DOI QR코드

DOI QR Code

A Review of Ag Paste Bonding for Automotive Power Device Packaging

자동차용 파워 모듈 패키징의 은 소재를 이용한 접합 기술

  • Roh, Myong-Hoon (Joining and Welding Research Institute, Osaka University) ;
  • Nishikawa, Hiroshi (Joining and Welding Research Institute, Osaka University) ;
  • Jung, Jae-Pil (Department of Materials Science and Engineering, University of Seoul)
  • 노명훈 (오사카 대학교 접합과학연구소) ;
  • ;
  • 정재필 (서울시립대학교 공과대학 신소재공학과)
  • Received : 2015.12.13
  • Accepted : 2015.12.24
  • Published : 2015.12.30

Abstract

Lead-free bonding has attracted significant attention for automotive power device packaging due to the upcoming environmental regulations. Silver (Ag) is one of the prime candidates for alternative of high Pb soldering owing to its superior electrical and thermal conductivity, low temperature sinterability, and high melting temperature after bonding. In this paper, the bonding technology by Ag paste was introduced. We classified into two Ag paste bonding according to applied pressure, and each bonding described in detail including recent studies.

Keywords

References

  1. R. Khazaka, L. Memdizabal, D. Hevry, and R. Hanna, "Survey of High-Temperature Reliability of Power Electronics Packaging Components", IEEE Transactions on Power Electronics, 30(5), 2456-2464 (2015). https://doi.org/10.1109/TPEL.2014.2357836
  2. Z. Liang, Status and Trend of Automotive Power Module Packaging, in Proc. of the 24th International Symposium on Power Semiconductor Devices & ICs, Bruge, Belgium, June 325-331 (2012).
  3. J. Millan, "A Review of WBG Power Semiconductor Devices", in 2012 International Semiconductor Conference (CAS), 57-66 (2012).
  4. J. M. Hornberger, D. Dilio, R. M. Schupbach, A. B. Losetter and H. A. Mantooth, A High-Temperature Multichip Power Module (MCPM) Inverter Utilizing Silicon Carbide (SiC) and Silicon on Insulater (SOI) Electronics, Proc. 37th IEEE Power Electronics Specialists Conference (PESC), Jeju, 1, IEEE Power Electronics Society (PELS) (2006).
  5. http://www.mobis.co.kr
  6. A. Y. Kim and W. S. Hong, "Degradation Characteristics of Eutectic and Pb-free Solder Joint of Electronics mounted for Automotive Engine", Journal of KWJS, 32(3), 74-80 (2014) (in Korean).
  7. A. Y. Kim, C. M. Oh and W. S. Hong, "Validation of Sequence Test Method of Pb-free Solder Joint for Automotive Electronics", Journal of KWJS, 33(3), 25-31 (2015) (in Korean).
  8. Power Packaging Technology Trends & Market Expectations report, April 2015, Yole Developpement.
  9. A. Kroupa, D. Andersson, N. Hoo, J. Pearce, A. Watson, A. Dinsdale and Stuart Muchlejohn, "Current Problems and Possible Solutions in High-Temperature Lead-Free Soldering", Journal of Materials Engineering and Performance, 21(5), 629-637 (2012). https://doi.org/10.1007/s11665-012-0125-3
  10. T. A. Tollefsen, A. Larsson, O. M. Loovvik and K. E. Aasmundtveit, "High temperature interconnect and die attach technology: Au-Sn SLID bonding, IEEE Transactions on Components", Packaging and Manufacturing Technology, 3(6), 904-914 (2013). https://doi.org/10.1109/TCPMT.2013.2253353
  11. R. I. Rodriguez, D. Ibitayo and P. O. Quintero, "Thermal stability characterization of the Au-Sn bonding for high-temperature applications", IEEE Transactions on Components, Packaging and Manufacturing Technology, 3(4), 549-557 (2013). https://doi.org/10.1109/TCPMT.2013.2243205
  12. M. Nahavandi, M. A. A. Hanim, Z. N. Ismarrubie, A. Hajalilou, R. Rohaizuan and M. Z. S. Fadzli, "Effects of Silver and Antimony Content in Lead-free Hig-temperature Solders of Bi-Ag and Bi-Sb on Copper Substrate", Journal of Electronic Materials, 43(2), 579-585 (2014). https://doi.org/10.1007/s11664-013-2873-8
  13. J. N. Lalena, N. F. Dean and M. W. Weiser, "Experimental investigation of Ge-Doped Bi-11Ag as a new Pb-free solder alloy for power die attachment", Journal of Electronic Materials, 31(11), 1244-1249 (2002). https://doi.org/10.1007/s11664-002-0016-8
  14. A. Sharif, C. L. Gan and Z. Chen, "Transient liquid phase Agbased solder technology for high-temperature packaging applications", Journal of Alloys and Compounds, 587, 365-368 (2014). https://doi.org/10.1016/j.jallcom.2013.10.204
  15. A. Lis and C. Leinenbach, "Effect of Process and Service Conditions on TLP-Bonded Components with (Ag, Ni-)Sn interlayer Combinations", Journal of Electronic Materials, 44(11), 4576-4588 (2015). https://doi.org/10.1007/s11664-015-3982-3
  16. T. Yamakawa, T. Takenmoto, M. Shimoda, H. Nishikawa, K. Shiokawa and N. Terada, "Influence of Joining Conditions on Bonding Strength of Joints: Efficacy of Low-temperature Bonding using Cu Nanoparticle Paste", Journal of Electronic Materials, 42(6), 1260-1267 (2013). https://doi.org/10.1007/s11664-013-2583-2
  17. K. S. Moon, H. Dong, R. Maric, S. Pothukuchi, A. Hunt, Y. Li and C. P. Wong, "Thermal Behavior of Silver Nanoparticles for Low-Temperature Interconnect Applications", Journal of Electronic Materials, 34(2), 168-175 (2005). https://doi.org/10.1007/s11664-005-0229-8
  18. Y. Akada, H. Tatsumi, T. Yamaguchi, A. Hirose, T. Morita and Eiichi Ide, "Interfacial Bonding Mechanism using Silver Metallo-Organic Nanoparticles to Bulk Metals and Observation of Sintering Behavior", Materials Transactions, 49(7), 1537-1575 (2008). https://doi.org/10.2320/matertrans.MF200805
  19. H. Schwarzbauer and R. Kuhnert, "Novel Large Area Joining Technique for Imrpoved Power Device Performance", IEEE Trans. Industry Applications, 27(3), 93-95 (1991). https://doi.org/10.1109/28.67536
  20. K. S. Siow, "Are Sintered Silver Joints Ready for Use as Interconnect Material in Microelectronic Packaging?", Journal of Electronic Materials, 43(4), 947-961 (2014). https://doi.org/10.1007/s11664-013-2967-3
  21. K. S. Siow, "Mechanical Properties of Nano-Silver Joints as Die Attach Materials", Journal of Alloys Compound, 514, 6-19 (2012). https://doi.org/10.1016/j.jallcom.2011.10.092
  22. E. Ide, S. Angata, A. Hirose and K. F. Kobayashi, "Metal- Metal Bonding Process using Ag Metallo-Organic Nanoparticles", Acta Materialia, 53, 2385-2393 (2005). https://doi.org/10.1016/j.actamat.2005.01.047
  23. A. Nel, T. Xia, L. Mädler and N. Li, "Toxic Potential of Materials at the Nanolevel", Science, 311(5761), 622-627 (2006). https://doi.org/10.1126/science.1114397
  24. E. Ide, A. Hirose and K. F. Kobayashi, "Influence of Bonding Condition on Bonding Process using Ag Metallo-Organic Nanopartices for High Temperature Lead-free Packaing", Materials Transactions, 47(1), 211-217 (2006). https://doi.org/10.2320/matertrans.47.211
  25. T. Morita, E. Ide, Y. Yasuda, A. Hirose and K. Kobayashi, "Study of Bonding Technology Using Silver Nanoparticles", Japanese Journal of Applied Physics, 47(8), 6615-6622 (2008). https://doi.org/10.1143/JJAP.47.6615
  26. H. Ogura, M. Maruyama, R. Matsubayashi, T. Ogawa, S. Nakamura, T. Komatsu, H. Nagasawa, A. Ichimura and S. Isoda, "Carboxylate-Passivated Silver Nanoparticles and Their Application to Sintered Interconnection: A Replacement for High Temperature Lead-Rich Solders", Journal of Electronic Materials, 39(8), 1233-1240 (2010). https://doi.org/10.1007/s11664-010-1236-y
  27. T. G. Lei, J. N. Calata and G. Q. Lu, "Low-Temperature Sintering of Nanoscale Silver Paste for Attaching Large-Area (>100 $mm^2$) Chips", IEEE Transactions on Components and Packaging Technology, 33(1), 98-104 (2010). https://doi.org/10.1109/TCAPT.2009.2021256
  28. K. Suganuma, S. Sakamoto, N. Kagami, D. Wakuda, K. S. Kim and M. Nogi, "Low-temperautre Low-pressure die attach with hybrid silver particle paste", Microelectronics Reliability, 52, 375-380 (2012). https://doi.org/10.1016/j.microrel.2011.07.088
  29. H. Nishikawa, X. Liu, X. Wang, A. Fujita, N. Kamada and M. Saito, "Microscale Ag particle paste for sintered joints in high-power devices", Materials Letters, 161, 231-233 (2015). https://doi.org/10.1016/j.matlet.2015.08.071
  30. S. Sakamoto, T. Sugahara and K. Suganuma, "Microstructural Stability of Ag Sinter Joining in Thermal Cycling", Journal of Materials Science: Materials in Electronics, 24, 1332-1340 (2013). https://doi.org/10.1007/s10854-012-0929-9
  31. Military of the United States Standards-Test Methods for Electronic Circuits (MIL-STD-833).
  32. Y. Shi, W. Fang, Z. Xia, Y. Lei, F. Guo and X. Li, "Investigation of rare earth-doped BiAg High-Temperature Solders", Journal of Materias Science: Materials in Electronics, 21, 879-881 (2010). https://doi.org/10.1007/s10856-009-3949-0
  33. A. Sharif, C. L. Gan and Z. Chen, "Transient Liquid Phase Ag-based Solder Technology for High-temperature Packaging Applications", Journal of Alloys and Compounds, 587, 365-368 (2014). https://doi.org/10.1016/j.jallcom.2013.10.204
  34. G. Skandan, H. Hahn, B. H. Kear, M. Roddy and W. R. Cannon, "The Effect of Applied Stress on Densification of Nanostructured Zirconia during Sinter-forging", Materials Letters, 20, 302-309 (1994).
  35. W. H. Li, P. S. Lin, C. N. Chen, T. Y. Dong, C. H. Tsai, W. T. Kung, J. M. Song, Y. T. Chiu and P. F. Yang, "Low-Temperature Cu-to-Cu Bonding using Silver Nanoparticles Stabilised by Satrated Dodecanoic Acid", Materials Science & Engineering, A 613, 372-378 (2014).
  36. J. Yan, G. Zou, A. P. Wu, J. Ren, J. Yan, A. Hu and Y. Zhou, "Pressureless Bonding Process using Ag Nanoparticle Paste for Flexible Electronics Packaing", Scripta Materialia, 66, 582-585 (2012). https://doi.org/10.1016/j.scriptamat.2012.01.007
  37. S. Sakamoto, S. Nagao and K. Suganuma, "Thermal Fatigue of Ag Flake Sintering Die-attachment for Si/SiC Power Devices", Journal of Materials Science: Materials in Electronic, 24, 2593-2601 (2014).
  38. T. Wang, X. Chen, G. Q. Lu and G. Y. Lei, "Low-Temperature Sintering with Nano-Silver Paste in Die-Attached Interconnection", Journal of Electronic Materials, 36(10), 1333-1340 (2007). https://doi.org/10.1007/s11664-007-0230-5
  39. Y. Tan, X. Li and X. Chen, "Fatigue and Dwell-fatigue Behavior of Nano-silver Sintered Lap-Shear Joint at Elevated Temperature", Microelctronics Reliability, 54, 648-653 (2014). https://doi.org/10.1016/j.microrel.2013.12.007
  40. NBE Tech, LLC.,
  41. W. Schmitt, M. Schafer and H. W. Hagedorn, "Controlling the Porosity of Metal Paste for Pressure Free", Low Temperature Sintering Process, US2010/0051319A1, W. C. Heraeus, Germany (2010).
  42. M. Kuramoto, S. Ogawa, M. Niwa, K. S. Kim and K. Suganuma, "Die Bonding for a Nitride Light-Emitting Diode by Low- Temperature Sintering of Micrometer Size Silver Particles", IEEE Transactions on Components and Packaging Technologies, 33(4), 801-808 (2010). https://doi.org/10.1109/TCAPT.2010.2064313
  43. R. M. German, "Prediction of Sintered Density for Bimodal Powder Mixtures", Metallurgical Transactions A, 23A, 1455-1465 (1992).
  44. Y. Morisada, T. Nagaoka, M. Fukusumi, Y. Kashiwagi, M. Yamamoto, M. Nakamoto, H. Kakiuchi and Y. Yosida, "A Low-Temperature Pressureless Bonding Process Using a Trimodal Mixture System of Ag Nanoparticles", Journal of Electronic Materials, 40(12), 2398-2402 (2011). https://doi.org/10.1007/s11664-011-1750-6
  45. W. D. Kingery, "Densification during Sintering in the Presence of a Liquid Phase-I", Theory, Journal of Applied Physics, 30(3), 301-307 (1951).
  46. Y. C. Lin and J. H. Jean, "Constrained Sintering of Silver Circuit Paste", Journal of the American Ceramic Society, 87(2), 187-191 (2004). https://doi.org/10.1111/j.1551-2916.2004.00187.x
  47. S. Wang, M. Li, H. Ji and C. Wang, "Rapid Pressureless Lowtemperature Sintering of Ag Nanoparticles for High-Power Density Electronic Packaging", Scripta Materialia, 69, 789-792 (2013). https://doi.org/10.1016/j.scriptamat.2013.08.031

Cited by

  1. 파워모듈의 TLP 접합 및 와이어 본딩 vol.26, pp.4, 2015, https://doi.org/10.6117/kmeps.2019.26.4.007
  2. Recent Progress in Transient Liquid Phase and Wire Bonding Technologies for Power Electronics vol.10, pp.7, 2020, https://doi.org/10.3390/met10070934
  3. Recent Trends in Noble Metal Nanoparticles for Colorimetric Chemical Sensing and Micro-Electronic Packaging Applications vol.11, pp.2, 2021, https://doi.org/10.3390/met11020329