• Title/Summary/Keyword: Positive gate bias temperature stress

Search Result 12, Processing Time 0.029 seconds

Effects of electrical stress on low temperature p-channel poly-Si TFT′s (저온에서 제작된 p-채널 poly-Si TFT의 전기적 스트레스 효과)

  • 백희원;임동규;임석범;정주용;이진민;김영호
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.324-327
    • /
    • 2000
  • In this paper, the effects of negative and positive bias stress on p-channel poly-Si TFT's fabricated by excimer laser annealing have been investigated After positive and negative bias stress, transcon-ductance(g$_{m}$) is increased because of a reduction of the effective channel length due to the injected electron in the gate oxide. In the positive bias stress, the injection of hole is appeared after stress time of 3600sec and g$_{m}$ is decreased. On the other hand, the gate voltage at the maximum g$_{m}$, S-swing and threshold voltage(V$_{th}$) are decreased because of the interface state generation due to the injection of electrons into the gate oxide.e.ide.e.

  • PDF

Effects of Temperature Stress on VFB Shifts of HfO2-SiO2 Double Gate Dielectrics Devices

  • Lee, Kyung-Su;Kim, Sang-Sub;Choi, Byoung-Deog
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.340-341
    • /
    • 2012
  • In this work, we investigated the effects of temperature stress on flatband voltage (VFB) shifts of HfO2-SiO2 double gate dielectrics devices. Fig. 1 shows a high frequency C-V of the device when a positive bias for 10 min and a subsequent negative bias for 10 min were applied at room temperature (300 K). Fig. 2 shows the corresponding plot when the same positive and negative biases were applied at a higher temperature (473.15 K). These measurements are based on the BTS (bias temperature stress) about mobile charge in the gate oxides. These results indicate that the positive bias stress makes no difference, whereas the negative bias stress produces a significant difference; that is, the VFB value increased from ${\Delta}0.51$ V (300 K, Fig. 1) to ${\Delta}14.45$ V (473.15 K, Fig. 2). To explain these differences, we propose a mechanism on the basis of oxygen vacancy in HfO2. It is well-known that the oxygen vacancy in the p-type MOS-Cap is located within 1 eV below the bottom of the HfO2 conduction band (Fig. 3). In addition, this oxygen vacancy can easily trap the electron. When heated at 473.15 K, the electron is excited to a higher energy level from the original level (Fig. 4). As a result, the electron has sufficient energy to readily cross over the oxide barrier. The probability of trap about oxygen vacancy becomes very higher at 473.15 K, and therefore the VFB shift value becomes considerably larger.

  • PDF

Improvement of Device Characteristic on Solution-Processed InGaZnO Thin-Film-Transistor (TFTs) using Microwave Irradiation

  • Moon, Sung-Wan;Cho, Won-Ju
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.2
    • /
    • pp.249-254
    • /
    • 2015
  • Solution-derived amorphous indium-gallium-zinc oxide (a-IGZO) thin-film-transistor (TFTs) were developed using a microwave irradiation treatment at low process temperature below $300^{\circ}C$. Compared to conventional furnace-annealing, the a-IGZO TFTs annealed by microwave irradiation exhibited better electrical characteristics in terms of field effect mobility, SS, and on/off current ratio, although the annealing temperature of microwave irradiation is much lower than that of furnace annealing. The microwave irradiated TFTs showed a smaller $V_{th}$ shift under the positive gate bias stress (PGBS) and negative gate bias stress (NGBS) tests owing to a lower ratio of oxygen vacancies, surface absorbed oxygen molecules, and reduced interface trapping in a-IGZO. Therefore, microwave irradiation is very promising to low-temperature process.

Correlation between spin density and Vth instability of IGZO thin-film transistors

  • Park, Jee Ho;Lee, Sohyung;Lee, Hee Sung;Kim, Sung Ki;Park, Kwon-Shik;Yoon, Soo-Young
    • Current Applied Physics
    • /
    • v.18 no.11
    • /
    • pp.1447-1450
    • /
    • 2018
  • The electron spin resonance (ESR) detects point defect of the In-Ga-Zn oxide (IGZO) like singly ionized oxygen vacancies and excess oxygen, and get spin density as a parameter of defect state. So, we demonstrated the spin density measurement of the IGZO film with various deposition conditions and it has linear relationship. Moreover, we matched the spin density with the total BTS and the threshold voltage ($V_{th}$) distribution of the IGZO thin film transistors. The total BTS ${\Delta}V_{th}$ and the $V_{th}$ distribution were degraded due to the spin density increases. The spin density is the useful indicator to predict $V_{th}$ instability of IGZO TFTs.

Temperature-Dependent Instabilities of DC characteristics in AlGaN/GaN-on-Si Heterojunction Field Effect Transistors

  • Keum, Dong-Min;Choi, Shinhyuk;Kang, Youngjin;Lee, Jae-Gil;Cha, Ho-Young;Kim, Hyungtak
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.5
    • /
    • pp.682-687
    • /
    • 2014
  • We have performed reverse gate bias stress tests on AlGaN/GaN-on-Si Heterostructure FETs (HFETs). The shift of threshold voltage ($V_{th}$) and the reduction of on-current were observed from the stressed devices. These changes of the device parameters were not permanent. We investigated the temporary behavior of the stressed devices by analyzing the temperature dependence of the instabilities and TCAD simulation. As the baseline temperature of the electrical stress tests increased, the changes of the $V_{th}$ and the on-current were decreased. The on-current reduction was caused by the positive shift of the $V_{th}$ and the increased resistance of the gate-to-source and the gate-to-drain access region. Our experimental results suggest that electron-trapping effect into the shallow traps in devices is the main cause of observed instabilities.

Analysis of An Anomalous Hump Phenomenon in Low-temperature Poly-Si Thin Film Transistors (저온 다결정 실리콘 박막 트랜지스터의 비정상적인 Hump 현상 분석)

  • Kim, Yu-Mi;Jeong, Kwang-Seok;Yun, Ho-Jin;Yang, Seung-Dong;Lee, Sang-Youl;Lee, Hi-Deok;Lee, Ga-Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.11
    • /
    • pp.900-904
    • /
    • 2011
  • In this paper, we investigated an anomalous hump phenomenon under the positive bias stress in p-type LTPS TFTs. The devices with inferior electrical performance also show larger hump phenomenon. which can be explained by the sub-channel induced from trapped electrons under thinner gate oxide region. We can confirm that the devices with larger hump have larger interface trap density ($D_{it}$) and grain boundary trap density ($N_{trap}$) extracted by low-high frequency capacitance method and Levinson-Proano method, respectively. From the C-V with I-V transfer characteristics, the trapped electrons causing hump seem to be generated particularly from the S/D and gate overlapped region. Based on these analysis, the major cause of an anomalous hump phenomenon under the positive bias stress in p-type poly-Si TFTs is explained by the GIDL occurring in the S/D and gate overlapped region and the traps existing in the channel edge region where the gate oxide becomes thinner, which can be inferred by the fact that the magnitude of the hump is dependent on the average trap densities.

Reliability Characteristics of La-doped High-k/Metal Gate nMOSFETs

  • Kang, C.Y.;Choi, R.;Lee, B.H.;Jammy, R.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.9 no.3
    • /
    • pp.166-173
    • /
    • 2009
  • The reliability of hafnium oxide gate dielectrics incorporating lanthanum (La) is investigated. nMOSFETs with metal/La-doped high-k dielectric stack show lower $V_{th}$ and $I_{gate}$, which is attributed to the dipole formation at the high-k/$SiO_2$ interface. The reliability results well correlate with the dipole model. Due to lower trapping efficiency, the La-doping of the high-k gate stacks can provide better PBTI immunity, as well as lower charge trapping compared to the control HfSiO stacks. While the devices with La show better immunity to positive bias temperature instability (PBTI) under normal operating conditions, the threshold voltage shift (${\Delta}V_{th}$) at high field PBTI is significant. The results of a transconductance shift (${\Delta}G_m$) that traps are easily generated during high field stress because the La weakens atomic bonding in the interface layer.

Annealing temperature dependence on the positive bias stability of IGZO thin-film transistors

  • Shin, Hyun-Soo;Ahn, Byung-Du;Rim, You-Seung;Kim, Hyun-Jae
    • Journal of Information Display
    • /
    • v.12 no.4
    • /
    • pp.209-212
    • /
    • 2011
  • The threshold voltage shift (${\Delta}V_{th}$) under positive-voltage bias stress (PBS) of InGaZnO (IGZO) thin-film transistors (TFTs) annealed at different temperatures in air was investigated. The dramatic degradation of the electrical performance was observed at the sample that was annealed at $700^{\circ}C$. The degradation of the saturation mobility (${\mu}_{sat}$) resulted from the diffusion of indium atoms into the interface of the IGZO/gate insulator after crystallization, and the degradation of the subthreshold slope (S-factor) was due to the increase in the interfacial and bulk trap density. In spite of the degradation of the electrical performance of the sample that was annealed at $700^{\circ}C$, it showed a smaller ${\Delta}V_{th}$ under PBS conditions for $10^4$ s than the samples that were annealed at $500^{\circ}C$, which is attributed to the nanocrystal-embedded structure. The sample that was annealed at $600^{\circ}C$ showed the best performance and the smallest ${\Delta}V_{th}$ among the fabricated samples with a ${\mu}_{sat}$ of $9.38cm^2/V$ s, an S-factor of 0.46V/decade, and a ${\Delta}V_{th}$ of 0.009V, which is due to the passivation of the defects by high thermal annealing without structural change.

Study on the Electrical Characteristics of Solution-processed ZrInZnO Thin-film Transistors (액상공정으로 제작된 ZrInZnO 박막 트랜지스터의 전기적 특성에 관한 연구)

  • Jeong, Tae-Hoon;Kim, Si-Joon;Yoon, Doo-Hyun;Jeong, Woong-Hee;Kim, Dong-Lim;Lim, Hyun-Soo;Kim, Hyun-Jae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.6
    • /
    • pp.458-462
    • /
    • 2011
  • Soution-processed ZrInZnO (ZIZO) thin-film transistors (TFTs) with varying Zr content were fabricated. The ZIZO TFT (Zr=20 at. %/Zn) has an optimal performance with the saturation field effect mobility of 0.77 $cm^2/Vs$, the threshold voltage (Vth) of 2.1 V, the on/off ratio of $4.95{\times}10^6$, and subthreshold swing (S.S) of 0.73 V/decade. Using this optimized ZIZO TFT, the positive and negative gate bias stress according to annealing temperature was also investigated. While the Vth shifts dramatically after 1,000 s of both gate bias stresses, variations in the S.S are negligible. It suggests that electrons or holes are tem porarily trapped in the gate insulator, the semiconductor, or the interface between both layers.

Influence of the hydrogen post-annealing on the electrical properties of metal/alumina/silicon-nitride/silicon-oxide/silicon capacitors for flash memories

  • Kim, Hee-Dong;An, Ho-Myoung;Seo, Yu-Jeong;Zhang, Yong-Jie;Kim, Tae-Geun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.122-122
    • /
    • 2008
  • Recently, Metal/Alumina/Silicon-Nitride/Silicon-Oxide/Silicon (MANOS) structures are one of the most attractive candidates to realize vertical scaling of high-density NAND flash memory [1]. However, as ANO layers are miniaturized, negative and positive bias temperature instability (NBTI/PBTI), such as the flat band voltage shift, ${\Delta}V_{FB}$, the interfacial trap density increase, ${\Delta}D_{it}$, the gate leakage current, ${\Delta}I_G$. and the retention characteristics, in MONOS capacitors, becomes an important issue in terms of reliability. It is well known that tunnel oxide degradation is a result of the oxide and interfacial traps generation during FN (Fowler-Nordheim) stress [2]. Because the bias temperature stress causes an increase of both interfacial-traps and fixed oxide charge could be a factor, witch can degrade device reliability during the program and erase operation. However, few studies on NBTI/PBTI have been conducted on improving the reliability of MONOS devices. In this work, we investigate the effect of post-annealing gas on bias temperature instability (BTI), such as the flat band voltage shift, ${\Delta}V_{FB}$, the interfacial trap density shift, ${\Delta}I_G$ retention characteristics, and the gate leakage current characteristics of MANOS capacitors. MANOS samples annealed at $950^{\circ}C$ for 30 s by a rapid thermal process were treated via additional annealing in a furnace, using annealing gases $N_2$ and $N_2-H_2$ (2 % hydrogen and 98 % nitrogen mixture gases) at $450^{\circ}C$ for 30 min. MANOS samples annealed in $N_2-H_2$ ambient had the lowest flat band voltage shift, ${\Delta}V_{FB}$ = 1.09/0.63 V at the program/erase state, and the good retention characteristics, 123/84 mV/decade at the program/erase state more than the sample annealed at $N_2$ ambient.

  • PDF