous divisorial ideal of RS . �

Let V be a rank 2 valuation domain with prime ideals (0) ( P ( M such
that M is principal but VP is not discrete. Then each nonzero homogeneous
ideal of R = V [X,X−1] is divisorial, while RH\PR = VP [X,X−1] has a non-
divisorial homogeneous ideal PRH\PR by Example 1.1. Hence, Lemma 1.11 is
not true for homogeneous non-maximal ideals. However, our next result shows
that every nonzero homogeneous ideal of RS is divisorial for any multiplicative
set S ⊆ H when R =

⊕
α∈ΓRα is a gr-Noetherian homogeneously divisorial

domain.

Proposition 3.2 (cf. [7, Remark 3.3]). Let R =
⊕

α∈ΓRα be a homogeneously
divisorial domain and S be a multiplicative set of nonzero homogeneous el-
ements of R. If R is gr-Noetherian, then RS is a homogeneously divisorial
domain.

Proof. Let A be a nonzero homogeneous ideal of R and B = A−1. Then B is a
finitely generated homogeneous fractional ideal of R, say B = (x1, . . . , xn) for
some homogeneous elements xi ∈ RH , and hence

A = B−1 =
n⋂
i=1

(R : xi) =
n⋂
i=1

(1/xi)R.

Thus, ARS is divisorial by Lemma 3.1. �

Let D be a Noetherian domain. It is known that if D is a divisorial domain,
then D has (Krull) dimension one [7, Corollary 4.3]. Also, if D has (Krull)
dimension one, then D is an h-local domain. Thus, D is a divisorial domain if
and only if DM is a divisorial domain for all M ∈ Max(D) [5, Proposition 5.4].

Corollary 3.3. Let R =
⊕

α∈ΓRα be a gr-Noetherian domain. Then R is
a homogeneously divisorial domain if and only if RH\P is a homogeneously
divisorial domain for all P ∈ h-Max(R).
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Proof. Suppose that RH\P is a homogeneously divisorial domain for all P ∈
h-Max(R). Let A be a nonzero homogeneous ideal of R. Then A is finitely
generated, and hence ARH\P = (ARH\P )v = (AvRH\P )v [18, Lemma 4]; so
ARH\P = AvRH\P for all P ∈ h-Max(R). Thus,

A =
⋂
{ARH\Q |Q ∈ h-Max(R)}

=
⋂
{AvRH\Q |Q ∈ h-Max(R)

= Av

[16, Proposition 2.6]. The converse is from Proposition 3.2 or Lemma 1.11. �

Let D be an almost Dedekind domain that is not Dedekind (see, for example,
[6, Example 42.6] for such an integral domain), and let R = D[X,X−1]. Then
D is not an h-local domain, h-Max(R) = {P [X,X−1] |P ∈ Max(D)}, and
RH\P [X,X−1] = DP [X,X−1] is a gr-valuation domain such that PDP [X,X−1]

is the homogeneous maximal ideal and PDP [X,X−1] is principal. Hence, every
nonzero homogeneous ideal of RH\Q is divisorial for all Q ∈ h-Max(R) by
Lemma 2.1, but R has a nonzero homogeneous ideal that is not divisorial by
Example 1.1. Thus, Corollary 3.3 does not hold if R is not a gr-Noetherian
domain.

We next prove in Theorem 3.9 that if R =
⊕

α∈ΓRα is a homogeneously
divisorial domain which is also gr-Noetherian, then every nonzero homogeneous
prime ideal of R has height-one. For which we first need several lemmas.

Lemma 3.4 (cf. [7, Lemma 4.1]). Let R =
⊕

α∈ΓRα be a homogeneously
divisorial domain with a unique homogeneous maximal ideal P and xR be a
nonzero homogeneous principal ideal of R. Then xP−1 is contained in any
homogeneous fractional ideal which properly contains xR.

Proof. Let A be a homogeneous fractional ideal of R with xR ( A. Then
R = 1

x (xR) ( 1
xA, and hence ( 1

xA)−1 ( R. Note that 1
xA is homogeneous; so

( 1
xA)−1 ⊆ P . Hence, P−1 ⊆ ( 1

xA)v = 1
xA, and thus xP−1 ⊆ A. �

We recall that a homogeneous ideal is h-irreducible if it is not a finite inter-
section of homogeneous ideals strictly containing it.

Corollary 3.5 (cf. [7, Corollary 4.2]). Let R =
⊕

α∈ΓRα be a homogeneously
divisorial domain with a unique homogeneous maximal ideal. Then every ho-
mogeneous principal ideal of R is h-irreducible.

Proof. Let x ∈ R be a nonzero homogeneous element such that xR = A ∩ B
for some homogeneous ideals A,B of R with xR ( A and xR ( B, and P be
the homogeneous maximal ideal of R. Then xP−1 ⊆ A ∩ B = xR by Lemma
3.4, and thus P−1 ⊆ R, a contradiction. �

An ideal I of R =
⊕

α∈ΓRα is called h-primary if ab ∈ I for homogeneous
elements a, b of R implies that a ∈ I or bn ∈ I for some integer n ≥ 1. Clearly,
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a primary ideal is h-primary. Also, it is known that if Q is an h-primary
homogeneous ideal of R, then Q is a primary ideal of R [9, Proposition 5.6.20].

Lemma 3.6. Let R =
⊕

α∈ΓRα be a gr-Noetherian domain. Then each h-
irreducible ideal of R is a primary ideal.

Proof. Let I be a nonzero h-irreducible ideal of R. Assume that I is not
primary. Then there exist homogeneous elements a, b ∈ R such that ab ∈ I,
a 6∈ I, and bn 6∈ I for all integers n ≥ 1. Since R is a gr-Noetherian domain,
the ascending chain of homogeneous ideals (I :R b) ⊆ (I :R b2) ⊆ · · · must be
stationary. Hence, there exists an integer m ≥ 0 such that (I :R bm) = (I :R
bm+1). Consider the homogeneous ideals aR+I and bmR+I. If x ∈ (aR+I)∩
(bmR+ I), then x = t1a+ i = t2b

m + j for some t1, t2 ∈ R and i, j ∈ I. Hence,
t2b

m+1 = (t2b
m)b = (t1a+ (i− j))b ∈ I, and thus t2 ∈ (I :R b

m+1) = (I :R b
m);

so x = t2b
m + j ∈ I. Thus, (aR + I) ∩ (bmR + I) = I, and hence I is not

h-irreducible, a contradiction. �

Corollary 3.7. Let R =
⊕

α∈ΓRα be a homogeneously divisorial domain with
a unique homogeneous maximal ideal. If R is gr-Noetherian, then every homo-
geneous principal ideal of R is primary.

Proof. It follows from Corollary 3.5 and Lemma 3.6. �

Lemma 3.8. Let R =
⊕

α∈ΓRα be a homogeneously divisorial domain, P be a
homogeneous maximal ideal of R, and 0 6= x ∈ P be homogeneous. Then there
is a homogeneous element y ∈ R\xR such that P = (xR :R y).

Proof. Note that R ( P−1 and P−1 is homogeneous; so there are homogeneous
elements a, b ∈ R such that b

a ∈ P−1 \ R. Clearly, P = Pv = ( ba , 1)−1 =
a
bR ∩ R = (aR :R b). Thus, if y = x ba , then y ∈ R \ xR and P = (aR :R b) =

(R :R
b
a ) = (xR :R y). �

The h-height of a homogeneous prime ideal Q of R =
⊕

α∈ΓRα (denoted by
h-htQ) is defined to be the supremum of the lengths of chains of homogeneous
prime ideals (0) ( Q1 ( · · · ( Qn = Q. Clearly, h-htQ ≤ htQ, and equality
holds when every prime ideal P of R with P ⊆ Q is homogeneous. The h-
dimension of R (denoted by h-dimR) is defined to be sup{h-htQ |Q ∈ h-
Spec(R)}.

Theorem 3.9 (cf. [7, Corollary 4.3]). Let R =
⊕

α∈ΓRα be a homogeneously
divisorial domain which is also gr-Noetherian. Then each nonzero homogeneous
prime ideal of R has height-one.

Proof. Let P be a homogeneous maximal ideal of R. Then RH\P is a gr-
Noetherian domain whose nonzero homogeneous ideals are divisorial by Corol-
lary 3.3. Hence, by replacing R and P with RH\P and PRH\P , respectively,
we may assume that R is a gr-Noetherian domain with a unique homogeneous
maximal ideal P . Let a ∈ P be a nonzero homogeneous element. By Lemma
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3.8, there is a homogeneous element b ∈ R\aR such that P = (aR : b). We

show that
√
aR = (aR : b). It is clear that

√
aR ⊆

√
(aR : b) = (aR : b). If

x ∈ (aR : b), then xb ∈ aR, and since aR is a primary ideal by Corollary 3.7 and

b /∈ aR, we have xn ∈ aR for some integer n ≥ 1; so x ∈
√
aR. Consequently, P

is minimal over aR, and since R is a gr-Noetherian domain, h-hP ≤ 1 [13, The-
orem 3.5]. Hence, h-dim(R) = 1, and if R̄ is the integral closure of R, then R̄
is a homogeneous overring of R with h-dim(R̄) = 1 [14, Lemmas 2.2, 2.3, and
Corollary 1.6]. Let Q be a nonzero prime ideal of R such that Q ⊆ P . Then
there are prime ideals Q′ ⊆ P ′ of R̄ such that Q′∩R = Q and P ′∩R = P . Note
that P ′ is a homogeneous ideal of R̄; so htP ′ = 1 (cf. [14, Theorem 2.10] and
[1, Proposition 5.5]). Hence, Q = Q′ ∩R = P ′ ∩R = P . Thus, htP = 1. �

Corollary 3.10 (cf. [11, Theorem 3.8]). Let R =
⊕

α∈ΓRα be a gr-Noetherian
domain and S(H) = {f ∈ R |C(f) = R}. Then the following statements are
equivalent.

(1) R is a homogeneously divisorial domain.
(2) Each nonzero homogeneous prime ideal of R has height-one and M−1

is generated by two elements for all M ∈ h-Max(R).
(3) RS(H) is a divisorial domain of (Krull) dimension one.
(4) RH\P is a homogeneously divisorial domain for all P ∈ h-Max(R).

Proof. (1) ⇒ (2) Each nonzero homogeneous prime ideal of R has height-one
by Theorem 3.9 and M−1 = R+xR for any homogeneous element x ∈M−1\R
by Lemma 1.5.

(2) ⇒ (3) Let M be a homogeneous maximal ideal of R. Then RM is a
one-dimensional Noetherian domain such that (MRM )−1 = M−1RM (because
M is finitely generated); so (MRM )−1 is two generated. Thus, each nonzero
ideal of RM is divisorial [11, Theorem 3.8]. Next, note that

⋂
Q∈h-Max(R)RQ is

locally finite because R is gr-Noetherian and each homogeneous maximal ideal
of R has height-one; so Max(RS(H)) = {QS(H) |Q ∈ h-Max(R)} by the proof
of Corollary 1.8. Thus, RS(H) is a one-dimensional Noetherian domain, and
hence RS(H) is an h-local domain. Note that (RS(H))MS(H)

= RM for all M ∈
h-Max(R). Thus, RS(H) is a divisorial domain [5, Proposition 5.4].

(3)⇒ (1) Let A be a nonzero homogeneous ideal of R. Then A = ARS(H)∩
R = (ARS(H))v ∩ R = AvRS(H) ∩ R = Av by [3, Lemma 2] and the proof of
Corollary 2.3. Thus, R is a homogeneously divisorial domain.

(1) ⇔ (4) Corollary 3.3. �

Corollary 3.11. Let R =
⊕

α∈ΓRα be a homogeneously divisorial domain
which is also gr-Noetherian. Then the integral closure of R is a gr-Dedekind
domain.

Proof. Let R̄ be the integral closure of R and S(H) = {f ∈ R |C(f) = R}.
Then R̄S(H) is a one-dimensional integrally closed Noetherian domain by Corol-

lary 3.10 because R̄S(H) is the integral closure of RS(H). Thus, R̄S(H) is a
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Dedekind domain [6, Theorem 37.8]. Also, R̄ is a homogeneous overring of
R [14, Lemmas 2.2 and 2.3]. Hence, if S̄(H) = {f ∈ R̄ |C(f) = R̄}, then
S(H) ⊆ S̄(H), and thus R̄S̄(H) is a Dedekind domain. Thus, R̄ is a gr-Dedekind

domain [3, Theorem 4]. �
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