• Title/Summary/Keyword: Optical Bio-Sensor

Search Result 48, Processing Time 0.027 seconds

Effect of Adhesion layer on the Optical Scattering Properties of Plasmonic Au Nanodisc (접착층을 고려한 플라즈모닉 금 나노 디스크의 광산란 특성)

  • Kim, Jooyoung;Cho, Kyuman;Lee, Kyeong-Seok
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.7
    • /
    • pp.464-470
    • /
    • 2008
  • Metallic nanostructures have great potential for bio-chemical sensor applications due to the excitation of localized surface plasmon and its sensitive response to environmental change. Unlike the commonly explored absorption-based sensing, the optical scattering provides single particle detection scheme. For the localized surface plasmon resonance spectroscopy, the metallic nanostructures with controlled shape and size have been usually fabricated on adhesion-layer pre-coated transparent glass substrates. In this study, we calculated the optical scattering properties of plasmonic Au nanodisc using a discrete dipole approximation method and analyzed the effect of adhesion layer on them. Our result also indicates that there is a trade-off between the surface plasmon damping and the capability of supporting nanostructures in determining the optimal thickness of adhesion layer. Marginal thickness of Ti adhesion layer for supporting Au nanostructures fabricated on a silica glass substrate was experimentally analyzed by an adhesion strength test using a nano-indentation technique.

Wavelength Interrogation Technique for Bragg Reflecting Strain Sensors Based on Arrayed Waveguide Grating (도파로 어레이 격자를 이용한 광섬유 브래그 스트레인 센서의 반사파장 신호 복원 기술)

  • Seo, Jun-Kyu;Kim, Kyung-Jo;Oh, Min-Cheol;Lee, Sang-Min;Kim, Young-Jae;Kim, Myung-Hyun
    • Korean Journal of Optics and Photonics
    • /
    • v.19 no.1
    • /
    • pp.68-72
    • /
    • 2008
  • Fiber-optic strain sensors based on Bragg reflection gratings produce the change of reflection spectrum when an external stress is applied on the sensor. To measure the Bragg reflection wavelength in high speed, an arrayed waveguide grating device is incorporated in this work. By monitoring the output power from each channel of the AWG, the peak wavelength corresponding to the applied strain could be obtained. To enhance the accuracy of the AWG wavelength interrogation system, a chirped fiber Bragg grating with a 3-dB bandwith of 5.4 nm is utilized. The high-speed response of the proposed system is demonstrated by measuring a fast varying strain produced by the damped oscillation of a cantilever. An oscillation frequency of 17.8 Hz and a damping time constant of 0.96 second are obtained in this measurement.

Study on Improvement of Signal to Background Ratio of Laser-based Fluorescence Imaging System (레이저 기반 형광 영상 시스템의 Signal to Background Ratio 향상 연구)

  • Kim, J.H.;Jeong, M.Y.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.4
    • /
    • pp.107-111
    • /
    • 2020
  • Recently, as an aging society progresses, a lot of interest in health and diagnosis is increasing, As the field of various bio-imaging systems for guided surgery capable of accurate diagnosis has emerged as important, a Fluorescence imaging system capable of accurate measurement and real-time confirmation has emerged as an important field. Fluorescence images currently being used are mainly in the NIR-I band, but many studies are in progress in the NIR-II band in order to improve resolution and confirm fluorescence deeply and accurately. In this paper, the difference between NIR-I and NIR-II, optical characteristics, and SBR (signal to background ration) of a fluorescent imaging system, was investigated using the finite element (FEM) method. After confirming, it was confirmed that the SBR was 16.2 times higher in the NIR-II area than in the NIR-I by making the skin phantom and measuring the fluorescence. It is confirmed that the enhancement in SBR of the Fluorescence imaging system is more effective in the NIR-II region than in the NIR-I region and expected to be used in application fields such as guided surgery, bio-sensor and also device which can detect the defect of optical devices.

A fiber optic surface plasmon resonance (SPR) sensorusing cyclic olefin copolymer (COC) polymer prism (Cyclic olefin copolymer (COC) 폴리머 프리즘을 사용한 광섬유 기반 표면 플라즈몬 공명 (SPR) 바이오 센서)

  • Yun, Sung-Sik;Lee, Soo-Hyun;Ahn, Chong-H.;Lee, Jong-Hyun
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.369-374
    • /
    • 2008
  • A novel fiber optic surface plasmon resonance (SPR) sensor using cyclic olefin copolymer (COC) prism with the spectral modulation is presented. The SPR sensor chip is fabricated using the SU-8 photolithography, Ni-electroplating and COC injection molding process. The sidewall of the COC prism is partially deposited with Au/Cr (45/2.nm thickness) by e-beam evaporator, and the thermal bonding process is conducted for micro fluidic channels and optical fibers alignment. The SPR spectrum for a phosphate buffered saline (0.1.M PBS, pH.7.2) solution shows a distinctive dip at 1300.nm wavelength, which shifts toward longer wavelength with respect to the bovine serum albumin (BSA)concentrations. The sensitivity of the wavelength shift is $1.16\;nm{\cdot}{\mu}g^{-1}{\cdot}{\mu}l^{-1}$. From the wavelength of SPR dips, the refractive indices (RI) of the BSA solutions can be theoretically calculated using Kretchmann configuration, and the change rate of the RI was found to be $2.3{\times}10^{-5}RI{\cdot}{\mu}g^{-1}{\cdot}l^{-1}$. The realized fiber optic SPR sensor with a COC prism has clearly shown the feasibility of a new disposable, low cost and miniaturized SPR biosensor for biochemical molecular analyses.

Bio-Medical Data Transmission System using Multi-level Visible Light based on Resistor Ladder Circuit (저항 사다리 회로 기반의 다중레벨 가시광을 이용하는 의료 데이터 전송 시스템)

  • An, Jinyoung;Chung, Wan-Young
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.2
    • /
    • pp.131-137
    • /
    • 2016
  • In this study, a multilevel visible light communication (VLC) system based on resistor ladder circuit is designed to transmit medical data. VLC technology is being considered as an alternative wireless communication due to various advantages such as ubiquity, license free operation, low energy consumption, and no radio frequency (RF) radiation characteristics. With VLC even in places where traditional RF communication (e.g., Wi-Fi) is forbidden, significant bio-medical signal including the electrocardiography (ECG) and photoplethysmography (PPG) data can be transmitted. More lives could be saved anywhere by this potential advantage of VLC with a fast emergency response time. A multilevel transmission scheme is adopted to improve the data capacity with keeping simplicity, where data transmission rate can increase by log2m times (m is the number of voltage levels) than that of conventional VLC transmission based on on/off keying. In order to generate multi-amplitudes, resistor ladder circuit, which is a basic principle of digital to analog convertor, is employed, and information is transferred through LED (Light-Emitting Diode) with different voltage level. In the receiver side, multilevel signal is detected by optical receiver including a photo diode. Then, the collected data are analyzed to serve the necessary medical care to the concerned patient.

Effects of Light Incident Mode on Optical Scattering of Au Nanoparticle by Localized Surface Plasmon Resonance (빔의 입사모드가 금 나노입자의 국소표면플라즈몬 산란광에 미치는 영향)

  • Lee, Taek-Sung;Lee, Kyeong-Seok;Kim, Won-Mok;Lee, Jang-Kyo;Byun, Seok-Joo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.4
    • /
    • pp.307-313
    • /
    • 2009
  • Quantitative analysis of optical scattering intensities from a Au nanoparticle with a diameter of 100 nm, which is effected by the localized surface plasmon resonance (LSPR), were numerically carried out by using a dark-field detection scheme on prism basal plane for two different beam incident modes of reflectance (R-mode) and transmittance (T-mode). Two-dimensional finite difference time domain (FDTD) algorithm was adopted, and its applicabilibility was verified by comparing the simulation results with the theoretical ones. Simulation results of the scattered light intensities from a Au nanoparticle revealed that the scattered intensity of the T-mode was much stronger than that of R-mode. Comparison of the calculated results with the theoretical intensity distribution on the prism showed that the scattered intensity is marimized when the evanescent field, which is generated from the interface of prism and air at TIR angle, is coupled with Au nanoparticle.

Synthesis of Red Light Emitting Au Nanocluster (적색 발광하는 금 나노클러스터 합성)

  • Cha, Dae Kyeong;Yoon, Sang Min;Kim, Mi Sung;Bang, Ji Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.11
    • /
    • pp.685-689
    • /
    • 2016
  • Synthesis of the fluorescent Au nanoclusters is reported. The Au nanoclusters were synthesized via reduction of gold ions in reverse micelles with mild reducing agents. The Au nanoclusters show a bright red emission at 640 nm. The fluorescent Au nanoclusters attract great interest for sensor, electronic device and bio-imaging applications because of ultra-small size, high chemical stablity and bright emission. We believe that the fluorescent Au nanoclusters can have optoelectronic applications such as optical down conversion phosphors.

Nano and micro structures for label-free detection of biomolecules

  • Eom, Kil-Ho;Kwon, Tae-Yun;Sohn, Young-Soo
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.403-420
    • /
    • 2010
  • Nano and micro structure-based biosensors are promising tool for label-free detection of biomolecular interactions with great accuracy. This review gives a brief survey on nano and micro platforms to sense a variety of analytes such as DNA, proteins and viruses. Among incredible nano and micro structure for bio-analytical applications, the scope of this paper will be limited to micro and nano resonators and nanowire field-effect transistors. Nanomechanical motion of the resonators transducers biological information to readable signals. They are commonly combined with an optical, capacitive or piezo-resistive detection systems. Binding of target molecule to the modified surface of nanowire modulates the current of the nanowire through electrical field-effect. Both detection methods have advantages of label-free, real-time and high sensitive detection. These structures can be extended to fabricate array-type sensors for multiplexed detection and high-throughput analysis. The biosensors based on these structures will be applied to lab-on-a-chip platforms and point-of-care diagnostics. Basic concepts including detection mechanisms and trends in their fields will be covered in this review.

Comparison of optical reflectance spectrum at blade and vein parts of cabbage and kale leaves

  • Ngo, Viet-Duc;Ryu, Dong-Ki;Chung, Sun-Ok;Park, Sang-Un;Kim, Sun-Ju;Park, Jong-Tae
    • Korean Journal of Agricultural Science
    • /
    • v.40 no.2
    • /
    • pp.163-167
    • /
    • 2013
  • Objective of the study was to compare reflectance spectrum in the blade and the vein parts of cabbage and kale leaves. A total 6 cabbage and kale leaves were taken from a plant factory in Chungnam National University, Korea. Spectra data were collected with a UV/VIS/NIR spectrometer (model: USB2000, Ocean Optics, FL, USA) in the wavelength region of 190 - 1130 nm. Median filter smoothing method was selected to preprocess the obtained spectra data. We computed reflectance difference by subtraction of averaged spectrum from individual spectrum. To estimate correlation at different parts of cabbage and kale leaves, cross - correlation method was used. Differences between cabbage and kale leaves are clearly manifested in the green, red and near - infrared ranges. The percent reflectance of cabbage leaves in the NIR wavelength band was higher than that of kale leaves. Reflectance in the blade part was higher than in the vein part by 18%. Reflectance difference in the different parts of cabbage and kale leaves were clear in all of the wavelength bands. Standard deviation of reflectance difference in the vein part was greater for kale, while the value in the blade part was greater for cabbage leaves. Standard deviation of cross - correlation increased from 0.092 in the first sensor (UV/VIS) and 0.007 in the second sensor (NIR) to 0.099 and 0.015, respectively.

The Detection of Magnetic Properties in Blood and Nanoparticles using Spin Valve Biosensor (스핀밸브 바이오 센서를 이용한 혈액과 나노입자의 자성특성 검출)

  • Park, Sang-Hyun;Soh, Kwang-Sup;Ahn, Myung-Cheon;Hwang, Do-Guwn;Lee, Sang-Suk
    • Journal of the Korean Magnetics Society
    • /
    • v.16 no.3
    • /
    • pp.157-162
    • /
    • 2006
  • In this study, a high sensitive giant magnetoresistance-spin valve (GMR-SV) bio-sensing device with high linearity and very low hysteresis was fabricated by photolithography and ion beam deposition sputtering system. Detection of the Fe-hemoglobin inside in a red blood and magnetic nanoparticles using the GMR-SV bio-sensing device was investigated. Here a human's red blood includes hemoglobin, and the nanoparticles are the Co-ferrite magnetic particles coated with a shell of amorphous silica which the average size of the water-soluble bare cobalt nanoparticles was about 9 nm with total size of about 50 nm. When 1 mA sensing current was applied to the current electrode in the patterned active GMR-SV devices with areas of $5x10{\mu}m^2 $ and $2x6{\mu}m^2 $, the output signals of the GMRSV sensor were about 100 mV and 14 mV, respectively. In addition, the maximum sensitivity of the fabricated GMR-SV sensor was about $0.1{\sim}0.8%/Oe$. The magnitude of output voltage signals was obtained from four-probe magnetoresistive measured system, and the picture of real-time motion images was monitored by an optical microscope. Even one drop of human blood and nanopartices in distilled water were found to be enough for detecting and analyzing their signals clearly.