Browse > Article
http://dx.doi.org/10.4313/JKEM.2011.24.11.900

Analysis of An Anomalous Hump Phenomenon in Low-temperature Poly-Si Thin Film Transistors  

Kim, Yu-Mi (Department of Electronics Engineering, Chungnam National University)
Jeong, Kwang-Seok (Department of Electronics Engineering, Chungnam National University)
Yun, Ho-Jin (Department of Electronics Engineering, Chungnam National University)
Yang, Seung-Dong (Department of Electronics Engineering, Chungnam National University)
Lee, Sang-Youl (Department of Electronics Engineering, Chungnam National University)
Lee, Hi-Deok (Department of Electronics Engineering, Chungnam National University)
Lee, Ga-Won (Department of Electronics Engineering, Chungnam National University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.24, no.11, 2011 , pp. 900-904 More about this Journal
Abstract
In this paper, we investigated an anomalous hump phenomenon under the positive bias stress in p-type LTPS TFTs. The devices with inferior electrical performance also show larger hump phenomenon. which can be explained by the sub-channel induced from trapped electrons under thinner gate oxide region. We can confirm that the devices with larger hump have larger interface trap density ($D_{it}$) and grain boundary trap density ($N_{trap}$) extracted by low-high frequency capacitance method and Levinson-Proano method, respectively. From the C-V with I-V transfer characteristics, the trapped electrons causing hump seem to be generated particularly from the S/D and gate overlapped region. Based on these analysis, the major cause of an anomalous hump phenomenon under the positive bias stress in p-type poly-Si TFTs is explained by the GIDL occurring in the S/D and gate overlapped region and the traps existing in the channel edge region where the gate oxide becomes thinner, which can be inferred by the fact that the magnitude of the hump is dependent on the average trap densities.
Keywords
LTPS TFT; Hump; GIDL; Interface trap density; Grain boundary trap density;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 C. F. Huang, C. Y. Peng, Y. J. Yang, H. C. Sun, H. C. Chang, P. S. Kuo, H. L. Chang, C. Z. Liu, and C. W. Liu, IEEE Electron Device Lett., 29, 1332 (2008).   DOI
2 W. K. Park, J. H. Lee, and G. Lim, IEEE Electron Device Lett., 25, 532 (2004).   DOI
3 C. T. Tsai, T. C. Chang, S. C. Chen, I. Lo, S. W. Tsao, M. C. Hung, J. J. Chang, C. Y. Wu, and C. Y. Huang, Appl. Phys. Lett., 96, 242105 (2010).   DOI
4 M. Mativenga, M. H. Choi, J. Jang, R. Mruthyunjaya, T. J. Tredwell, E. Mozdy, and C. K. Williams, IEEE Trans. Elec. Dev., 58, 2440 (2011).   DOI
5 H. R. Park, D. Kwon, and J. D. Cohen, J. Appl. Phys., 83, 8051 (1998).   DOI
6 C. S. Lin, Y. C. Chen, T. C. Chang, H. W. Li, S. C. Chen, F. Y. Jian, Y. S. Chuang, T. C. Chen, Y. C. Chen, and Y. H. Tai, J. Electrochem. Soc., 157, H1003 (2010).   DOI
7 Sigurd Wagner and C. N. Berglund, Rev. Sci. Instrum., 43, 1775 (1972).   DOI
8 J. Levinson, F. R. Shepherd, P. J. Scanlon, W. D. Westwood, G. Este, and M. Rider, J. Appl. Phys., 53, 1193 (1982).   DOI
9 R. E. Proano, R. S. Misage, D. G. Ast, IEEE Trans. Elec. Dev., 36, 1915 (1989).   DOI
10 R. L. Weisfield and D. A. Anderson, Phil. Mag. B 44, 83 (1981).   DOI
11 T. Serikawa, S. Shirai, A. Okamoto, and S. Suyama, IEEE Trans. Elec. Dev., 36, 1929 (1989).   DOI
12 K. Chung, M. P. Hong, C. W. Kim, and I. Kang, IEDM Tech. Dig., 385 (2002).
13 Y. C. Wu, T. C. Chang, P. T. Liu, C. S. Chen, C. H. Tu, H. W. Zan, Y. H. Tai, and C. Y. Chang, IEEE Trans. Elec. Dev., 52, 2343 (2005).   DOI
14 M. W. Ma, C. Y. Chen, W. C. Wu, C. J. Su, K. H. Kao, T. S. Chao, and T. F. Lei, IEEE Trans. Elec. Dev., 55, 1153 (2008).   DOI
15 J. G. Fossum, A. Oritz-Vonde, H. Shichijo, and S. K. Banerjee, IEEE Trans. Elec. Dev., 32, 1878 (1985).   DOI
16 H. C Kim and Y. H. Roh, J. KIEEME, 21, 213 (2008).