DOI QR코드

DOI QR Code

Annealing temperature dependence on the positive bias stability of IGZO thin-film transistors

  • Shin, Hyun-Soo (School of Electrical and Electronic Engineering, Yonsei University) ;
  • Ahn, Byung-Du (LCD R&D Center, Samsung Electronics Co., Ltd.) ;
  • Rim, You-Seung (School of Electrical and Electronic Engineering, Yonsei University) ;
  • Kim, Hyun-Jae (School of Electrical and Electronic Engineering, Yonsei University)
  • Received : 2011.07.15
  • Accepted : 2011.08.05
  • Published : 2011.12.31

Abstract

The threshold voltage shift (${\Delta}V_{th}$) under positive-voltage bias stress (PBS) of InGaZnO (IGZO) thin-film transistors (TFTs) annealed at different temperatures in air was investigated. The dramatic degradation of the electrical performance was observed at the sample that was annealed at $700^{\circ}C$. The degradation of the saturation mobility (${\mu}_{sat}$) resulted from the diffusion of indium atoms into the interface of the IGZO/gate insulator after crystallization, and the degradation of the subthreshold slope (S-factor) was due to the increase in the interfacial and bulk trap density. In spite of the degradation of the electrical performance of the sample that was annealed at $700^{\circ}C$, it showed a smaller ${\Delta}V_{th}$ under PBS conditions for $10^4$ s than the samples that were annealed at $500^{\circ}C$, which is attributed to the nanocrystal-embedded structure. The sample that was annealed at $600^{\circ}C$ showed the best performance and the smallest ${\Delta}V_{th}$ among the fabricated samples with a ${\mu}_{sat}$ of $9.38cm^2/V$ s, an S-factor of 0.46V/decade, and a ${\Delta}V_{th}$ of 0.009V, which is due to the passivation of the defects by high thermal annealing without structural change.

Keywords

References

  1. H.Q. Chiang, J.F. Wager, R.L. Hoffman, J. Jeong, and D.A. Keszler, Appl. Phys. Lett. 86, 013503 (2005). https://doi.org/10.1063/1.1843286
  2. C.-J. Kim, S. Kim, J.-H. Lee, J.-S. Park, S. Kim, J. Park, E. Lee, J. Lee, Y. Park, J.H. Kim, S.T. Shin, and U.-I. Chung, Appl. Phys. Lett. 98, 252103 (2009).
  3. D.-H. Cho, S. Yang, C. Byun, J. Shin, M.K. Ryu, S.-H.K. Park, C.-S. Hwang, S.M. Chung,W.-S. Cheong, S.M. Yoon, and H.-Y. Chu, Appl. Phys. Lett. 93, 142111 (2008). https://doi.org/10.1063/1.2998612
  4. K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, Nature 432, 488 (2004). https://doi.org/10.1038/nature03090
  5. H.H. Hsieh, H.H. Lu, H.C. Ting, C.S. Chuang, C.Y. Chen, and Y. Lin, J. Information Display 11, 160 (2011).
  6. H.Q. Chiang, B.R. McFarlane, D. Hong, R.E. Presley, and J.F. Wager, J. Non-Cryst. Solids 354, 2826 (2008). https://doi.org/10.1016/j.jnoncrysol.2007.10.105
  7. A. Suresh, P. Gollakota, P. Wellenius, A. Dhawan, and J.F. Muth, Thin Solid Films 516, 1326 (2008). https://doi.org/10.1016/j.tsf.2007.03.153
  8. T. Iwasaki, N. Itagaki, T. Den, H. Kumomi, K. Nomura, T. Kamiya, and H. Hosono, Appl. Phys. Lett. 90, 242114 (2007). https://doi.org/10.1063/1.2749177
  9. P. Barquinha, A. Vilà, G. Gonçalves, L. Pereira, R. Martins, J. Morante, and E. Fortunato, IEEE Trans. Electron Devices 55, 954 (2008). https://doi.org/10.1109/TED.2008.916717
  10. H. Hosono, K. Nomura, Y. Ogo, T. Uruga, and T. Kamiya, J. Non-Cryst. Solids 354, 2796 (2008). https://doi.org/10.1016/j.jnoncrysol.2007.10.071
  11. K. Nomura, T. Kamiya, H. Ohta, M. Hirano, and H. Hosono, Appl. Phys. Lett. 93, 192107 (2008). https://doi.org/10.1063/1.3020714
  12. H.S. Shin, B.D. Ahn, K.H. Kim, J.-S. Park, and H.J. Kim, Thin Solid Films 517, 6349 (2009). https://doi.org/10.1016/j.tsf.2009.02.071
  13. A. Indluru and T.L. Alford, Electrochem. Solid State Lett. 13, H466 (2010).
  14. J. Levinson, F.R. Shepherd, P.J. Scanlon, W.D. Westwood, G. Este, and M. Rider, J. Appl. Phys. 53, 1193 (1982). https://doi.org/10.1063/1.330583
  15. K. Nomura, A. Takagi, T. Kamiya, H. Ohta, M. Hirano and H. Hosono, Jpn. J. Appl. Phys. 45, 4303 (2006). https://doi.org/10.1143/JJAP.45.4303
  16. G.H. Kim, B.D. Ahn, H.S. Shin, W.H. Jeong, H.J. Kim, and H.J. Kim, Appl. Phys. Lett. 94, 133501 (2009). https://doi.org/10.1063/1.3089816
  17. C.Y. Kagan and P.W.E. Andry, Thin Film Transistors (Dekker, New York, 2003), p. 87.
  18. T. Kamiya, K. Nomura, and H. Hosono, Sci. Technol. Adv. Mater. 11, 044305 (2010). https://doi.org/10.1088/1468-6996/11/4/044305
  19. D.-Y. Cho, J.W. Song,Y.C. Shin, C.S. Hwang,W.S. Choi, and J.K. Jeong, Electrochem. Solid State Lett. 12, H208 (2009). https://doi.org/10.1149/1.3110032
  20. K. Hoshino, D. Hong, H.Q. Chiang, and J.F. Wager, IEEE Trans. Electron. Dev. 56, 1365 (2009). https://doi.org/10.1109/TED.2009.2021339

Cited by

  1. Manifestation of reversal conductivity on high pressurizing of solution-processed ZnSnO thin-film transistors at low temperature vol.47, pp.4, 2011, https://doi.org/10.1088/0022-3727/47/4/045502
  2. 상온에서 증착된 IGZO 박막의 열처리 온도에 따른 특성 vol.47, pp.4, 2011, https://doi.org/10.5695/jkise.2014.47.4.181
  3. Low-temperature poly-silicon thin-film transistor developed without ion doping vol.15, pp.3, 2011, https://doi.org/10.1080/15980316.2014.950613
  4. Diffusion Behaviors and Electrical Properties in the In-Ga-Zn-O Thin Film Deposited by Radio-frequency Reactive Magnetron Sputtering vol.48, pp.6, 2015, https://doi.org/10.5695/jkise.2015.48.6.322
  5. Enhanced electrical stability of nitrate ligand-based hexaaqua complexes solution-processed ultrathin a-IGZO transistors vol.50, pp.48, 2011, https://doi.org/10.1088/1361-6463/aa9357
  6. Effects of vacuum rapid thermal annealing on the electrical characteristics of amorphous indium gallium zinc oxide thin films vol.8, pp.1, 2011, https://doi.org/10.1063/1.5009895
  7. Low-Temperature-Processed SiInZnO Thin-Film Transistor Fabricated by Radio Frequency Magnetron Sputtering vol.19, pp.3, 2018, https://doi.org/10.1007/s42341-018-0042-8
  8. Influence of effective channel length in self-aligned coplanar amorphous-indium-gallium-zinc-oxide thin-film transistors with different annealing temperatures vol.113, pp.2, 2018, https://doi.org/10.1063/1.5027373
  9. Short time helium annealing for solution-processed amorphous indium-gallium-zinc-oxide thin-film transistors vol.8, pp.8, 2011, https://doi.org/10.1063/1.5040019