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Reliability Characteristics of La-doped
High-k/Metal Gate nMOSFETs

C. Y. Kang*, R. Choi**, B. H. Lee***, and R. Jammy*

Abstract—The reliability of hafnium oxide gate dielec-
trics incorporating lanthanum (La) is investigated.
nMOSFETs with metal/La-doped high-k dielectric
stack show lower V, and Liates Which is attributed to
the dipole formation at the high-k/SiO, interface. The
reliability results well correlate with the dipole model.
Due to lower trapping efficiency, the La-doping of the
high-k gate stacks can provide better PBTI immunity,
as well as lower charge trapping compared to the
control HfSiO stacks. While the devices with La show
better immunity to positive bias temperature insta-
bility (PBTI) under normal operating conditions, the
threshold voltage shift (AVy,) at high field PBTI is
significant. The results of a transconductance shift
(AGy,) that traps are easily generated during high
field stress because the La weakens atomic bonding in
the interface layer.

Index Terms—La-doped high-k/metal gate nMOSFETs

I. INTRODUCTION

High-k gate diclectrics have been studied as alterna-
tive gate dielectrics for the 45 nm technology nodes and
beyond to replace conventional SiO; or silicon oxynitrides
(SiO4N,) and have been successfully implemented in
CMOS integrations [1, 2]. Hf-based oxides, including

Manuscript received Jun. 1, 2009; revised Aug. 28, 2009,

* SEMATECH, 2706 Montopolis Drive, Austin, TX 78741, USA

** Inha University, Inchon, Korea

*** Dept. of Nanobio Materials Electronics and Dept. of Materials
Science and Engineering, Gwangju Institute of Science and Technology,
Gwangji, Korea

TEL: (512) 356-3527

E-mail:Chang.Yong Kang@sematech.org

HfO, and HfSiO,, have been regarded as promising
candidates for high-k dielectrics because of their
excellent thermal stability with Si. Furthermore, the
mobility of HfSiON devices, which was underestimated
due to transient charging during conventional character-
rization, has improved significantly by dielectric stack
optimization based on better understanding of transient
charging behaviors in high-k [3-6].

In conjunction with high-k dielectrics, a band-edge
metal solution for n- and pMOSFETs is being pursued
because it is known that polySi/high-k stacks are limited
by dopant penetration, inversion oxide thickness (Ti,,)
scalability, threshold voltage (Vy) controllability by
Fermi-level pinning, and poor reliability [7-11]. Various
attempts have been made in material screening to find
proper band-edge electrode materials [8, 12, 13].

Besides pursuing a band-edge metal solution, a simple
rare-earth metal doping technique has been proposed to
modulate Vy, [14-17]. Among various rare-earth metals,
lanthanum has been demonstrated as a strong candidate
for nMOSFETs because of its low Vi, good carrier
mobility, good EOT scaling, and positive bias tempe-
rature instability (PBTI). During a high temperature
dopant activation step, electropositive La that has diffused
into the high-k/SiO, interface forms a dipole, which
shifts the band offset and thereby the effective work function
(EWF) of the electrode. To explain the Vy/flatband
voltage (Vg) modulation HfO, or HfSiO incorporaating
La, various models were proposed, such as a positive
charge by oxygen vacancy and interface dipoles [15-20].
Unlike the Vu/Vy modulation caused by additional
positive charge generation/increase in the dielectric,
devices with La show excellent carrier mobility due to
the short range of the dipole electric field [15, 16].
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Thus, HfO, gate dielectric incorporating La seems to
be a strong candidate for future nMOS dielectrics, but
the effects of the La-induced dipole on device perfor-
mance and dielectric reliability have not been studied
thoroughly. Reliability studies of high-k dielectrics are
focusing on understanding mechanisms of how and
where defects are generated using various characterization
methods [3, 21-27] and it is reported that interface trap
generation rather than the bulk high-k layer is very
crucial to dielectric reliability [28, 29]. In this work, there-
fore, we investigate the reliability of nMOSFETs with
HfO, dielectrics that incorporate La, whose device per-
formance and Vy, are suitable for future technology node
applications. We especially focus on how incorpo-rating
La into the interfacial layer affects dielectric reliability.

I1. EXPERIMENTAL

Transistors were fabricated using a gate-first integration
flow. Hf=silicate films with different SiO, concentrations
were deposited by atomic layer deposition (ALD). A
molecular beam deposition (MBD) process was employed
to deposit an ultra thin LaO, cap on the high-k film
before depositing the metal gate electrode. Post high-k
deposition treatments included a post-nitridation anneal.
Mobility was extracted from 10 wm x 1 pm transistors
using the NCSU CVC and mob2d models [30]. For
comparison, control HfSiO devices were fabricated
without the LaO, cap. The equivalent oxide thicknesses
(EOTs) for the sample devices were in the 0.85 ~ 1.02
nm range (Table 1).
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Fig. 1. XPS analysis shows that by incorporating La, LaOx
segregation has occurred after high temperature anneal. La piled
up near the HfO,/Si0, interface from the EELS analysis [31].

Table 1. Split conditions of HfSiO & Electrical parameters.

SiO | lLa PDA EOT[nm] Vis[V]
X 0.89 -0.58
10%
R 700°C, NH;4 0.95 -0.85
80% 1.02 0.93

X-ray photoelectron spectroscopy (XPS) analysis shows
that LaO/HfO phase segregation/separation occurs after
the thermal process (Fig. 1). Electron energy-loss spect-
roscopy (EELS) analysis confirmed that La accumulates
near the high-k/SiO, interface by the end of the device
fabrication process [2].

III. RESULTS AND DISCUSSION

In the La-doped HfSiO samples with 10% SiOy, Vgp
and Vy, are shifted to the negative direction by about 300
mV, which is due to the La-dipole formation as shown in
Fig. 2. EELS analysis in Fig. 1 showed that the
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Fig. 2. Transistor CV curves for La-doped samples are shifted
to negative direction due to La-dipole formation. For the 80%
Si0,, EOT was increased due to reduced dielectric constant.
Vth for the 80% SiO, shows lowest. It appears to be due to

oxygen vacancy or more strong La-Si dipole formation [30].



168 C.Y. KANG et al : RELIABILITY CHARACTERISTICS OF LA-DOPED HIGH-K/METAL GATE NMOSFETS

La deposited on the high-k layer piled up at the interface
between the SiO, and high-k layer. To modulate Vg, and
Vi, the location of La is known to be critical, i.e., no Vy,
shift was observed when the La was at the top of the
high-k layer [18]. Once the La diffuses down to the
interface layer, the La-O-Si configuration is formed
resulting in an interface dipole formation by a charge
transfer [15, 18].

In the 80% SiO, samples, the Vy, is further reduced in
spite of an EOT increase due to reduced dielectric
constant. The transistor subthreshold slopes (S;) for the
control (no La doping) and sample transistors (both have
10% SiO, HfSiO dielectric) exhibit similar value of 77
mV/dec. However, higher S; is observed in the 80%
SiOy devices (Fig. 3). This increased subthreshold slope
is attributed to the interface states density (Nj) increase

confirmed by the charge pumping measurements (Fig. 4).
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Fig. 3. For the 10% SiOy devices, the both w and w/o La-doping

show similar subthreshold slope (Sf). However, the increased
Sfis observed for the 80% SiO, [30].
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Fig. 4. By incorporating La, interface states density was
decreased. By increasing SiO; content, Nit was increased [30].

For the 10% SiO, devices, the interface state density
decreased slightly after La incorporation. The 10% SiO,
with La doping exhibits slightly reduced carrier mobility
in the low and intermediate field regime compared to the
control device (Fig. 5) because the dipole field induces
additional carrier scattering even though 300 mV of the
Vi was shifted in the device with La. This excellent low-
field mobility cannot be explained by positive charge
incorporation. In addition, the interface state densities
from the devices incorporating La are even lower than
the control samples. Therefore, interface dipole formation
from adding La is believed to be the primary cause of the
Vi and mobility characteristics. Previous reports propo-
sed a dipole-induced band-offset model to explain the
Vy shift [16, 18, 31]. Various material screening
experiments in search of a band-edge solution have
indicated that the interface dipole field is related to the
electro-negativity of rare-earth metal elements [15, 16].
If this is true, this band-offset model will be proved by
the gate leakage behavior. For the 80% SiO, devices,
mobility degraded significantly. The lower Vg and
carrier mobility (higher Ny and Sg for the 80% SiOx
sample appear to be due to @ the stronger La-Si dipole
formation or @ positive charges [6].

A previous La-doped HfO, study reported that the La
dipole led to an increase in the effective barrier height
for the substrate injection, which resulted in reduced gate
leakage currents. In this study, the gate leakage at
Vox=t1.2 V for the La-doped samples was also reduced
due to an offset in barrier height (Fig. 6 and 7). However,
the gate leakage difference for the different SiO, content
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Fig. 5. For 10% SiO, samples, the reason of reduced carrier
mobility at low and intermediate field regime is dipole field
even though lower Nj, [30].
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Fig. 6. At V,,=+1.2 V, La-doping reduced gate leakage due to
an offset of barrier height [30].

Fig. 7. The La-induced dipole formation between the interface
and high-k retarded the injected charges [30].

was not significant. If the larger Vy, shift for the 80%
Si0O, was related to the greater dipole formation, the gate
leakage would be lower than that of 10% SiO, samples,
which suggest that La doping results in a positive charge
as well.

In previous studies of La-doped high-k dielectrics, the
high-k dielectric stacks with La showed better PBTI
reliabilities [14, 16]. Other studies reported that incur-
porating La provided better PBTI immunity at lower bias
conditions but reliability under high gate stress field
conditions became worse [31, 32]. In the positive bias
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temperature instabilities (PBTI) under the same gate
overdrive stress conditions, both types of La-doped
devices showed smaller Vy, shifts. At lower V, (<1.4 V)
condition, La-doping can result in less Vy, shift because
of reduced trapping efficiency, as shown Fig. 8 and 9.
With increasing stress voltage (V1.8 V), however, all
devices showed a similar AVy. The similar ratio of
Quappea t0 Qi indicates that intrinsic charge trapping is
similar regardless of La doping and SiO, concentration,
as shown in Fig. 10. At a lower gate stress voltages, Gy,
degradation was similar. With increased gate stress
voltage, however, G,, in both La-doped samples
degraded more, indicating that the interface degradation
becomes more significant and time-dependent dielectric
breakdown (TDDB) characteristics may be worsen (See
Fig. 11). From the TDDB test at a higher gate stress as
shown in Fig. 12, La-doped samples show shorter time
to breakdown, which are attributed to lower interface
quality, most probably associated with the presence of
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Fig. 8. At same gate overdrive stress conditions, La-doping
showed less Vg, shift. For the 80% SiO,, lowest Vg was
observed [30].

10° preeer e — vy T e T T rrey T T T
Control HfSIO La doped HISIO La doped HISIO
-10%Si -80%Si0
V207 -6 %si0 v =20V 000% %S meveaea@e
= 0% & 00 e
W M 000, M 0000°
o 000%y =av o) 2
> o ° Ooogo ® o ® uo Y
E v =1.6VOOO i@ O 00 3 g 0000 1
§ - oO V=14 VI e ©0 0000
2 o] OO ° 002.0 v =14V dﬁm ......
0 dﬁﬂm (LA iy o o° v =V
00 o™
10° 'l ' 'l IO A..l 'l ] 'l ! L V] 'l
10 100 1000 10000 10 100 1000 10000 10 100 1000 10000
Time [sec] Time [sec] Time [sec]

Fig. 9. At lower V, (<1.4 V) condition, La-doping can induce less Vy, shift because of reduced trapping efficiency. With increasing
stress voltage (V,>1. V), however, all devices showed similar Vy, shift [30].
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charge trapping are similar regardless of La-doping and SiO
concentration [30].
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Fig. 11. At lower gate stress, G, degradation was similar. With
increasing the gate stress voltage, La-doped samples showed
more Gy, degradation, indicating that the interface degradation
becomes more significant [30].
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Fig. 12. La-doping can degrade TDDB characteristics due to more
interface degradation at higher voltage stress conditions [31].

La atoms. Considering the operation conditions for the
devices of the 32 nm technology node and below, however,
the degradation of La-doped devices is expected to be
less severe and it might be comparable to the control
devices.

IV. CONCLUSIONS

La-doped HfSiO samples showed lower Vy, and Ly,
which was attributed to the dipole formation at the high-
k/Si0, interface. With increasing SiO, content, significant
mobility degradation was observed, most likely due to
additional La-related charges in the interfacial layer. La-
doped devices demonstrate better immunity in the PBTI
test and low charge trapping efficiency compared to the
control HfSiO.

From the results above, the key factor for improving
high field reliability is to mitigate the accumulation of
La in the bottom interface layer. However, this can
increase the nMOSFET V. With a given condition for
incorporating La while maintaining a target Vg, interface
engineering to obtain a more robust interface will be a
key factor in reliability.
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