• Title/Summary/Keyword: Power device packaging

Search Result 63, Processing Time 0.023 seconds

Overview on Thermal Management Technology for High Power Device Packaging (파워디바이스 패키징의 열제어 기술과 연구 동향)

  • Kim, Kwang-Seok;Choi, Don-Hyun;Jung, Seung-Boo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.2
    • /
    • pp.13-21
    • /
    • 2014
  • Technology for high power devices has made impressive progress in increasing the current density of power semiconductor, system module, and design optimization, which realize high power systems with heterogeneous functional integration. Depending on the performance development of high power semiconductor, packaging technology of high power device is urgently required for efficiency improvement of the device. Power device packaging must provide superior thermal management due to high operating temperature of power modules. Here we, therefore, review critical challenges of typical power electronics packaging today including core assembly processes, component materials, and reliability evaluation regulations.

A Thermal Model for Electrothermal Simulation of Power Modules

  • Meng, Jinlei;Wen, Xuhui;Zhong, Yulin;Qiu, Zhijie
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.4
    • /
    • pp.441-446
    • /
    • 2013
  • A thermal model of power modules based on the physical dimension and thermal properties is proposed in this paper. The heat path in the power module is considered as a one-dimensional heat transfer in the model. The method of the parameters extraction for the model is given in the paper. With high speed and accuracy, the thermal model is suit for electrothermal simulation. The proposed model is verified by experimental results.

A Review of Ag Paste Bonding for Automotive Power Device Packaging (자동차용 파워 모듈 패키징의 은 소재를 이용한 접합 기술)

  • Roh, Myong-Hoon;Nishikawa, Hiroshi;Jung, Jae-Pil
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.4
    • /
    • pp.15-23
    • /
    • 2015
  • Lead-free bonding has attracted significant attention for automotive power device packaging due to the upcoming environmental regulations. Silver (Ag) is one of the prime candidates for alternative of high Pb soldering owing to its superior electrical and thermal conductivity, low temperature sinterability, and high melting temperature after bonding. In this paper, the bonding technology by Ag paste was introduced. We classified into two Ag paste bonding according to applied pressure, and each bonding described in detail including recent studies.

Conductive adhesive with transient liquid-phase sintering technology for high-power device applications

  • Eom, Yong-Sung;Jang, Keon-Soo;Son, Ji-Hye;Bae, Hyun-Cheol;Choi, Kwang-Seong
    • ETRI Journal
    • /
    • v.41 no.6
    • /
    • pp.820-828
    • /
    • 2019
  • A highly reliable conductive adhesive obtained by transient liquid-phase sintering (TLPS) technologies is studied for use in high-power device packaging. TLPS involves the low-temperature reaction of a low-melting metal or alloy with a high-melting metal or alloy to form a reacted metal matrix. For a TLPS material (consisting of Ag-coated Cu, a Sn96.5-Ag3.0-Cu0.5 solder, and a volatile fluxing resin) used herein, the melting temperature of the metal matrix exceeds the bonding temperature. After bonding of the TLPS material, a unique melting peak of TLPS is observed at 356 ℃, consistent with the transient behavior of Ag3Sn + Cu6Sn5 → liquid + Cu3Sn reported by the National Institute of Standards and Technology. The TLPS material shows superior thermal conductivity as compared with other commercially available Ag pastes under the same specimen preparation conditions. In conclusion, the TLPS material can be a promising candidate for a highly reliable conductive adhesive in power device packaging because remelting of the SAC305 solder, which is widely used in conventional power modules, is not observed.

TSV Liquid Cooling System for 3D Integrated Circuits (3D IC 열관리를 위한 TSV Liquid Cooling System)

  • Park, Manseok;Kim, Sungdong;Kim, Sarah Eunkyung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.20 no.3
    • /
    • pp.1-6
    • /
    • 2013
  • 3D integrated circuit(IC) technology with TSV(through Si via) liquid cooling system is discussed. As a device scales down, both interconnect and packaging technologies are not fast enough to follow transistor's technology. 3D IC technology is considered as one of key technologies to resolve a device scaling issue between transistor and packaging. However, despite of many advantages, 3D IC technology suffers from power delivery, thermal management, manufacturing yield, and device test. Especially for high density and high performance devices, power density increases significantly and it results in a major thermal problem in stacked ICs. In this paper, the recent studies of TSV liquid cooling system has been reviewed as one of device cooling methods for the next generation thermal management.

A Method for Reducing the Number of Metal Layers for Embedded LSI Package

  • Ohshima, Daisuke;Mori, Kentaro;Nakashima, Yoshiki;Kikuchi, Katsumi;Yamamichi, Shintaro
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.4
    • /
    • pp.27-33
    • /
    • 2010
  • We have successfully demonstrated a high-pin-count and thin embedded-LSI package to realize next generation's mobile terminals. The following three design key points were applied: (i) Using Cu posts, (ii) Using the coreless structure, (iii) Using a Cu plate as the ground plane. In order to quantitatively determine the contribution of the three points, the five-stage process for reducing the number of metal layers is described by means of the electrical simulation. The point-(i) and (ii) are effective from the viewpoint of the power integrity (PI); that is, these points play important roles in reducing the number of metal layers, and especially the point-(ii) contributes at least twice as the point-(i). The point-(iii) is not effective in the PI, but has a few effects on the signal integrity (SI). For reducing the number of metal layers, we should, at first, pay attention whether the PI characteristics fulfill the specification, and then we should confirm the SI characteristics.

SiC based Technology for High Power Electronics and Packaging Applications

  • Sharma, Ashutosh;Lee, Soon Jae;Jang, Young Joo;Jung, Jae Pil
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.2
    • /
    • pp.71-78
    • /
    • 2014
  • Silicon has been most widely used semiconductor material for power electronic systems. However, Si-based power devices have attained their working limits and there are a lot of efforts for alternative Si-based power devices for better performance. Advances in power electronics have improved the efficiency, size, weight and materials cost. New wide band gap materials such as SiC have now been introduced for high power applications. SiC power devices have been evolved from lab scale to a viable alternative to Si electronics in high-efficiency and high-power density applications. In this article, the potential impact of SiC devices for power applications will be discussed along with their Si counterpart in terms of higher switching performance, higher voltages and higher power density. The recent progress in the development of high voltage power semiconductor devices is reviewed. Future trends in device development and industrialization are also addressed.

Analysis of Power Generation Characteristics of TENG (Triboelectric Nanogenerator) Suitable for Domestic Transport Environment (국내 수송환경에 적합한 마찰전기 나노발전기의 발전특성 분석)

  • Jong-Min, Park;Hyun-Mo, Jung
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.28 no.3
    • /
    • pp.193-199
    • /
    • 2022
  • Sustainable energy supplies without the recharging and replacement of charge storage device have become increasingly important. Among various energy harvesters, the triboelectric nanogenerator (TENG) has attracted considerable attention due to its high instantaneous output power, broad selection of available materials, eco-friendly and inexpensive fabrication process, and various working modes customized for target applications. The TENG harvests electrical energy from wasted mechanical energy in the ambient environment. TENG devices are very likely to be used in next-generation renewable energy and energy harvesting. TENG devices have the advantage of being able to manufacture very simple power devices. In this experiment, various organic dielectrics and inorganic dielectrics were used to improve the open voltage of TENG, Among the various organic dielectrics, Teflon-based FEP, which has the highest electron affinity, showed the highest open voltage and Al electrode was fabricated on Teflon substrate by sputtering deposition process. And AAO (Anodized Aluminum Oxide) nanostructures were applied to maximize the specific surface area of the TENG device. The power generation of TENG within the acceleration level (0.25, 0.5, 1.0, 1.5 and 2 G) and the frequency range (5-120 Hz) of the domestic transport environment was up to 4 V.

Transient Liquid Phase (TLP) Bonding of Device for High Temperature Operation (고온동작소자의 패키징을 위한 천이액상확산접합 기술)

  • Jung, Do-hyun;Roh, Myung-hwan;Lee, Jun-hyeong;Kim, Kyung-heum;Jung, Jae Pil
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.1
    • /
    • pp.17-25
    • /
    • 2017
  • Recently, research and application for a power module have been actively studied according to the increasing demand for the production of vehicles, smartphones and semiconductor devices. The power modules based on the transient liquid phase (TLP) technology for bonding of power semiconductor devices have been introduced in this paper. The TLP bonding has been widely used in semiconductor packaging industry due to inhibiting conventional Pb-base solder by the regulation of end of life vehicle (ELV) and restriction of hazardous substances (RoHS). In TLP bonding, the melting temperature of a joint layer becomes higher than bonding temperature and it is cost-effective technology than conventional Ag sintering process. In this paper, a variety of TLP bonding technologies and their characteristics for bonding of power module have been described.

Design Procedure for System in Package (SIP) Business

  • Kwon, Heung-Kyu
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2003.09a
    • /
    • pp.109-119
    • /
    • 2003
  • o In order to start SIP Project .Marketing (& ASIC team) should present biz planning, schedule, device/SIP specs., in SIP TFT prior to request SIP development for package development project. .In order to prevent (PCB) revision, test, burn-in, & quality strategy should be fixed by SIP TFT (PE/Test, QA) prior to request for PKG development. .Target product price/cost, package/ test cost should be delivered and reviewed. o Minimum Information for PCB Design, Package Size, and Cost .(Required) package form factor: size, height, type (BGA, QFP), Pin count/pitch .(Estimated) each die size including scribe lane .(Estimated) pad inform. : count, pitch, configuration(in-line/staggered), (open) size .(Estimated) each device (I/O & Core) power (especially for DRAM embedded SIP) .SIP Block diagram, and net-list using excel sheet format o Why is the initial evaluation important\ulcorner .The higher logic power resulted in spec. over of DRAM Tjmax. This caused business drop longrightarrow Thermal simulation of some SIP product is essential in the beginning stage of SIP business planning (or design) stage. (i.e., DRAM embedded SIP) .When SIP is developed using discrete packages, the I/O driver Capa. of each device may be so high for SIP. Since I/O driver capa. was optimized to discrete package and set board environment, this resulted in severe noise problem in SIP. longrightarrow In this case, the electrical performance of product (including PKG) should have been considered (simulated) in the beginning stage of business planning (or design).

  • PDF