DOI QR코드

DOI QR Code

SiC based Technology for High Power Electronics and Packaging Applications

  • Sharma, Ashutosh (Department of Materials Science and Engineering, University of Seoul) ;
  • Lee, Soon Jae (Department of Materials Science and Engineering, University of Seoul) ;
  • Jang, Young Joo (Department of Materials Science and Engineering, University of Seoul) ;
  • Jung, Jae Pil (Department of Materials Science and Engineering, University of Seoul)
  • Received : 2014.06.11
  • Accepted : 2014.06.25
  • Published : 2014.06.30

Abstract

Silicon has been most widely used semiconductor material for power electronic systems. However, Si-based power devices have attained their working limits and there are a lot of efforts for alternative Si-based power devices for better performance. Advances in power electronics have improved the efficiency, size, weight and materials cost. New wide band gap materials such as SiC have now been introduced for high power applications. SiC power devices have been evolved from lab scale to a viable alternative to Si electronics in high-efficiency and high-power density applications. In this article, the potential impact of SiC devices for power applications will be discussed along with their Si counterpart in terms of higher switching performance, higher voltages and higher power density. The recent progress in the development of high voltage power semiconductor devices is reviewed. Future trends in device development and industrialization are also addressed.

Keywords

References

  1. A. Agarwal, "Advances in SiC MOSFET Performance", ECPE SiC & GaN Forum Potential of Wide Band Gap Semiconductors in Power Electronic Applications, Birmingham, (2011).
  2. J. Millan, "A review of WBG Semiconductor Power Devices", International Semiconductor Conference (CAS), Sinaia, 57 (2012).
  3. C. M. Johnson, N. G. Wright, S. Ortolland, D. Morrison, K. Adachi and A. O'Neill, "Silicon carbide power devices: Hopeful or hopeless?", Proc. IEEE Colloquium of Recent Advances in Power Devices, London, UK, 10 (1999).
  4. H. Matsunami, "Progress in Wide Bandgap Semiconductor SiC for Power Devices", Proc. 12th International Symposium Power Semiconductor Devices and ICs, Toulouse, 3, IEEE (2000).
  5. R. Singh, K. G. Irvine, O. Kordina, J. W. Palmour, M. E. Levinshtein and S. L. Rumyanetsev, "4H-SiC bipolar P-i-N Diodes with 5.5 KV blocking voltage", Proc. 56th Annual Device Research Conference, Charlottesville, USA, 86, IEEE (1998).
  6. M. Williander, M. Friesel, Q. U. Wahab and B. Straumal, "Silicon carbide and diamond for high temperature device applications", J. Mat. Sci.: Mater. Electron., 17(1), 1 (2006).
  7. Y. M. Tairov and V. F. Tsvetkov, "Investigation of Growth Processes of Ingots of Silicon Carbide Single Crystals", J. Cryst. Growth., 43, 209 (1978). https://doi.org/10.1016/0022-0248(78)90169-0
  8. N. Kuroda, K. Shibahara, W. S. Yoo, S. Nishino and H. Matsunami, "Step Controlled VPE Growth of SiC Single Crystals at Low Temperatures", Proc. 19th Conference on Solid State Devices and Materials, Tokyo, Japan, 227 (1987).
  9. H. Matsunami, "Current SiC Technology for Power Electronic Devices",Microelectron. Engg., 83(1), 2 (2006). https://doi.org/10.1016/j.mee.2005.10.012
  10. A. Itoh, T. Kimoto and H. Matsunami, "High Performance of High-Voltage 4H-SiC Schottky Barrier Diodes", Electr. Dev. Lett., 16(6), 280 (1995). https://doi.org/10.1109/55.790735
  11. A. Itoh, T. Kimoto and H. Matsunami, "Excellent Reverse Blocking Characteristics of High Voltage 4H-SiC Schottky Rectifiers with Boron Implanted Edge Termination", Electr. Dev. Lett., 17(3), 139 (1996). https://doi.org/10.1109/55.485193
  12. H. Yano, T. Hirao, T. Kimoto, H. Matsunami, K. Asano and Y. Sugawara, "High Channel Mobility in Inversion Layers of 4H-SiC MOSFETs by Utilizing (112-0) Face", Electr. Dev. Lett., 20(12), 611 (1999). https://doi.org/10.1109/55.806101
  13. W. J. Choyke, H. Matsunami and G. Pensl, "Silicon Carbide: Recent Major Advances", pp. 651-669, Springer, Berlin (2004).
  14. R. Madar, J. Cammassel and E. Blanquest, "Silicon Carbide and Related Materials", Mater. Sci. Forum, 457 (2004).
  15. S. A. Mohammed, Abdel-Moamen M. A and B. Hasanin, "A Review of the State-Of-The-Art of Power Electronics for Power System Applications", J. Electron. Commun. Engg. Res., 1(1), 43 (2013).
  16. I. Abuishmais and T. M. Undeland, "SiC Devices for Renewable and High Performance Power Conversion Applications", Adv. Power Electron., 2012, 1 (2012).
  17. B. Burger and D. Kranzer, "Extreme High Efficiency PVPower Converters", Proc. 13th European Conference on Power Electronics and Applications (EPE 09), Barcelona, 1, IEEE (2009).
  18. A. Elasser and T. P. Chow, "Silicon Carbide Benefits and Advantages for Power Electronics Circuits and Systems", Proc. IEEE, 90 (6), 969 (2002). https://doi.org/10.1109/JPROC.2002.1021562
  19. H. Matsunami, "Technological Breakthroughs in Growth. Control of Silicon Carbide for High Power Electronic Devices", Jpn. J. Appl. Phys., 43(10), 6835 (2004). https://doi.org/10.1143/JJAP.43.6835
  20. J. B. Casady and R. W. Johnson, "Status of Silicon Carbide (SiC) as Wide Band Gap Semiconductor for High Temperature Applications: A Review", Solid State Electron., 39(10), 1409 (1996). https://doi.org/10.1016/0038-1101(96)00045-7
  21. Z. C. Feng and J. H. Zhao, "Silicon Carbide: Materials, Processing and Devices", 20th Ed., pp.1-393, Taylor and Francis Books, INC., New York, NY (2006).
  22. S. Ji, K. Kojima, Y. Yishida, H. Tsuchida, S. Yoshida and H. Okumura, "Low Resistivity Thick, Heavily Al-Doped 4H-SiC Epilayers Grown by Hot-Wall Chemical Vapor Deposition", Mater. Sci. Forum., 740-742, 181 (2013). https://doi.org/10.4028/www.scientific.net/MSF.740-742.181
  23. M. H. Weng, R. Mahapatra, A. B. Horsefall, N. G. Wright, P. G. Coleman and C. P. Burrows, "Trap Assisted Conduction in High K Dielectric Capacitors on 4H-SiC", Materials Science Forum., 556-557, 679 (2007). https://doi.org/10.4028/www.scientific.net/MSF.556-557.679
  24. A. O. Konstantinov, Q. Wahab, N. Nordell and U. Lindfelt, "Study of Avalanche Breakdown and Impact Ionization in 4H Silicon Carbide", J. Electron. Mater., 27(4), 335 (1998). https://doi.org/10.1007/s11664-998-0411-x
  25. C. M. Johnson, N. G. Wright, M. J. Uren, K. I. Hilton, M. Rahimo, D. A. Hinchley, A. P. Knights, D. J. Morrison, A. B. Horsfall, S. Ortolland and A. G. O'Neill "Recent Progress and Current Issues in SiC Semiconductor Devices for Power Applications", IEE Proc. Circuits Devices and Systems, 148(2), 101, IET (2001). https://doi.org/10.1049/ip-cds:20010166
  26. R. Nipoti, "Post-Implantation Annealing of SiC: Relevance of the Heating Rate", Mater. Sci. Forum., 556-557, 561 (2007). https://doi.org/10.4028/www.scientific.net/MSF.556-557.561
  27. K. V. Vassilevski, N. G. Wright, I. P. Nikitina, A. B. Horsfall, A. G. O'Neill, M. J. Uren, K. P. Hilton, A. G. Masterton, A. J. Hydes and C. M. Johnson, "Protection of Selectively Implanted and Patterned Silicon Carbide Surfaces with Graphite Capping Layer During Post-Implantation Annealing", Semicond. Sci. Technol., 20(3), 271 (2005). https://doi.org/10.1088/0268-1242/20/3/003
  28. B. Dobrucky, P. Spanik and R. Sul, "Improvement of Power Electronic Structure Characteristics using SiC Technology- Overview", Komunikacie, 8(1), 34 (2006).
  29. X. Feng and A. V. Radun, "SiC Based Solid State Power Controller", Proc. 23th Applied Power Electronics Conference and Exposition (APEC), Austin, TX, 1855, IEEE (2008).
  30. R. S. Pengelly, S. M. Wood, J. W. Milligan, S. T. Sheppard and W. L. Pribble, "A Review of GaN on SiC High Electron- Mobility Power Transistors and MMICs", IEEE Trans. Microwave Theory and Techniques., 60 (6), 1764 (2012). https://doi.org/10.1109/TMTT.2012.2187535
  31. D. Nakamura, I. Gunjishima, S. Yamaguchi, T. Ito, A. Okamoto, H. Kondo, S. Onda and K. Takatori, "Ultrahigh Quality Silicon Carbide Single Crystals", Nature, 430, 1009 (2004). https://doi.org/10.1038/nature02810
  32. K. Asano, Y. Sugawara, T. Hayashi, S. Ryu, R. Singh, J. W. Palmour and D. Takyama, "5 kV 4H-SiC SEJFET with Low RonS of $69mUcm^{2}$", Proc.14th International Symposium on Power Semiconductor Devices and ICs., 61, IEEE (2002).
  33. R. J. Trew, J. B. Yan and P. M. Mock, "The Potential of Diamond and SiC Electronic Devices for Microwave and Millimeter wave Power Proc. IEEE, 79(5), 598 (1991). https://doi.org/10.1109/5.90128
  34. C. J Scozzie, C. Wesley, J. M. McGarrity and F. B. McLean, "High Temperature Stressing of SiC JFETs at 300/spl deg/C", Proc. 32nd Annual International Reliability Physics Symposium, San Jose, USA, 351, IEEE (1994).
  35. M. R. Choi, Y. C. Kim and Y. C. Chang, "SiC Synthesis by Using Sludged Si Power", J. Microelectron. Packag. Soc., 10 (3), 67 (2003).
  36. J. K. Kang, J. H. Kim and Y. J. Kim, "Fabrication of R-Plane Sapphire Wafer for Nonpolar a-Plane GaN", J. Microelectron. Packag. Soc., 18 (3), 25 (2011).

Cited by

  1. Effect of Gallium and Boron doping on dielectric and conductivity properties of ZnO sintered from nanoparticles of different morphology in THz region vol.611, pp.None, 2014, https://doi.org/10.1016/j.colsurfa.2020.125896
  2. Role of Wide Bandgap Materials in Power Electronics for Smart Grids Applications vol.10, pp.6, 2014, https://doi.org/10.3390/electronics10060677
  3. Review-Radiation Damage in Wide and Ultra-Wide Bandgap Semiconductors vol.10, pp.5, 2014, https://doi.org/10.1149/2162-8777/abfc23