DOI QR코드

DOI QR Code

Improvement of Device Characteristic on Solution-Processed InGaZnO Thin-Film-Transistor (TFTs) using Microwave Irradiation

  • Moon, Sung-Wan (Department of Electronic Materials Engineering, Kwangwoon University) ;
  • Cho, Won-Ju (Department of Electronic Materials Engineering, Kwangwoon University)
  • Received : 2014.05.16
  • Accepted : 2015.03.02
  • Published : 2015.04.30

Abstract

Solution-derived amorphous indium-gallium-zinc oxide (a-IGZO) thin-film-transistor (TFTs) were developed using a microwave irradiation treatment at low process temperature below $300^{\circ}C$. Compared to conventional furnace-annealing, the a-IGZO TFTs annealed by microwave irradiation exhibited better electrical characteristics in terms of field effect mobility, SS, and on/off current ratio, although the annealing temperature of microwave irradiation is much lower than that of furnace annealing. The microwave irradiated TFTs showed a smaller $V_{th}$ shift under the positive gate bias stress (PGBS) and negative gate bias stress (NGBS) tests owing to a lower ratio of oxygen vacancies, surface absorbed oxygen molecules, and reduced interface trapping in a-IGZO. Therefore, microwave irradiation is very promising to low-temperature process.

Keywords

References

  1. By Elvira M.C. Fortunato, Pedro M. C. Barquinha, Ana C. M. B. G. Pimentel, Alexandra M. F. Goncalves, Antonio J. S. Marques, Luis M. N. Pereira, and Rodrigo F. P. Martins. "Fully Transparent ZnO Thin Film Transistor Produced at Room Temperature." Advanced Materials 17.5, pp. 590-594. Mar. 2005. https://doi.org/10.1002/adma.200400368
  2. Seok-Woon Lee, and Seung-Ki Joo. "Low temperature poly-Si thin-film transistor fabrication by metal-induced lateral crystallization." Electron Device Letters, IEEE 17.4, pp. 160-162. Apr. 1996. https://doi.org/10.1109/55.485160
  3. Kenji Nomura, Hiromichi Otha, Akihiro Takagi, Toshio Kamiya, Masahiro Hirano, and Hideo Hosono. "Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors." Nature 432.7016, pp. 488-492. Nov. 2004. https://doi.org/10.1038/nature03090
  4. Seok-Jun Seo, Chaun Gi Choi, Young Hwan Hwang and Byeong-Soo Bae. "High performance solution-processed amorphous zinc tin oxide thin film transistor." Journal of Physics D: Applied Physics 42.3, 035106. Dec. 2008. https://doi.org/10.1088/0022-3727/42/3/035106
  5. Keunkyu Song, Dongjo Kim, Xiang-Shu Li, Taewhan Jun, Youngmin Jeong and Jooho Moon. "Solution processed invisible all-oxide thin film transistors." Journal of Materials Chemistry, vol. 19.46 pp. 8881-8886. Sep. 2009. https://doi.org/10.1039/b912554j
  6. Sunho Jeong, Youngmin Jeong, and Jooho Moon. "Solution-processed zinc tin oxide semiconductor for thin-film transistors." The Journal of Physical Chemistry vol. 112.30 pp.11082-11085.Apr. 2008.
  7. Y-J Chang, D.-H. Lee, G. S. Herman and C.-H. Chang "High-performance, spin-coated zinc tin oxide thin-film transistors." Electrochemical and solid-state letters vol. 10.5 pp. H135-H138. Feb. 2007. https://doi.org/10.1149/1.2666588
  8. You Seung Rim, Woong Hee Jeong, Dong Lim Kim, Hyun Soo Lim, Kyung Min Kim and Hyun Jae Kim. "Simultaneous modification of pyrolysis and densification for low-temperature solutionprocessed flexible oxide thin-film transistors." Journal of Materials Chemistry., vol. 22, pp. 12491-12497. Mar. 2012.
  9. By Sunho Jeong, Young-Geun Ha, Jooho Moon, Antonio Facchetti and Tobin J. Marks. "Role of Gallium Doping in Dramatically Lowering Amorphous Oxide Processing Temperatures for Solution Derived Indium Zinc Oxide Thin Film Transistors." Advanced Materials., vol. 22, pp. 1346-1350. Mar. 2010. https://doi.org/10.1002/adma.200902450
  10. Haifeng Pu, Qianfei Zhou, Lan Yue and Qun Zhang, Semicond. "Solution-processed indium gallium zinc oxide thin-film transistors with infrared irradiation annealing." Semiconductor Science and Technology., vol. 28.10, pp. 105002. Oct. 2013. https://doi.org/10.1088/0268-1242/28/10/105002
  11. Li-Feng Teng, Po-Tsun Liu, Yuan-Jou Lo, and Yao-Jen Lee. "Effects of microwave annealing on electrical enhancement of amorphous oxide semiconductor thin film transistor." Applied Physics Letters., vol. 101.13 pp. 132901. Sep. 2012. https://doi.org/10.1063/1.4754627
  12. Xiaoming Huang, Chenfei Wu, Hai Lu, Fangfang Ren, Dunjun Chen, Rong Zhang, and Youdou Zheng. "Enhanced bias stress stability of a-InGaZnO thin film transistors by inserting an ultrathin interfacial InGaZnO: N layer." Applied Physics Letters., vol. 102.19 pp. 193505. May. 2013. https://doi.org/10.1063/1.4805354
  13. Chun-Yu Wu, Huang-Chung Cheng, Chao-Lung Wang, Ta-Chuan Liao, Po-Chun Chiu, Chih-Hung Tsai, Chun-Hsiang Fang, and Chung-Chun Lee. "Reliability improvement of InGaZnO thin film transistor encapsulated under nitrogen ambient." Applied Physics Letters., vol. 100, pp. 152108. Sep. 2012. https://doi.org/10.1063/1.3702794
  14. You Seung Rim, Dong Lim Kim, Woong Hee Jeong, and Hyun Jae Kim. "Effect of Zr addition on ZnSnO thin-film transistors using a solution process." Applied Physics Letters.,vol. 97, pp. 233502. Nov. 2010. https://doi.org/10.1063/1.3524514