DOI QR코드

DOI QR Code

Correlation between spin density and Vth instability of IGZO thin-film transistors

  • Park, Jee Ho (Device Process Research Division, LG Display R&D Center) ;
  • Lee, Sohyung (Device Process Research Division, LG Display R&D Center) ;
  • Lee, Hee Sung (Device Process Research Division, LG Display R&D Center) ;
  • Kim, Sung Ki (Device Process Research Division, LG Display R&D Center) ;
  • Park, Kwon-Shik (Device Process Research Division, LG Display R&D Center) ;
  • Yoon, Soo-Young (Device Process Research Division, LG Display R&D Center)
  • Received : 2018.06.29
  • Accepted : 2018.08.29
  • Published : 2018.11.30

Abstract

The electron spin resonance (ESR) detects point defect of the In-Ga-Zn oxide (IGZO) like singly ionized oxygen vacancies and excess oxygen, and get spin density as a parameter of defect state. So, we demonstrated the spin density measurement of the IGZO film with various deposition conditions and it has linear relationship. Moreover, we matched the spin density with the total BTS and the threshold voltage ($V_{th}$) distribution of the IGZO thin film transistors. The total BTS ${\Delta}V_{th}$ and the $V_{th}$ distribution were degraded due to the spin density increases. The spin density is the useful indicator to predict $V_{th}$ instability of IGZO TFTs.

Keywords

Acknowledgement

Supported by : LG Display

References

  1. B.D. Ahn, H.J. Jeon, J.Z. Sheng, J. Park, J.S. Park, A review on the recent developments of solution processes for oxide thin film transistors, Semicond. Sci. Technol. 30 (2015) 064001. https://doi.org/10.1088/0268-1242/30/6/064001
  2. K.M. Niang, P.M.C. Barquinha, R.F.P. Martins, B. Cobb, M.J. Powell, A.J. Flewitt, A thermalization energy analysis of the threshold voltage shift in amorphous indium gallium zinc oxide thin film transistors under positive gate bias stress, Appl. Phys. Lett. 108 (2016) 093505. https://doi.org/10.1063/1.4943249
  3. S. Oh, J.H. Baeck, J.U. Bae, K.-S. Park, I.B. Kang, Effect of interfacial excess oxygen on positive-bias temperature stress instability of self-aligned coplanar InGaZnO thin-film transistors, Appl. Phys. Lett. 108 (2016) 141604. https://doi.org/10.1063/1.4945404
  4. W.-C. Su, T.-C. Chang, P.-Y. Liao, Y.-J. Chen, B.-W. Chen, T.-Y. Hsieh, C.I. Yang, Y.- Y. Huang, H.-M. Chang, S.-C. Chiang, K.-C. Chang, T.-M. Tsai, The effect of asymmetrical electrode form after negative bias illuminated stress in amorphous IGZO thin film transistors, Appl. Phys. Lett. 110 (2017) 103502. https://doi.org/10.1063/1.4975206
  5. M. Dai, K. Khan, S. Zhang, K. Jiang, X. Zhang, W. Wang, L. Liang, H. Cao, P. Wang, P. Wang, L. Miao, H. Qin, J. Jiang, L. Xue, J. Chu, A direct method to extract transient sub-gap density of state (DOS) based on dual gate pulse spectroscopy, Sci. Rep. 6 (2016) 24096. https://doi.org/10.1038/srep24096
  6. J.T. Jang, J. Park, B.D. Ahn, D.M. Kim, S.-J. Choi, H.-S. Kim, D.H. Kim, Study on the photoresponse of amorphous in-Ga-Zn-O and zinc oxynitride semiconductor devices by the extraction of sub-gap-state distribution and device simulation, ACS Appl. Mater. Interfaces 7 (2015) 15570-15577. https://doi.org/10.1021/acsami.5b04152
  7. X. Wei, W. Deng, J. Fang, X. Ma, J. Huang, Determination of bulk and interface density of states in metal oxide semiconductor thin-film transistors by using capacitance-voltage characteristics, Eur. Phys. J. Appl. Phys. 80 (2017) 10103. https://doi.org/10.1051/epjap/2017170179
  8. A. Janotti, C.G.V. Walle, Oxygen vacancies in ZnO, Appl. Phys. Lett. 87 (2005) 122102. https://doi.org/10.1063/1.2053360
  9. L.E. Halliburton, N.C. Giles, N.Y. Garces, M. Luo, C. Xu, L. Bai, L.A. Boatner, Production of native donors in ZnO by annealing at high temperature in Zn vapor, Appl. Phys. Lett. 87 (2005) 172108. https://doi.org/10.1063/1.2117630
  10. M. Yamaga, E.G. Víllora, K. Shimamura, N. Ichinose, M. H, Donor structure and electric transport mechanism in ${\beta}$−Ga2O3, Phys. Rev. B 68 (2003) 155207. https://doi.org/10.1103/PhysRevB.68.155207
  11. D.M. Hofmann, A. Hofstaetter, F. Leiter, H. Zhou, F. Henecker, B.K. Meyer, S.B. Orlinskii, J. Schmidt, P.G. Baranov, Hydrogen: a relevant shallow donor in zinc oxide, Phys. Rev. Lett. 88 (2002) 045504. https://doi.org/10.1103/PhysRevLett.88.045504
  12. T. Matsuda, M. Kimura, Comparison of defects in crystalline oxide semiconductor materials by electron spin resonance, J. Vac. Sci. Technol. A 33 (2015) 020601.
  13. Y. Nonaka, Y. Kurosawa, Y. Komatsu, N. Ishihara, M. Oota, M. Nakashima, T. Hirohashi, M. Takahashi, S. Yamazaki, T. Obonai, Y. Hosaka, Junichi Koezuka, J. Yamauchi, Investigation of defects in In-Ga-Zn oxide thin film using electron spin resonance signals, J. Appl. Phys. 115 (2014) 163707. https://doi.org/10.1063/1.4873638
  14. M. Arora, R.A. Zargar, S.D. Khan, EPR spectroscopy of different sol concentration synthesized nanocrystalline-ZnO thin films, Int. J. Spectrosc. 2015 (2015) 1.
  15. S.J. Clark, J. Robertson, S. Lany, A. Zunger, Intrinsic defects in ZnO calculated by screened exchange and hybrid density functionals, Phys. Rev. B 81 (2010) 115311. https://doi.org/10.1103/PhysRevB.81.115311
  16. E.K.-H. Yu, S. Jun, D.H. Kim, J. Kanicki, Density of states of amorphous In-Ga-Zn-O from electrical and optical characterization, J. Appl. Phys. 116 (2014) 154505. https://doi.org/10.1063/1.4898567
  17. K. Ide, Y. Kikuchi, K. Nomura, M. Kimura, T. Kamiya, H. Hosono, Effects of excess oxygen on operation characteristics of amorphous In-Ga-Zn-O thin-film transistors, Appl. Phys. Lett. 99 (2011) 093507. https://doi.org/10.1063/1.3633100
  18. A. B. Djurisic, W. C. H. Choy, V. A. L. Roy, Y. H. Leung, C. Y. Kwong, K. W. Cheah, T. K. Gundu Rao, W. K. Chan, H.F. Lui, C. Surya, Photoluminescence and electron paramagnetic resonance of ZnO tetrapod structures, Adv. Funct. Mater. 14 (2004) 856-864. https://doi.org/10.1002/adfm.200305082
  19. T. Matsuda, D. Nishimoto, K. Takahashi, M. Kimura, Evaluation of damage in InGaZnO4 induced by plasma using electron spin resonance measurement, Jpn. J. Appl. Phys. 53 (2014) 03CB03. https://doi.org/10.7567/JJAP.53.03CB03
  20. S.Y. Lee, D.H. Kim, E. Chong, Y.W. Jeon, D.H. Kim, Effect of channel thickness on density of states in amorphous InGaZnO thin film transistor, Appl. Phys. Lett. 98 (2011) 122105. https://doi.org/10.1063/1.3570641
  21. J.H. Jeong, H.W. Yang, J.-S. Park, J.K. Jeong, Y.-G. Moa, H.D. Kim, J. Song, C.S. Hwang, Origin of subthreshold swing improvement in amorphous indium gallium zinc oxide transistors, Electrochem. Solid State Lett. 11 (2008) H157-H159. https://doi.org/10.1149/1.2903209
  22. Y.J. Chung, J.H. Kim, U.K. Kim, M. Ryu, S.Y. Lee, C.S. Hwang, Study on the existence of abnormal hysteresis in Hf-In-Zn-O thin film transistors under illumination, Electrochem. Solid State Lett. 14 (2011) H300-H302. https://doi.org/10.1149/1.3589244
  23. J.T. Jang, J. Park, B.D. Ahn, D.M. Kim, S.-J. Choi, H.-S. Kim, D.H. Kim, Effect of direct current sputtering power on the behavior of amorphous indium-gallium-zinc-oxide thinfilm transistors under negative bias illumination stress: a combination of experimental analyses and device simulation, Appl. Phys. Lett. 106 (2015) 123505. https://doi.org/10.1063/1.4916550